1
|
Jain A, Judy E, Kishore N. Analytical Aspects of ANSA-BSA Association: A Thermodynamic and Conformational Approach. J Phys Chem B 2024; 128:5344-5362. [PMID: 38773936 DOI: 10.1021/acs.jpcb.4c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Many studies have demonstrated the manner in which ANS interacts with bovine serum albumin (BSA), although they are limited by the extremely low solubility of dye. The present study demonstrates the binding of ANSA dye with BSA, and since this dye can easily replace ANS, it not only simplifies research but also improves sensor accuracy for serum albumin. A combination of calorimetry and spectroscopy has been employed to establish the thermodynamic signatures associated with the interaction of ANSA with the protein and the consequent conformational changes in the latter. The results of differential scanning calorimetry reveal that when the concentration of ANSA in solution is increased, the thermal stability of the protein increases substantially. The fluorescence data demonstrated a decrease in the binding affinity of ANSA with the protein when pH increased but was unable to identify a change in the mode of interaction of the ligand. ITC has demonstrated that the mode of interaction between ANSA and the protein varies from a single set of binding sites at pH 5 and 7.4 to a sequential binding site at pH 10, emphasizing the potential relevance of protein conformational changes. TCSPC experiments suggested a dynamic type in the presence of ANSA. Molecular docking studies suggest that ANSA molecules are able to find ionic centers in the hydrophobic pockets of BSA. The findings further imply that given its ease of use in experiments, ANSA may be a useful probe for tracking the presence of serum albumin and partially folded protein states.
Collapse
Affiliation(s)
- Anu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Eva Judy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Lasham J, Djurabekova A, Zickermann V, Vonck J, Sharma V. Role of Protonation States in the Stability of Molecular Dynamics Simulations of High-Resolution Membrane Protein Structures. J Phys Chem B 2024; 128:2304-2316. [PMID: 38430110 PMCID: PMC11389979 DOI: 10.1021/acs.jpcb.3c07421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Classical molecular dynamics (MD) simulations provide unmatched spatial and time resolution of protein structure and function. However, the accuracy of MD simulations often depends on the quality of force field parameters and the time scale of sampling. Another limitation of conventional MD simulations is that the protonation states of titratable amino acid residues remain fixed during simulations, even though protonation state changes coupled to conformational dynamics are central to protein function. Due to the uncertainty in selecting protonation states, classical MD simulations are sometimes performed with all amino acids modeled in their standard charged states at pH 7. Here, we performed and analyzed classical MD simulations on high-resolution cryo-EM structures of two large membrane proteins that transfer protons by catalyzing protonation/deprotonation reactions. In simulations performed with titratable amino acids modeled in their standard protonation (charged) states, the structure diverges far from its starting conformation. In comparison, MD simulations performed with predetermined protonation states of amino acid residues reproduce the structural conformation, protein hydration, and protein-water and protein-protein interactions of the structure much better. The results support the notion that it is crucial to perform basic protonation state calculations, especially on structures where protonation changes play an important functional role, prior to the launch of any conventional MD simulations. Furthermore, the combined approach of fast protonation state prediction and MD simulations can provide valuable information about the charge states of amino acids in the cryo-EM sample. Even though accurate prediction of protonation states in proteinaceous environments currently remains a challenge, we introduce an approach of combining pKa prediction with cryo-EM density map analysis that helps in improving not only the protonation state predictions but also the atomic modeling of density data.
