1
|
Gopal RK, Vantaku VR, Panda A, Reimer B, Rath S, To TL, Fisch AS, Cetinbas M, Livneh M, Calcaterra MJ, Gigliotti BJ, Pierce KA, Clish CB, Dias-Santagata D, Sadow PM, Wirth LJ, Daniels GH, Sadreyev RI, Calvo SE, Parangi S, Mootha VK. Effectors Enabling Adaptation to Mitochondrial Complex I Loss in Hürthle Cell Carcinoma. Cancer Discov 2023; 13:1904-1921. [PMID: 37262067 PMCID: PMC10401073 DOI: 10.1158/2159-8290.cd-22-0976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Oncocytic (Hürthle cell) carcinoma of the thyroid (HCC) is genetically characterized by complex I mitochondrial DNA mutations and widespread chromosomal losses. Here, we utilize RNA sequencing and metabolomics to identify candidate molecular effectors activated by these genetic drivers. We find glutathione biosynthesis, amino acid metabolism, mitochondrial unfolded protein response, and lipid peroxide scavenging to be increased in HCC. A CRISPR-Cas9 knockout screen in a new HCC model reveals which pathways are key for fitness, and highlights loss of GPX4, a defense against lipid peroxides and ferroptosis, as a strong liability. Rescuing complex I redox activity with the yeast NADH dehydrogenase (NDI1) in HCC cells diminishes ferroptosis sensitivity, while inhibiting complex I in normal thyroid cells augments ferroptosis induction. Our work demonstrates unmitigated lipid peroxide stress to be an HCC vulnerability that is mechanistically coupled to the genetic loss of mitochondrial complex I activity. SIGNIFICANCE HCC harbors abundant mitochondria, mitochondrial DNA mutations, and chromosomal losses. Using a CRISPR-Cas9 screen inspired by transcriptomic and metabolomic profiling, we identify molecular effectors essential for cell fitness. We uncover lipid peroxide stress as a vulnerability coupled to mitochondrial complex I loss in HCC. See related article by Frank et al., p. 1884. This article is highlighted in the In This Issue feature, p. 1749.
Collapse
Affiliation(s)
- Raj K. Gopal
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Venkata R. Vantaku
- Harvard Medical School, Boston, Massachusetts
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Apekshya Panda
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Bryn Reimer
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sneha Rath
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Tsz-Leung To
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Adam S. Fisch
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Murat Cetinbas
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Maia Livneh
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | - Kerry A. Pierce
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Dora Dias-Santagata
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Peter M. Sadow
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Lori J. Wirth
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Gilbert H. Daniels
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Thyroid Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Ruslan I. Sadreyev
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Sarah E. Calvo
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sareh Parangi
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Vamsi K. Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Soldatov VO, Kubekina MV, Skorkina MY, Belykh AE, Egorova TV, Korokin MV, Pokrovskiy MV, Deykin AV, Angelova PR. Current advances in gene therapy of mitochondrial diseases. J Transl Med 2022; 20:562. [PMID: 36471396 PMCID: PMC9724384 DOI: 10.1186/s12967-022-03685-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases (MD) are a heterogeneous group of multisystem disorders involving metabolic errors. MD are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystem dysfunction with different clinical courses. Most primary MD are autosomal recessive but maternal inheritance (from mtDNA), autosomal dominant, and X-linked inheritance is also known. Mitochondria are unique energy-generating cellular organelles designed to survive and contain their own unique genetic coding material, a circular mtDNA fragment of approximately 16,000 base pairs. The mitochondrial genetic system incorporates closely interacting bi-genomic factors encoded by the nuclear and mitochondrial genomes. Understanding the dynamics of mitochondrial genetics supporting mitochondrial biogenesis is especially important for the development of strategies for the treatment of rare and difficult-to-diagnose diseases. Gene therapy is one of the methods for correcting mitochondrial disorders.
Collapse
Affiliation(s)
- Vladislav O Soldatov
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia.
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia.
| | - Marina V Kubekina
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Yu Skorkina
- Department of Biochemistry, Belgorod State National Research University, Belgorod, Russia
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia
| | - Andrei E Belykh
- Dioscuri Centre for Metabolic Diseases, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tatiana V Egorova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail V Korokin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Mikhail V Pokrovskiy
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Alexey V Deykin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
3
|
Millington‐Ward S, Chadderton N, Finnegan LK, Post IJ, Carrigan M, Gardiner T, Peixoto E, Maloney D, Humphries MM, Stitt A, Léveillard T, Humphries P, Kenna PF, Palfi A, Farrar GJ. AAV-mediated gene therapy improving mitochondrial function provides benefit in age-related macular degeneration models. Clin Transl Med 2022; 12:e952. [PMID: 35988157 PMCID: PMC9393074 DOI: 10.1002/ctm2.952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sophia Millington‐Ward
- Smurfit Institute of GeneticsSchool of Genetics and MicrobiologyTrinity College DublinDublin 2Ireland
| | - Naomi Chadderton
- Smurfit Institute of GeneticsSchool of Genetics and MicrobiologyTrinity College DublinDublin 2Ireland
| | - Laura K. Finnegan
- Smurfit Institute of GeneticsSchool of Genetics and MicrobiologyTrinity College DublinDublin 2Ireland
| | - Iris J.M. Post
- Smurfit Institute of GeneticsSchool of Genetics and MicrobiologyTrinity College DublinDublin 2Ireland
| | - Matthew Carrigan
- Smurfit Institute of GeneticsSchool of Genetics and MicrobiologyTrinity College DublinDublin 2Ireland
| | - Tom Gardiner
- Queen's University BelfastCentre for Experimental MedicineSchool of MedicineDentistry and Biomedical ScienceBelfastUK
| | - Elisa Peixoto
- Queen's University BelfastCentre for Experimental MedicineSchool of MedicineDentistry and Biomedical ScienceBelfastUK
| | - Daniel Maloney