Collapse
Affiliation(s)
- Jonathan Lasham
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Amina Djurabekova
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Vivek Sharma
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
- HiLIFE Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
3
|
Mazmanian K, Chen T, Sargsyan K, Lim C. From quantum-derived principles underlying cysteine reactivity to combating the COVID-19 pandemic. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2022; 12:e1607. [PMID: 35600063 PMCID: PMC9111396 DOI: 10.1002/wcms.1607] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 12/20/2022]
Abstract
The COVID-19 pandemic poses a challenge in coming up with quick and effective means to counter its cause, the SARS-CoV-2. Here, we show how the key factors governing cysteine reactivity in proteins derived from combined quantum mechanical/continuum calculations led to a novel multi-targeting strategy against SARS-CoV-2, in contrast to developing potent drugs/vaccines against a single viral target such as the spike protein. Specifically, they led to the discovery of reactive cysteines in evolutionary conserved Zn2+-sites in several SARS-CoV-2 proteins that are crucial for viral polypeptide proteolysis as well as viral RNA synthesis, proofreading, and modification. These conserved, reactive cysteines, both free and Zn2+-bound, can be targeted using the same Zn-ejector drug (disulfiram/ebselen), which enables the use of broad-spectrum anti-virals that would otherwise be removed by the virus's proofreading mechanism. Our strategy of targeting multiple, conserved viral proteins that operate at different stages of the virus life cycle using a Zn-ejector drug combined with other broad-spectrum anti-viral drug(s) could enhance the barrier to drug resistance and antiviral effects, as compared to each drug alone. Since these functionally important nonstructural proteins containing reactive cysteines are highly conserved among coronaviruses, our proposed strategy has the potential to tackle future coronaviruses. This article is categorized under:Structure and Mechanism > Reaction Mechanisms and CatalysisStructure and Mechanism > Computational Biochemistry and BiophysicsElectronic Structure Theory > Density Functional Theory.
Collapse
Affiliation(s)
| | - Ting Chen
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | - Karen Sargsyan
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| |
Collapse
|
4
|
Ali F, Shafaa MW, Amin M. Computational Approach for Probing Redox Potential for Iron-Sulfur Clusters in Photosystem I. BIOLOGY 2022; 11:362. [PMID: 35336736 PMCID: PMC8945787 DOI: 10.3390/biology11030362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022]
Abstract
Photosystem I is a light-driven electron transfer device. Available X-ray crystal structure from Thermosynechococcus elongatus showed that electron transfer pathways consist of two nearly symmetric branches of cofactors converging at the first iron-sulfur cluster FX, which is followed by two terminal iron-sulfur clusters FA and FB. Experiments have shown that FX has lower oxidation potential than FA and FB, which facilitates the electron transfer reaction. Here, we use density functional theory and Multi-Conformer Continuum Electrostatics to explain the differences in the midpoint Em potentials of the FX, FA and FB clusters. Our calculations show that FX has the lowest oxidation potential compared to FA and FB due to strong pairwise electrostatic interactions with surrounding residues. These interactions are shown to be dominated by the bridging sulfurs and cysteine ligands, which may be attributed to the shorter average bond distances between the oxidized Fe ion and ligating sulfurs for FX compared to FA and FB. Moreover, the electrostatic repulsion between the 4Fe-4S clusters and the positive potential of the backbone atoms is lowest for FX compared to both FA and FB. These results agree with the experimental measurements from the redox titrations of low-temperature EPR signals and of room temperature recombination kinetics.
Collapse
Affiliation(s)
- Fedaa Ali
- Medical Biophysics Division, Department of Physics, Faculty of Science, Helwan University, Cairo 11795, Egypt; (F.A.); (M.W.S.)
- Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Medhat W. Shafaa
- Medical Biophysics Division, Department of Physics, Faculty of Science, Helwan University, Cairo 11795, Egypt; (F.A.); (M.W.S.)