- Smurfit Institute of GeneticsSchool of Genetics and MicrobiologyTrinity College DublinDublin 2Ireland
| | - Marian M. Humphries
- Smurfit Institute of GeneticsSchool of Genetics and MicrobiologyTrinity College DublinDublin 2Ireland
| | - Alan Stitt
- Queen's University BelfastCentre for Experimental MedicineSchool of MedicineDentistry and Biomedical ScienceBelfastUK
| | - Thierry Léveillard
- Department of GeneticsSorbonne UniversitéINSERMCNRSInstitut de la VisionParisFrance
| | - Pete Humphries
- Smurfit Institute of GeneticsSchool of Genetics and MicrobiologyTrinity College DublinDublin 2Ireland
| | - Paul F. Kenna
- Smurfit Institute of GeneticsSchool of Genetics and MicrobiologyTrinity College DublinDublin 2Ireland
- Research FoundationRoyal Victoria Eye and Ear HospitalDublin 2Ireland
| | - Arpad Palfi
- Smurfit Institute of GeneticsSchool of Genetics and MicrobiologyTrinity College DublinDublin 2Ireland
| | - G. Jane Farrar
- Smurfit Institute of GeneticsSchool of Genetics and MicrobiologyTrinity College DublinDublin 2Ireland
| |
Collapse
|
4
|
Organization of the Respiratory Supercomplexes in Cells with Defective Complex III: Structural Features and Metabolic Consequences. Life (Basel) 2021; 11:life11040351. [PMID: 33920624 PMCID: PMC8074069 DOI: 10.3390/life11040351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial respiratory chain encompasses four oligomeric enzymatic complexes (complex I, II, III and IV) which, together with the redox carrier ubiquinone and cytochrome c, catalyze electron transport coupled to proton extrusion from the inner membrane. The protonmotive force is utilized by complex V for ATP synthesis in the process of oxidative phosphorylation. Respiratory complexes are known to coexist in the membrane as single functional entities and as supramolecular aggregates or supercomplexes (SCs). Understanding the assembly features of SCs has relevant biomedical implications because defects in a single protein can derange the overall SC organization and compromise the energetic function, causing severe mitochondrial disorders. Here we describe in detail the main types of SCs, all characterized by the presence of complex III. We show that the genetic alterations that hinder the assembly of Complex III, not just the activity, cause a rearrangement of the architecture of the SC that can help to preserve a minimal energetic function. Finally, the major metabolic disturbances associated with severe SCs perturbation due to defective complex III are discussed along with interventions that may circumvent these deficiencies.
Collapse
|
5
|
Alternative NAD(P)H dehydrogenase and alternative oxidase: Proposed physiological roles in animals. Mitochondrion 2019; 45:7-17. [DOI: 10.1016/j.mito.2018.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/01/2017] [Accepted: 01/26/2018] [Indexed: 12/12/2022]
|
6
|
Alternative respiratory chain enzymes: Therapeutic potential and possible pitfalls. Biochim Biophys Acta Mol Basis Dis 2018; 1865:854-866. [PMID: 30342157 DOI: 10.1016/j.bbadis.2018.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/07/2023]
Abstract
The alternative respiratory chain (aRC), comprising the alternative NADH dehydrogenases (NDX) and quinone oxidases (AOX), is found in microbes, fungi and plants, where it buffers stresses arising from restrictions on electron flow in the oxidative phosphorylation system. The aRC enzymes are also found in species belonging to most metazoan phyla, including some chordates and arthropods species, although not in vertebrates or in Drosophila. We postulated that the aRC enzymes might be deployed to alleviate pathological stresses arising from mitochondrial dysfunction in a wide variety of disease states. However, before such therapies can be contemplated, it is essential to understand the effects of aRC enzymes on cell metabolism and organismal physiology. Here we report and discuss new findings that shed light on the functions of the aRC enzymes in animals, and the unexpected benefits and detriments that they confer on model organisms. In Ciona intestinalis, the aRC is induced by hypoxia and by sulfide, but is unresponsive to other environmental stressors. When expressed in Drosophila, AOX results in impaired survival under restricted nutrition, in addition to the previously reported male reproductive anomalies. In contrast, it confers cold resistance to developing and adult flies, and counteracts cell signaling defects that underlie developmental dysmorphologies. The aRC enzymes may also influence lifespan and stress resistance more generally, by eliciting or interfering with hormetic mechanisms. In sum, their judicious use may lead to major benefits in medicine, but this will require a thorough characterization of their properties and physiological effects.
Collapse
|
7
|
Kanabus M, Heales SJ, Rahman S. Development of pharmacological strategies for mitochondrial disorders. Br J Pharmacol 2014; 171:1798-817. [PMID: 24116962 PMCID: PMC3976606 DOI: 10.1111/bph.12456] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/21/2013] [Accepted: 09/26/2013] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial diseases are an unusually genetically and phenotypically heterogeneous group of disorders, which are extremely challenging to treat. Currently, apart from supportive therapy, there are no effective treatments for the vast majority of mitochondrial diseases. Huge scientific effort, however, is being put into understanding the mechanisms underlying mitochondrial disease pathology and developing potential treatments. To date, a variety of treatments have been evaluated by randomized clinical trials, but unfortunately, none of these has delivered breakthrough results. Increased understanding of mitochondrial pathways and the development of many animal models, some of which are accurate phenocopies of human diseases, are facilitating the discovery and evaluation of novel prospective treatments. Targeting reactive oxygen species has been a treatment of interest for many years; however, only in recent years has it been possible to direct antioxidant delivery specifically into the mitochondria. Increasing mitochondrial biogenesis, whether by pharmacological approaches, dietary manipulation or exercise therapy, is also currently an active area of research. Modulating mitochondrial dynamics and mitophagy and the mitochondrial membrane lipid milieu have also emerged as possible treatment strategies. Recent technological advances in gene therapy, including allotopic and transkingdom gene expression and mitochondrially targeted transcription activator-like nucleases, have led to promising results in cell and animal models of mitochondrial diseases, but most of these techniques are still far from clinical application.