| | - Muhamed Amin
- Department of Sciences, University College Groningen, University of Groningen, Hoendiepskade 23/24, 9718 BG Groningen, The Netherlands
- Universiteit Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9718 BG Groningen, The Netherlands
- Department of Physics, City College of New York, City University of New York, New York, NY 10031, USA
| |
Collapse
|
5
|
Ovung A, Mavani A, Ghosh A, Chatterjee S, Das A, Suresh Kumar G, Ray D, Aswal VK, Bhattacharyya J. Heme Protein Binding of Sulfonamide Compounds: A Correlation Study by Spectroscopic, Calorimetric, and Computational Methods. ACS OMEGA 2022; 7:4932-4944. [PMID: 35187312 PMCID: PMC8851458 DOI: 10.1021/acsomega.1c05554] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/24/2022] [Indexed: 05/16/2023]
Abstract
Protein-ligand interaction studies are useful to determine the molecular mechanism of the binding phenomenon, leading to the establishment of the structure-function relationship. Here, we report the binding of well-known antibiotic sulfonamide drugs (sulfamethazine, SMZ; and sulfadiazine, SDZ) with heme protein myoglobin (Mb) using spectroscopic, calorimetric, ζ potential, and computational methods. Formation of a 1:1 complex between the ligand and Mb through well-defined equilibrium was observed. The binding constants obtained between Mb and SMZ/SDZ drugs were on the order of 104 M-1. SMZ with two additional methyl (-CH3) substitutions has higher affinity than SDZ. Upon drug binding, a notable loss in the helicity (via circular dichroism) and perturbation of the three-dimensional (3D) protein structure (via infrared and synchronous fluorescence experiments) were observed. The binding also indicated the dominance of non-polyelectrolytic forces between the amino acid residues of the protein and the drugs. The ligand-protein binding distance signified high probability of energy transfer between them. Destabilization of the protein structure upon binding was evident from differential scanning calorimetry results and ζ potential analyses. Molecular docking presented the best probable binding sites of the drugs inside protein pockets. Thus, the present study explores the potential binding characteristics of two sulfonamide drugs (with different substitutions) with myoglobin, correlating the structural and energetic aspects.
Collapse
Affiliation(s)
- Aben Ovung
- Department
of Chemistry, National Institute of Technology
Nagaland, Chumukedima, Dimapur 797103, India
| | - A. Mavani
- Department
of Chemistry, National Institute of Technology
Nagaland, Chumukedima, Dimapur 797103, India
| | - Ambarnil Ghosh
- UCD
Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sabyasachi Chatterjee
- Biophysical
Chemistry Laboratory, CSIR—Indian
Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Abhi Das
- Biophysical
Chemistry Laboratory, CSIR—Indian
Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Gopinatha Suresh Kumar
- Biophysical
Chemistry Laboratory, CSIR—Indian
Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Debes Ray
- Solid
State Physics Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
| | - Vinod K. Aswal
- Solid
State Physics Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
| | - Jhimli Bhattacharyya
- Department
of Chemistry, National Institute of Technology
Nagaland, Chumukedima, Dimapur 797103, India
| |
Collapse
|
6
|
Kaur D, Khaniya U, Zhang Y, Gunner MR. Protein Motifs for Proton Transfers That Build the Transmembrane Proton Gradient. Front Chem 2021; 9:660954. [PMID: 34211960 PMCID: PMC8239185 DOI: 10.3389/fchem.2021.660954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Biological membranes are barriers to polar molecules, so membrane embedded proteins control the transfers between cellular compartments. Protein controlled transport moves substrates and activates cellular signaling cascades. In addition, the electrochemical gradient across mitochondrial, bacterial and chloroplast membranes, is a key source of stored cellular energy. This is generated by electron, proton and ion transfers through proteins. The gradient is used to fuel ATP synthesis and to drive active transport. Here the mechanisms by which protons move into the buried active sites of Photosystem II (PSII), bacterial RCs (bRCs) and through the proton pumps, Bacteriorhodopsin (bR), Complex I and Cytochrome c oxidase (CcO), are reviewed. These proteins all use water filled proton transfer paths. The proton pumps, that move protons uphill from low to high concentration compartments, also utilize Proton Loading Sites (PLS), that transiently load and unload protons and gates, which block backflow of protons. PLS and gates should be synchronized so PLS proton affinity is high when the gate opens to the side with few protons and low when the path is open to the high concentration side. Proton transfer paths in the proteins we describe have different design features. Linear paths are seen with a unique entry and exit and a relatively straight path between them. Alternatively, paths can be complex with a tangle of possible routes. Likewise, PLS can be a single residue that changes protonation state or a cluster of residues with multiple charge and tautomer states.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - Yingying Zhang
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - M R Gunner
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
7
|
Johé P, Jaenicke E, Neuweiler H, Schirmeister T, Kersten C, Hellmich UA. Structure, interdomain dynamics, and pH-dependent autoactivation of pro-rhodesain, the main lysosomal cysteine protease from African trypanosomes. J Biol Chem 2021; 296:100565. [PMID: 33745969 PMCID: PMC8080524 DOI: 10.1016/j.jbc.2021.100565] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/18/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Rhodesain is the lysosomal cathepsin L-like cysteine protease of Trypanosoma brucei rhodesiense, the causative agent of Human African Trypanosomiasis. The enzyme is essential for the proliferation and pathogenicity of the parasite as well as its ability to overcome the blood-brain barrier of the host. Lysosomal cathepsins are expressed as zymogens with an inactivating prodomain that is cleaved under acidic conditions. A structure of the uncleaved maturation intermediate from a trypanosomal cathepsin L-like protease is currently not available. We thus established the heterologous expression of T. brucei rhodesiense pro-rhodesain in Escherichia coli and determined its crystal structure. The trypanosomal prodomain differs from nonparasitic pro-cathepsins by a unique, extended α-helix that blocks the active site and whose side-chain interactions resemble those of the antiprotozoal inhibitor K11777. Interdomain dynamics between pro- and core protease domain as observed by photoinduced electron transfer fluorescence correlation spectroscopy increase at low pH, where pro-rhodesain also undergoes autocleavage. Using the crystal structure, molecular dynamics simulations, and mutagenesis, we identify a conserved interdomain salt bridge that prevents premature intramolecular cleavage at higher pH values and may thus present a control switch for the observed pH sensitivity of proenzyme cleavage in (trypanosomal) CathL-like proteases.
Collapse
Affiliation(s)
- Patrick Johé
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Elmar Jaenicke
- Institute for Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Hannes Neuweiler
- Department for Biotechnology and Biophysics, Julius-Maximilians-University, Würzburg, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany.
| | - Ute A Hellmich
- Department of Chemistry, Biochemistry Division, Johannes Gutenberg-University, Mainz, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany.
| |
Collapse
|
8
|
Hofer F, Kraml J, Kahler U, Kamenik AS, Liedl KR. Catalytic Site p Ka Values of Aspartic, Cysteine, and Serine Proteases: Constant pH MD Simulations. J Chem Inf Model 2020; 60:3030-3042. [PMID: 32348143 PMCID: PMC7312390 DOI: 10.1021/acs.jcim.0c00190] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Enzymatic function and activity of
proteases is closely controlled
by the pH value. The protonation states of titratable residues in
the active site react to changes in the pH value, according to their
pKa, and thereby determine the functionality
of the enzyme. Knowledge of the titration behavior of these residues
is crucial for the development of drugs targeting the active site
residues. However, experimental pKa data
are scarce, since the systems’ size and complexity make determination
of these pKa values inherently difficult.
In this study, we use single pH constant pH MD simulations as a fast
and robust tool to estimate the active site pKa values of a set of aspartic, cysteine, and serine proteases.
We capture characteristic pKa shifts of
the active site residues, which dictate the experimentally determined
activity profiles of the respective protease family. We find clear
differences of active site pKa values
within the respective families, which closely match the experimentally
determined pH preferences of the respective proteases. These shifts
are caused by a distinct network of electrostatic interactions characteristic
for each protease family. While we find convincing agreement with
experimental data for serine and aspartic proteases, we observe clear
deficiencies in the description of the titration behavior of cysteines
within the constant pH MD framework and highlight opportunities for
improvement. Consequently, with this work, we provide a concise set
of active site pKa values of aspartic
and serine proteases, which could serve as reference for future theoretical
as well as experimental studies.