Collapse
Affiliation(s)
- M Kanabus
- Clinical and Molecular Genetics Unit, UCL Institute of Child Health, London, UK
| | | | | |
Collapse
|
8
|
Gospodaryov DV, Lushchak OV, Rovenko BM, Perkhulyn NV, Gerards M, Tuomela T, Jacobs HT. Ciona intestinalis NADH dehydrogenase NDX confers stress-resistance and extended lifespan on Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1861-1869. [DOI: 10.1016/j.bbabio.2014.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 11/16/2022]
|
9
|
González-Siso MI, Touriño A, Vizoso Á, Pereira-Rodríguez Á, Rodríguez-Belmonte E, Becerra M, Cerdán ME. Improved bioethanol production in an engineered Kluyveromyces lactis strain shifted from respiratory to fermentative metabolism by deletion of NDI1. Microb Biotechnol 2014; 8:319-30. [PMID: 25186243 PMCID: PMC4353345 DOI: 10.1111/1751-7915.12160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/10/2014] [Accepted: 07/29/2014] [Indexed: 11/30/2022] Open
Abstract
In this paper, we report the metabolic engineering of the respiratory yeast Kluyveromyces lactis by construction and characterization of a null mutant (Δklndi1) in the single gene encoding a mitochondrial alternative internal dehydrogenase. Isolated mitochondria of the Δklndi1 mutant show unaffected rate of oxidation of exogenous NADH, but no oxidation of matrix NADH; this confirms that KlNdi1p is the only internal NADH dehydrogenase in K. lactis mitochondria. Permeabilized cells of the Δklndi1 mutant do not show oxidation of matrix NADH, which suggests that shuttle systems to transfer the NADH from mitochondrial matrix to cytosol, for being oxidized by external dehydrogenases, are not functional. The Δklndi1 mutation decreases the chronological life span in absence of nutrients. The expression of KlNDI1 is increased by glutathione reductase depletion. The Δklndi1 mutation shifts the K. lactis metabolism from respiratory to fermentative: the Δklndi1 strain shows reduced respiration rate and increased ethanol production from glucose, while it does not grow in non-fermentable carbon sources such as lactate. The biotechnological benefit of the Δklndi1 mutant for bioethanol production from waste cheese whey lactose was proved.
Collapse
Affiliation(s)
- María Isabel González-Siso
- Grupo de Investigación EXPRELA, Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071-, A Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Hur JH, Stork DA, Walker DW. Complex-I-ty in aging. J Bioenerg Biomembr 2014; 46:329-35. [PMID: 24961226 DOI: 10.1007/s10863-014-9553-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 06/02/2014] [Indexed: 01/02/2023]
Abstract
The role of mitochondrial complex I in aging has been studied in both C. elegans and Drosophila, where RNAi knock down of specific complex I subunits has been shown to extend lifespan. More recently, studies in Drosophila have shown that an increase in mitochondrial activity, including complex I-like activity, can also slow aging. In this review, we discuss this apparent paradox. Improved maintenance of mitochondrial activity, mitochondrial homeostasis, may be responsible for lifespan extension in both cases. Decreased electron transport chain activity caused by reducing complex I subunit expression prompts an increase in stress response signaling that leads to enhanced mitochondrial homeostasis during aging. Increased complex I activity, as well as mitochondrial biogenesis, is expected to both directly counteract the decline in mitochondrial health that occurs during aging and may also increase cellular NAD(+) levels, which have been linked to mitochondrial homeostatic mechanisms through activation of sirtuins. We suggest that manipulations that increase or decrease complex I activity both converge on improved mitochondrial homeostasis during aging, resulting in prolonged lifespan.
Collapse
Affiliation(s)
- Jae H Hur
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA,
| | | | | |
Collapse
|
11
|
Figueira TR, Barros MH, Camargo AA, Castilho RF, Ferreira JCB, Kowaltowski AJ, Sluse FE, Souza-Pinto NC, Vercesi AE. Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid Redox Signal 2013; 18:2029-74. [PMID: 23244576 DOI: 10.1089/ars.2012.4729] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondrially generated reactive oxygen species are involved in a myriad of signaling and damaging pathways in different tissues. In addition, mitochondria are an important target of reactive oxygen and nitrogen species. Here, we discuss basic mechanisms of mitochondrial oxidant generation and removal and the main factors affecting mitochondrial redox balance. We also discuss the interaction between mitochondrial reactive oxygen and nitrogen species, and the involvement of these oxidants in mitochondrial diseases, cancer, neurological, and cardiovascular disorders.
Collapse
Affiliation(s)
- Tiago R Figueira
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cho J, Hur JH, Graniel J, Benzer S, Walker DW. Expression of yeast NDI1 rescues a Drosophila complex I assembly defect. PLoS One 2012; 7:e50644. [PMID: 23226344 PMCID: PMC3511326 DOI: 10.1371/journal.pone.0050644] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/23/2012] [Indexed: 01/29/2023] Open
Abstract
Defects in mitochondrial electron transport chain (ETC) function have been implicated in a number of neurodegenerative disorders, cancer, and aging. Mitochondrial complex I (NADH dehydrogenase) is the largest and most complicated enzyme of the ETC with 45 subunits originating from two separate genomes. The biogenesis of complex I is an intricate process that requires multiple steps, subassemblies, and assembly factors. Here, we report the generation and characterization of a Drosophila model of complex I assembly factor deficiency. We show that CG7598 (dCIA30), the Drosophila homolog of human complex I assembly factor Ndufaf1, is necessary for proper complex I assembly. Reduced expression of dCIA30 results in the loss of the complex I holoenzyme band in blue-native polyacrylamide gel electrophoresis and loss of NADH:ubiquinone oxidoreductase activity in isolated mitochondria. The complex I assembly defect, caused by mutation or RNAi of dCIA30, has repercussions both during development and adulthood in Drosophila, including developmental arrest at the pupal stage and reduced stress resistance during adulthood. Expression of the single-subunit yeast alternative NADH dehydrogenase, Ndi1, can partially or wholly rescue phenotypes associated with the complex I assembly defect. Our work shows that CG7598/dCIA30 is a functional homolog of Ndufaf1 and adds to the accumulating evidence that transgenic NDI1 expression is a viable therapy for disorders arising from complex I deficiency.