Collapse
Affiliation(s)
- Florian Hofer
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Johannes Kraml
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Ursula Kahler
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Anna S Kamenik
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Klaus R Liedl
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| |
Collapse
|
9
|
Cruzeiro VWD, Feliciano GT, Roitberg AE. Exploring Coupled Redox and pH Processes with a Force-Field-Based Approach: Applications to Five Different Systems. J Am Chem Soc 2020; 142:3823-3835. [PMID: 32011132 DOI: 10.1021/jacs.9b11433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Coupled redox and pH-driven processes are at the core of many important biological mechanisms. As the distribution of protonation and redox states in a system is associated with the pH and redox potential of the solution, having efficient computational tools that can simulate under these conditions becomes very important. Such tools have the potential to provide information that complement and drive experiments. In previous publications we have presented the implementation of the constant pH and redox potential molecular dynamics (C(pH,E)MD) method in AMBER and we have shown how multidimensional replica exchange can be used to significantly enhance the convergence efficiency of our simulations. In the current work, after an improvement in our C(pH,E)MD approach that allows a given residue to be simultaneously pH- and redox-active, we have employed our methodologies to study five different systems of interest in the literature. We present results for capped tyrosine dipeptide, two maquette systems containing one pH- and redox-active tyrosine (α3Y and peptide A), and two proteins that contain multiple heme groups (diheme cytochrome c from Rhodobacter sphaeroides and Desulfovibrio vulgaris Hildenborough cytochrome c3). We show that our results can provide new insights into previous theoretical and experimental findings by using a fully force-field-based and GPU-accelerated approach, which allows the simulations to be executed with high computational performance.
Collapse
Affiliation(s)
| | - Gustavo Troiano Feliciano
- Departamento de Físico-Química, Instituto de Química , Universidade Estadual Paulista (Unesp) , Araraquara , Brazil
| | - Adrian E Roitberg
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| |
Collapse
|
10
|
Hofer F, Dietrich V, Kamenik AS, Tollinger M, Liedl KR. pH-Dependent Protonation of the Phl p 6 Pollen Allergen Studied by NMR and cpH-aMD. J Chem Theory Comput 2019; 15:5716-5726. [PMID: 31476118 PMCID: PMC6994067 DOI: 10.1021/acs.jctc.9b00540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We use state-of-the-art NMR experiments to measure apparent pKa values in the native protein environment and employ a cutting-edge combination of enhanced sampling and constant pH molecular dynamics (MD) simulations to rationalize strong pKa shifts. The major timothy grass pollen allergen Phl p 6 serves as an ideal model system for both methods due to its high number of titratable residues despite its comparably small size. We present a proton transition analysis as intuitive tool to depict the captured protonation state ensemble in atomistic detail. Combining microscopic structural details from MD simulations and macroscopic ensemble averages from NMR shifts leads to a comprehensive view on pH dependencies of protonation states and tautomers. Overall, we find striking agreement between simulation-based pKa predictions and experiment. However, our analyses suggest subtle differences in the underlying molecular origin of the observed pKa shifts. From accelerated constant pH MD simulations, we identify immediate proximity of opposite charges, followed by vicinity of equal charges as major driving forces for pKa shifts. NMR experiments on the other hand, suggest only a weak relation of pKa shifts and close contacts to charged residues, while the strongest influence derives from the dipolar character of α helices. The presented study hence pinpoints opportunities for improvements concerning the theoretical description of protonation state and tautomer probabilities. However, the coherence in the resulting apparent pKa values from simulations and experiment affirms cpH-aMD as a reliable tool to study allergen dynamics at varying pH levels.