Collapse
Affiliation(s)
- Jaehyoung Cho
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Jae H. Hur
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jacqueline Graniel
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Seymour Benzer
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - David W. Walker
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Villegas JM, Torres-Bugeau CM, Chehín R, Burgos MI, Fidelio GD, Rintoul MR, Rapisarda VA. Maintenance and thermal stabilization of NADH dehydrogenase-2 conformation upon elimination of its C-terminal region. Biochimie 2012; 95:382-7. [PMID: 23089137 DOI: 10.1016/j.biochi.2012.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/13/2012] [Indexed: 10/27/2022]
Abstract
Development of an artificial enzyme with activity and structure comparable to that of natural enzymes is an important goal in biological chemistry. Respiratory NADH dehydrogenase-2 (NDH-2) of Escherichia coli is a peripheral membrane-bound flavoprotein, belonging to a group of enzymes with scarce structural information. By eliminating the C-terminal region of NDH-2, a water soluble version with significant enzymatic activity was previously obtained. Here, NDH-2 structural features were established, in comparison to those of the truncated version. Far-UV circular dichroism, Fourier transform infrared spectroscopy and limited proteolysis analysis showed that the overall structure of both proteins was similar at 30 °C. Experimental data agree with the predicted NDH-2 structure (PDB: 1OZK). The absence of C-terminal region stabilized in ∼5-10 °C the truncated protein conformation. However, truncation impaired enzymatic activity at low temperatures, probably due to the weak interaction of the mutant protein with FAD cofactor.
Collapse
Affiliation(s)
- Josefina María Villegas
- Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán), and Instituto de Química Biológica Dr Bernabé Bloj (Universidad Nacional de Tucumán), Chacabuco 461, San Miguel de Tucumán T4000ILI, Argentina
| | | | | | | | | | | | | |
Collapse
|
14
|
Schiff M, Bénit P, Jacobs HT, Vockley J, Rustin P. Therapies in inborn errors of oxidative metabolism. Trends Endocrinol Metab 2012; 23:488-95. [PMID: 22633959 PMCID: PMC4135311 DOI: 10.1016/j.tem.2012.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/19/2012] [Accepted: 04/21/2012] [Indexed: 11/21/2022]
Abstract
Mitochondrial diseases encompass a wide range of presentations and mechanisms, dictating a need to consider both broad-based and disease-specific therapies. The manifestations of mitochondrial dysfunction and the response to therapy vary between individuals. This probably reflects the genetic complexity of mitochondrial biology, which requires an excess of 2000 genes for proper function, with numerous interfering epigenetic and environmental factors. Accordingly, we are increasingly aware of the complexity of these diseases which involve far more than merely decreased ATP supply. Indeed, recent therapeutic progress has addressed only specific disease entities. In this review present and prospective therapeutic approaches will be discussed on the basis of targets and mechanism of action, but with a broad outlook on their potential applications.
Collapse
Affiliation(s)
- Manuel Schiff
- Institut National de la Santé et de la Recherche Médicale Unité 676, Hôpital Robert Debré, F-75019 Paris, France
| | | | | | | | | |
Collapse
|
15
|
Kluyveromyces lactis: a suitable yeast model to study cellular defense mechanisms against hypoxia-induced oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:634674. [PMID: 22928082 PMCID: PMC3425888 DOI: 10.1155/2012/634674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/22/2012] [Indexed: 11/17/2022]
Abstract
Studies about hypoxia-induced oxidative stress in human health disorders take advantage from the use of unicellular eukaryote models. A widely extended model is the fermentative yeast Saccharomyces cerevisiae. In this paper, we describe an overview of the molecular mechanisms induced by a decrease in oxygen availability and their interrelationship with the oxidative stress response in yeast. We focus on the differential characteristics between S. cerevisiae and the respiratory yeast Kluyveromyces lactis, a complementary emerging model, in reference to multicellular eukaryotes.
Collapse
|
16
|
Niazi AK, Mileshina D, Cosset A, Val R, Weber-Lotfi F, Dietrich A. Targeting nucleic acids into mitochondria: progress and prospects. Mitochondrion 2012; 13:548-58. [PMID: 22609422 DOI: 10.1016/j.mito.2012.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/14/2012] [Indexed: 12/18/2022]
Abstract
Given the essential functions of these organelles in cell homeostasis, their involvement in incurable diseases and their potential in biotechnological applications, genetic transformation of mitochondria has been a long pursued goal that has only been reached in a couple of unicellular organisms. The challenge led scientists to explore a wealth of different strategies for mitochondrial delivery of DNA or RNA in living cells. These are the subject of the present review. Targeting DNA into the organelles currently shows promise but remarkably a number of alternative approaches based on RNA trafficking were also established and will bring as well major contributions.
Collapse
Affiliation(s)
- Adnan Khan Niazi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
17
|
Marella M, Seo BB, Flotte TR, Matsuno-Yagi A, Yagi T. No immune responses by the expression of the yeast Ndi1 protein in rats. PLoS One 2011; 6:e25910. [PMID: 21991386 PMCID: PMC3185062 DOI: 10.1371/journal.pone.0025910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/13/2011] [Indexed: 11/28/2022] Open
Abstract
Background The rotenone-insensitive internal NADH-quinone oxidoreductase from yeast, Ndi1, has been shown to work as a replacement molecule for complex I in the respiratory chain of mammalian mitochondria. In the so-called transkingdom gene therapy, one major concern is the fact that the yeast protein is foreign in mammals. Long term expression of Ndi1 observed in rodents with no apparent damage to the target tissue was indicative of no action by the host's immune system. Methodology/Principal Findings In the present study, we examined rat skeletal muscles expressing Ndi1 for possible signs of inflammatory or immune response. In parallel, we carried out delivery of the GFP gene using the same viral vector that was used for the NDI1 gene. The tissues were subjected to H&E staining and immunohistochemical analyses using antibodies specific for markers, CD11b, CD3, CD4, and CD8. The data showed no detectable signs of an immune response with the tissues expressing Ndi1. In contrast, mild but distinctive positive reactions were observed in the tissues expressing GFP. This clear difference most likely comes from the difference in the location of the expressed protein. Ndi1 was localized to the mitochondria whereas GFP was in the cytosol. Conclusions/Significance We demonstrated that Ndi1 expression did not trigger any inflammatory or immune response in rats. These results push forward the Ndi1-based molecular therapy and also expand the possibility of using foreign proteins that are directed to subcellular organelle such as mitochondria.
Collapse
Affiliation(s)
- Mathieu Marella
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Byoung Boo Seo
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Terence R. Flotte
- Gene Therapy Center and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Akemi Matsuno-Yagi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Takao Yagi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Mileshina D, Ibrahim N, Boesch P, Lightowlers RN, Dietrich A, Weber-Lotfi F. Mitochondrial transfection for studying organellar DNA repair, genome maintenance and aging. Mech Ageing Dev 2011; 132:412-23. [PMID: 21645537 DOI: 10.1016/j.mad.2011.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/02/2011] [Accepted: 05/21/2011] [Indexed: 12/15/2022]
Abstract
Maintenance of the mitochondrial genome is a major challenge for cells, particularly as they begin to age. Although it is established that organelles possess regular DNA repair pathways, many aspects of these complex processes and of their regulation remain to be investigated. Mitochondrial transfection of isolated organelles and in whole cells with customized DNA synthesized to contain defined lesions has wide prospects for deciphering repair mechanisms in a physiological context. We document here the strategies currently developed to transfer DNA of interest into mitochondria. Methodologies with isolated mitochondria claim to exploit the protein import pathway or the natural competence of the organelles, to permeate the membranes or to use conjugal transfer from bacteria. Besides biolistics, which remains restricted to yeast and Chlamydomonas reinhardtii, nanocarriers or fusion proteins have been explored as methods to target custom DNA into mitochondria in intact cells. In further approaches, whole mitochondria have been transferred into recipient cells. Repair failure or error-prone repair leads to mutations which potentially could be rescued by allotopic expression of proteins. The relevance of the different approaches for the analysis of mitochondrial DNA repair mechanisms and of aging is discussed.
Collapse
Affiliation(s)
- Daria Mileshina
- Institut de Biologie Moléculaire des Plantes, CNRS/Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
19
|
Murray DB, Haynes K, Tomita M. Redox regulation in respiring Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2011; 1810:945-58. [PMID: 21549177 DOI: 10.1016/j.bbagen.2011.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 03/16/2011] [Accepted: 04/17/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND In biological systems, redox reactions are central to most cellular processes and the redox potential of the intracellular compartment dictates whether a particular reaction can or cannot occur. Indeed the widespread use of redox reactions in biological systems makes their detailed description outside the scope of one review. SCOPE OF THE REVIEW Here we will focus on how system-wide redox changes can alter the reaction and transcriptional landscape of Saccharomyces cerevisiae. To understand this we explore the major determinants of cellular redox potential, how these are sensed by the cell and the dynamic responses elicited. MAJOR CONCLUSIONS Redox regulation is a large and complex system that has the potential to rapidly and globally alter both the reaction and transcription landscapes. Although we have a basic understanding of many of the sub-systems and a partial understanding of the transcriptional control, we are far from understanding how these systems integrate to produce coherent responses. We argue that this non-linear system self-organises, and that the output in many cases is temperature-compensated oscillations that may temporally partition incompatible reactions in vivo. GENERAL SIGNIFICANCE Redox biochemistry impinges on most of cellular processes and has been shown to underpin ageing and many human diseases. Integrating the complexity of redox signalling and regulation is perhaps one of the most challenging areas of biology. This article is part of a Special Issue entitled Systems Biology of Microorganisms.
Collapse
Affiliation(s)
- Douglas B Murray
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.
| | | | | |
Collapse
|
20
|
Barber-Singh J, Seo BB, Matsuno-Yagi A, Yagi T. Protective Role of rAAV-NDI1, Serotype 5, in an Acute MPTP Mouse Parkinson's Model. PARKINSONS DISEASE 2010; 2011:438370. [PMID: 21188192 PMCID: PMC3005838 DOI: 10.4061/2011/438370] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 10/22/2010] [Indexed: 01/19/2023]
Abstract
Defects in mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) have been implicated in a number of acquired and hereditary diseases including Leigh's syndrome and more recently Parkinson's disease. A limited number of strategies have been attempted to repair the damaged complex I with little or no success. We have recently shown that the non-proton-pumping, internal NADH-ubiquinone oxidoreductase (Ndi1) from Saccharomyces cerevisiae (baker's yeast) can be successfully inserted into the mitochondria of mice and rats, and the enzyme was found to be fully active. Using recombinant adenoassociated virus vectors (serotype 5) carrying our NDI1 gene, we were able to express the Ndi1 protein in the substantia nigra (SN) of C57BL/6 mice with an expression period of two months. The results show that the AAV serotype 5 was highly efficient in expressing Ndi1 in the SN, when compared to a previous model using serotype 2, which led to nearly 100% protection when using an acute MPTP model. It is conceivable that the AAV-serotype5 carrying the NDI1 gene is a powerful tool for proof-of-concept study to demonstrate complex I defects as the causable factor in diseases of the brain.
Collapse
Affiliation(s)
- Jennifer Barber-Singh
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MEM256, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
21
|
Marella M, Seo BB, Thomas BB, Matsuno-Yagi A, Yagi T. Successful amelioration of mitochondrial optic neuropathy using the yeast NDI1 gene in a rat animal model. PLoS One 2010; 5:e11472. [PMID: 20628600 PMCID: PMC2900204 DOI: 10.1371/journal.pone.0011472] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 06/15/2010] [Indexed: 01/31/2023] Open
Abstract
Background Leber's hereditary optic neuropathy (LHON) is a maternally inherited disorder with point mutations in mitochondrial DNA which result in loss of vision in young adults. The majority of mutations reported to date are within the genes encoding the subunits of the mitochondrial NADH-quinone oxidoreductase, complex I. Establishment of animal models of LHON should help elucidate mechanism of the disease and could be utilized for possible development of therapeutic strategies. Methodology/Principal Findings We established a rat model which involves injection of rotenone-loaded microspheres into the optic layer of the rat superior colliculus. The animals exhibited the most common features of LHON. Visual loss was observed within 2 weeks of rotenone administration with no apparent effect on retinal ganglion cells. Death of retinal ganglion cells occurred at a later stage. Using our rat model, we investigated the effect of the yeast alternative NADH dehydrogenase, Ndi1. We were able to achieve efficient expression of the Ndi1 protein in the mitochondria of all regions of retinal ganglion cells and axons by delivering the NDI1 gene into the optical layer of the superior colliculus. Remarkably, even after the vision of the rats was severely impaired, treatment of the animals with the NDI1 gene led to a complete restoration of the vision to the normal level. Control groups that received either empty vector or the GFP gene had no effects. Conclusions/Significance The present study reports successful manifestation of LHON-like symptoms in rats and demonstrates the potential of the NDI1 gene therapy on mitochondrial optic neuropathies. Our results indicate a window of opportunity for the gene therapy to be applied successfully after the onset of the disease symptoms.
Collapse
Affiliation(s)
- Mathieu Marella
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Byoung Boo Seo
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Biju B. Thomas
- Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Akemi Matsuno-Yagi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Takao Yagi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Murai M, Yamashita T, Senoh M, Mashimo Y, Kataoka M, Kosaka H, Matsuno-Yagi A, Yagi T, Miyoshi H. Characterization of the ubiquinone binding site in the alternative NADH-quinone oxidoreductase of Saccharomyces cerevisiae by photoaffinity labeling. Biochemistry 2010; 49:2973-80. [PMID: 20192260 DOI: 10.1021/bi100005j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Ndi1 enzyme found in the mitochondrial membrane of Saccharomyces cerevisiae is an NDH-2-type alternative NADH-quinone oxidoreductase. As Ndi1 is expected to be a possible remedy for complex I defects of mammalian mitochondria, a detailed biochemical characterization of the enzyme is needed. To identify the ubiquinone (UQ) binding site in Ndi1, we conducted photoaffinity labeling using a photoreactive biotinylated UQ mimic (compound 2) synthesized following a concept of the least possible modification of the substituents on the quinone ring. Cleavage with CNBr of Ndi1 cross-linked by 2 revealed the UQ ring of 2 to be specifically cross-linked to the Phe281-Met410 region (130 amino acids). Digestion of the CNBr fragment with V8 protease and lysylendopeptidase (Lys-C) gave approximately 8 and approximately 4 kDa peptides, respectively. The approximately 8 kDa V8 digest was identified as the Thr329-Glu399 region (71 amino acids) by an N-terminal sequence analysis. Although the approximately 4 kDa Lys-C digest could not be identified by N-terminal sequence analysis, the band was thought to cover the Gly374-Lys405 region (32 amino acids). Taken together, the binding site of the Q ring of 2 must be located in a common region of the V8 protease, and Lys-C digests Gly374-Glu399 (26 amino acids). Superimposition of the Ndi1 sequence onto a three-dimensional structural model of NDH-2 from Escherichia coli suggested that the C-terminal portion of this region is close to the isoalloxazine ring of FAD.
Collapse
Affiliation(s)
- Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Barber-Singh J, Seo BB, Nakamaru-Ogiso E, Lau YS, Matsuno-Yagi A, Yagi T. Neuroprotective effect of long-term NDI1 gene expression in a chronic mouse model of Parkinson disorder. Rejuvenation Res 2010; 12:259-67. [PMID: 19653878 DOI: 10.1089/rej.2009.0854] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previously, we showed that the internal rotenone-insensitive nicotinamide adenine dinucleotide (NADH)-quinone oxidoreductase (NDI1) gene from Saccharomyces cerevisiae (baker's yeast) can be successfully inserted into the mitochondria of mice and rats and the expressed enzyme was found to be fully functional. In this study, we investigated the ability of the Ndi1 enzyme to protect the dopaminergic neurons in a chronic mouse model of Parkinson disorder. After expression of the NDI1 gene in the unilateral substantia nigra of male C57BL/6 mice for 8 months, a chronic Parkinsonian model was created by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) with probenecid and evaluated using neurochemical and behavioral responses 1-4 weeks post-MPTP/probenecid injection. We showed that expression of Ndi1 was able to significantly prevent the loss of dopamine and tyrosine hydroxylase as well as the dopaminergic transporters in the striatum of the chronic Parkinsonian mice. Behavioral assessment based on a methamphetamine-induced rotation test and spontaneous swing test further supported neurological preservation in the NDI1-treated Parkinsonian mice. The data presented in this study demonstrate a protective effect of the NDI1 gene in dopaminergic neurons, suggesting its therapeutic potential for Parkinson-like disorders.
Collapse
Affiliation(s)
- Jennifer Barber-Singh
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
24
|
Fernández-Ayala DJM, Chen S, Kemppainen E, O'Dell KMC, Jacobs HT. Gene expression in a Drosophila model of mitochondrial disease. PLoS One 2010; 5:e8549. [PMID: 20066047 PMCID: PMC2798955 DOI: 10.1371/journal.pone.0008549] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 11/28/2009] [Indexed: 01/12/2023] Open
Abstract
Background A point mutation in the Drosophila gene technical knockout (tko), encoding mitoribosomal protein S12, was previously shown to cause a phenotype of respiratory chain deficiency, developmental delay, and neurological abnormalities similar to those presented in many human mitochondrial disorders, as well as defective courtship behavior. Methodology/Principal Findings Here, we describe a transcriptome-wide analysis of gene expression in tko25t mutant flies that revealed systematic and compensatory changes in the expression of genes connected with metabolism, including up-regulation of lactate dehydrogenase and of many genes involved in the catabolism of fats and proteins, and various anaplerotic pathways. Gut-specific enzymes involved in the primary mobilization of dietary fats and proteins, as well as a number of transport functions, were also strongly up-regulated, consistent with the idea that oxidative phosphorylation OXPHOS dysfunction is perceived physiologically as a starvation for particular biomolecules. In addition, many stress-response genes were induced. Other changes may reflect a signature of developmental delay, notably a down-regulation of genes connected with reproduction, including gametogenesis, as well as courtship behavior in males; logically this represents a programmed response to a mitochondrially generated starvation signal. The underlying signalling pathway, if conserved, could influence many physiological processes in response to nutritional stress, although any such pathway involved remains unidentified. Conclusions/Significance These studies indicate that general and organ-specific metabolism is transformed in response to mitochondrial dysfunction, including digestive and absorptive functions, and give important clues as to how novel therapeutic strategies for mitochondrial disorders might be developed.
Collapse
Affiliation(s)
| | - Shanjun Chen
- Institute of Medical Technology and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Esko Kemppainen
- Institute of Medical Technology and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Kevin M. C. O'Dell
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Howard T. Jacobs
- Institute of Medical Technology and Tampere University Hospital, University of Tampere, Tampere, Finland
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Rustin P, Jacobs HT. Respiratory chain alternative enzymes as tools to better understand and counteract respiratory chain deficiencies in human cells and animals. PHYSIOLOGIA PLANTARUM 2009; 137:362-370. [PMID: 19508504 DOI: 10.1111/j.1399-3054.2009.01249.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mitochondrial respiratory chain defects are now recognized to underlie a large number of human diseases with a spectacular variety in their phenotypic presentations. Despite progress made in the elucidation of their molecular basis, these diseases remain essentially untreatable. To date, most strategies to counteract these diseases, either in vitro or in vivo have proven unsuccessful. In humans, the respiratory chain lacks several redox active proteins long known in many micro-organisms, as well as in plants, and, as found recently, even in some metazoans. These alternative enzymes, e.g. the cyanide-insensitive alternative oxidase and the internal rotenone-insensitive NADH dehydrogenase, confer a significant flexibility to the respiratory chain, allowing it to overcome potential constraints exerted by the cell phosphorylation potential or by environmental xenobiotics. In plants, these alternative enzymes, activated by a subset of keto-acids, including pyruvate, are essentially engaged under highly reducing conditions. Because these are conditions observed in patients with respiratory chain dysfunction, we made the hypothesis that expression of these proteins might be of benefit in such situations. The observation that a functional alternative oxidase from Ciona intestinalis could be expressed in mammalian cells without obvious detrimental effect has provided a basis to develop a research programme to test the hypothesis, within an ad hoc international consortium, that this paper aims to describe. Combining research on human cells, flies and mice, the project aims, firstly, to verify that expressing these alternative enzymes is physiologically benign, useful as a tool to delineate the mechanisms of respiratory chain dysfunction and, finally, test their potential therapeutic benefit.
Collapse
Affiliation(s)
- Pierre Rustin
- INSERM U676 and Université Paris 7, Faculté de Médecine Denis Diderot, Paris, France.
| | | |
Collapse
|
26
|
Restoration of electron transport without proton pumping in mammalian mitochondria. Proc Natl Acad Sci U S A 2008; 105:18735-9. [PMID: 19020091 DOI: 10.1073/pnas.0810518105] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have restored the CoQ oxidative capacity of mouse mtDNA-less cells (rho degrees cells) by transforming them with the alternative oxidase Aox of Emericella nidulans. Cotransforming rho degrees cells with the NADH dehydrogenase of Saccharomyces cerevisiae, Ndi1 and Aox recovered the NADH DH/CoQ reductase and the CoQ oxidase activities. CoQ oxidation by AOX reduces the dependence of rho degrees cells on pyruvate and uridine. Coexpression of AOX and NDI1 further improves the recycling of NAD(+). Therefore, 2 single-protein enzymes restore the electron transport in mammalian mitochondria substituting >80 nuclear DNA-encoded and 11 mtDNA-encoded proteins. Because those enzymes do not pump protons, we were able to split electron transport and proton pumping (ATP synthesis) and inquire which of the metabolic deficiencies associated with the loss of oxidative phosphorylation should be attributed to each of the 2 processes.
Collapse
|
27
|
Olgun A. Converting NADH to NAD+ by nicotinamide nucleotide transhydrogenase as a novel strategy against mitochondrial pathologies during aging. Biogerontology 2008; 10:531-4. [PMID: 18932012 DOI: 10.1007/s10522-008-9190-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 10/07/2008] [Indexed: 02/02/2023]
Abstract
Mitochondrial DNA defects are involved supposedly via free radicals in many pathologies including aging and cancer. But, interestingly, free radical production was not found increased in prematurely aging mice having higher mutation rate in mtDNA. Therefore, some other mechanisms like the increase of mitochondrial NADH/NAD(+) and ubiquinol/ubiquinone ratios, can be in action in respiratory chain defects. NADH/NAD(+) ratio can be normalized by the activation or overexpression of nicotinamide nucleotide transhydrogenase (NNT), a mitochondrial enzyme catalyzing the following very important reaction: NADH + NADP(+ )<--> NADPH + NAD(+). The products NAD(+) and NADPH are required in many critical biological processes, e.g., NAD(+) is used by histone deacetylase Sir2 which regulates longevity in different species. NADPH is used in a number of biosynthesis reactions (e.g., reduced glutathione synthesis), and processes like apoptosis. Increased ubiquinol/ubiquinone ratio interferes the function of dihydroorotate dehydrogenase, the only mitochondrial enzyme involved in ubiquinone mediated de novo pyrimidine synthesis. Uridine and its prodrug triacetyluridine are used to compensate pyrimidine deficiency but their bioavailability is limited. Therefore, the normalization of the ubiquinol/ubiquinone ratio can be accomplished by allotopic expression of alternative oxidase, a mitochondrial ubiquinol oxidase which converts ubiquinol to ubiquinone.
Collapse
Affiliation(s)
- Abdullah Olgun
- Biochemistry Laboratory, Erzincan Mil. Hospital, Erzincan, Turkey.
| |
Collapse
|
28
|
Abstract
The human cell is a symbiosis of two life forms, the nucleus-cytosol and the mitochondrion. The nucleus-cytosol emphasizes structure and its genes are Mendelian, whereas the mitochondrion specializes in energy and its mitochondrial DNA (mtDNA) genes are maternal. Mitochondria oxidize calories via oxidative phosphorylation (OXPHOS) to generate a mitochondrial inner membrane proton gradient (DeltaP). DeltaP then acts as a source of potential energy to produce ATP, generate heat, regulate reactive oxygen species (ROS), and control apoptosis, etc. Interspecific comparisons of mtDNAs have revealed that the mtDNA retains a core set of electron and proton carrier genes for the proton-translocating OXPHOS complexes I, III, IV, and V. Human mtDNA analysis has revealed these genes frequently contain region-specific adaptive polymorphisms. Therefore, the mtDNA with its energy controlling genes may have been retained to permit rapid adaptation to new environments.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center for Molecular and Mitochondrial Medicine and Genetics, Department of Biological Chemistry, University of California, Irvine, California 92697-3940, USA.
| |
Collapse
|
29
|
Marella M, Seo BB, Matsuno-Yagi A, Yagi T. Mechanism of cell death caused by complex I defects in a rat dopaminergic cell line. J Biol Chem 2007; 282:24146-56. [PMID: 17581813 DOI: 10.1074/jbc.m701819200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Defects in the proton-translocating NADH-quinone oxidoreductase (complex I) of mammalian mitochondria are linked to neurodegenerative disorders. The mechanism leading to cell death elicited by complex I deficiency remains elusive. We have shown that expression of a rotenone-insensitive yeast NADH-quinone oxidoreductase (Ndi1) can rescue mammalian cells from complex I dysfunction. By using the Ndi1 enzyme, we have investigated the key events in the process of cell death using a rat dopaminergic cell line, PC12. We found that complex I inhibition provokes the following events: 1) activation of specific kinase pathways; 2) release of mitochondrial proapoptotic factors, apoptosis inducing factor, and endonuclease G. AS601245, a kinase inhibitor, exhibited significant protection against these apoptotic events. The traditional caspase pathway does not seems to be involved because caspase 3 activation was not observed. Our data suggest that overproduction of reactive oxygen species (ROS) caused by complex I inhibition is responsible for triggering the kinase activation, for the release of the proapoptotic factors, and then for cell death. Nearly perfect prevention of apoptotic cell death by Ndi1 agrees with our earlier observation that the presence of Ndi1 diminishes rotenone-induced ROS generation from complex I. In fact, this study demonstrated that Ndi1 keeps the redox potential high even in the presence of rotenone. Under these conditions, ROS formation by complex I is known to be minimal. Possible use of our cellular model is discussed with regard to development of therapeutic strategies for neurodegenerative diseases caused by complex I defects.
Collapse
Affiliation(s)
- Mathieu Marella
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
30
|
Kerscher S, Dröse S, Zickermann V, Brandt U. The three families of respiratory NADH dehydrogenases. Results Probl Cell Differ 2007; 45:185-222. [PMID: 17514372 DOI: 10.1007/400_2007_028] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Most reducing equivalents extracted from foodstuffs during oxidative metabolism are fed into the respiratory chains of aerobic bacteria and mitochondria by NADH:quinone oxidoreductases. Three families of enzymes can perform this task and differ remarkably in their complexity and role in energy conversion. Alternative or NDH-2-type NADH dehydrogenases are simple one subunit flavoenzymes that completely dissipate the redox energy of the NADH/quinone couple. Sodium-pumping NADH dehydrogenases (Nqr) that are only found in procaryotes contain several flavins and are integral membrane protein complexes composed of six different subunits. Proton-pumping NADH dehydrogenases (NDH-1 or complex I) are highly complicated membrane protein complexes, composed of up to 45 different subunits, that are found in bacteria and mitochondria. This review gives an overview of the origin, structural and functional properties and physiological significance of these three types of NADH dehydrogenase.
Collapse
Affiliation(s)
- Stefan Kerscher
- Molecular Bioenergetics Group, Centre of Excellence Macromolecular Complexes, Johann Wolfgang Goethe-Universität, 60590, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
31
|
Park JS, Li YF, Bai Y. Yeast NDI1 improves oxidative phosphorylation capacity and increases protection against oxidative stress and cell death in cells carrying a Leber's hereditary optic neuropathy mutation. Biochim Biophys Acta Mol Basis Dis 2007; 1772:533-42. [PMID: 17320357 PMCID: PMC1905846 DOI: 10.1016/j.bbadis.2007.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 12/21/2006] [Accepted: 01/16/2007] [Indexed: 12/26/2022]
Abstract
G11778A in the subunit ND4 gene of NADH dehydrogenase complex is the most common primary mutation found in Leber's hereditary optic neuropathy (LHON) patients. The NDI1 gene, which encodes the internal NADH-quinone oxidoreductase in Saccharomyces cerevisiae, was introduced into the nuclear genome of a mitochondrial defective human cell line, Le1.3.1, carrying the G11778A mutation. In transformant cell lines, LeNDI1-1 and -2, total and complex I-dependent respiration were fully restored and largely resistant to complex I inhibitor, rotenone, indicating a dominant role of NDI1 in the transfer of electrons in the host cells. Whereas the original mutant Le1.3.1 cell grows poorly in medium containing galactose, the transformants have a fully restored growth capacity in galactose medium, although the ATP production was not totally recovered. Furthermore, the increased oxidative stress in the cells carrying the G11778A mutation was alleviated in transformants, demonstrated by a decreased reactive oxygen species (ROS) level. Finally, transformants were also shown to be desensitized to induction to apoptosis and also exhibit greater resistance to paraquat-induced cell death. It is concluded that the yeast NDI1 enzyme can improve the oxidative phosphorylation capacity in cells carrying the G11778A mutation and protect the cells from oxidative stress and cell death.
Collapse
Affiliation(s)
- Jeong Soon Park
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
32
|
Yamashita T, Nakamaru-Ogiso E, Miyoshi H, Matsuno-Yagi A, Yagi T. Roles of bound quinone in the single subunit NADH-quinone oxidoreductase (Ndi1) from Saccharomyces cerevisiae. J Biol Chem 2007; 282:6012-20. [PMID: 17200125 DOI: 10.1074/jbc.m610646200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the biochemical basis for the function of the rotenone-insensitive internal NADH-quinone (Q) oxidoreductase (Ndi1), we have overexpressed mature Ndi1 in Escherichia coli membranes. The Ndi1 purified from the membranes contained one FAD and showed enzymatic activities comparable with the original Ndi1 isolated from Saccharomyces cerevisiae. When extracted with Triton X-100, the isolated Ndi1 did not contain Q. The Q-bound form was easily reconstituted by incubation of the Q-free Ndi1 enzyme with ubiquinone-6. We compared the properties of Q-bound Ndi1 enzyme with those of Q-free Ndi1 enzyme, with higher activity found in the Q-bound enzyme. Although both are inhibited by low concentrations of AC0-11 (IC(50) = 0.2 microm), the inhibitory mode of AC0-11 on Q-bound Ndi1 was distinct from that of Q-free Ndi1. The bound Q was slowly released from Ndi1 by treatment with NADH or dithionite under anaerobic conditions. This release of Q was prevented when Ndi1 was kept in the reduced state by NADH. When Ndi1 was incorporated into bovine heart submitochondrial particles, the Q-bound form, but not the Q-free form, established the NADH-linked respiratory activity, which was insensitive to piericidin A but inhibited by KCN. Furthermore, Ndi1 produces H(2)O(2) as isolated regardless of the presence of bound Q, and this H(2)O(2) was eliminated when the Q-bound Ndi1, but not the Q-free Ndi1, was incorporated into submitochondrial particles. The data suggest that Ndi1 bears at least two distinct Q sites: one for bound Q and the other for catalytic Q.
Collapse
Affiliation(s)
- Tetsuo Yamashita
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|