Collapse
Affiliation(s)
- Florian Hofer
- †Institute
for General, Inorganic and Theoretical Chemistry and ‡Institute for Organic Chemistry,
Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Valentin Dietrich
- †Institute
for General, Inorganic and Theoretical Chemistry and ‡Institute for Organic Chemistry,
Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Anna S. Kamenik
- †Institute
for General, Inorganic and Theoretical Chemistry and ‡Institute for Organic Chemistry,
Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Martin Tollinger
- †Institute
for General, Inorganic and Theoretical Chemistry and ‡Institute for Organic Chemistry,
Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Klaus R. Liedl
- †Institute
for General, Inorganic and Theoretical Chemistry and ‡Institute for Organic Chemistry,
Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria,E-mail:
| |
Collapse
|
11
|
A Membrane-Bound Cytochrome Enables Methanosarcina acetivorans To Conserve Energy from Extracellular Electron Transfer. mBio 2019; 10:mBio.00789-19. [PMID: 31431545 PMCID: PMC6703419 DOI: 10.1128/mbio.00789-19] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The discovery of a methanogen that can conserve energy to support growth solely from the oxidation of organic carbon coupled to the reduction of an extracellular electron acceptor expands the possible environments in which methanogens might thrive. The potential importance of c-type cytochromes for extracellular electron transfer to syntrophic bacterial partners and/or Fe(III) minerals in some Archaea was previously proposed, but these studies with Methanosarcina acetivorans provide the first genetic evidence for cytochrome-based extracellular electron transfer in Archaea. The results suggest parallels with Gram-negative bacteria, such as Shewanella and Geobacter species, in which multiheme outer-surface c-type cytochromes are an essential component for electrical communication with the extracellular environment. M. acetivorans offers an unprecedented opportunity to study mechanisms for energy conservation from the anaerobic oxidation of one-carbon organic compounds coupled to extracellular electron transfer in Archaea with implications not only for methanogens but possibly also for Archaea that anaerobically oxidize methane. Extracellular electron exchange in Methanosarcina species and closely related Archaea plays an important role in the global carbon cycle and enhances the speed and stability of anaerobic digestion by facilitating efficient syntrophic interactions. Here, we grew Methanosarcina acetivorans with methanol provided as the electron donor and the humic analogue, anthraquione-2,6-disulfonate (AQDS), provided as the electron acceptor when methane production was inhibited with bromoethanesulfonate. AQDS was reduced with simultaneous methane production in the absence of bromoethanesulfonate. Transcriptomics revealed that expression of the gene for the transmembrane, multiheme, c-type cytochrome MmcA was higher in AQDS-respiring cells than in cells performing methylotrophic methanogenesis. A strain in which the gene for MmcA was deleted failed to grow via AQDS reduction but grew with the conversion of methanol or acetate to methane, suggesting that MmcA has a specialized role as a conduit for extracellular electron transfer. Enhanced expression of genes for methanol conversion to methyl-coenzyme M and the Rnf complex suggested that methanol is oxidized to carbon dioxide in AQDS-respiring cells through a pathway that is similar to methyl-coenzyme M oxidation in methanogenic cells. However, during AQDS respiration the Rnf complex and reduced methanophenazine probably transfer electrons to MmcA, which functions as the terminal reductase for AQDS reduction. Extracellular electron transfer may enable the survival of methanogens in dynamic environments in which oxidized humic substances and Fe(III) oxides are intermittently available. The availability of tools for genetic manipulation of M. acetivorans makes it an excellent model microbe for evaluating c-type cytochrome-dependent extracellular electron transfer in Archaea.
Collapse
|
12
|
Pang S, Yang J, Zhao Y, Li Y, Wang J. Computational prediction and functional analysis of arsenic-binding proteins in human cells. QUANTITATIVE BIOLOGY 2019. [DOI: 10.1007/s40484-019-0169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Cossettini A, Selmi L, Cossettini A, Selmi L, Selmi L, Cossettini A. On the Response of Nanoelectrode Impedance Spectroscopy Measures to Plant, Animal, and Human Viruses. IEEE Trans Nanobioscience 2019; 17:102-109. [PMID: 29870333 DOI: 10.1109/tnb.2018.2826919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A simplified lumped geometrical and electrical model for the high-frequency impedance spectroscopy (HFIS) response of nanoelectrodes to capsids and full viruses is developed starting from atomistic descriptions, in order to test the theoretical response of a realistic HFIS CMOS biosensor platform to different viruses. Capacitance spectra are computed for plant (cowpea chlorotic mottle virus), animal (rabbit haemorrhagic disease virus), and human (hepatitis A virus) viruses. A few common features of the spectra are highlighted, and the role of virus charge, pH, and ionic strength on the expected signal is discussed. They suggest that the frequency of highest sensitivity at nearly physiological concentrations (100 mM) is within reach of existing HFIS platform designs.
Collapse
|
14
|
Cruzeiro VWD, Roitberg AE. Multidimensional Replica Exchange Simulations for Efficient Constant pH and Redox Potential Molecular Dynamics. J Chem Theory Comput 2019; 15:871-881. [DOI: 10.1021/acs.jctc.8b00935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Adrian E. Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
15
|
Cruzeiro VWD, Amaral MS, Roitberg AE. Redox potential replica exchange molecular dynamics at constant pH in AMBER: Implementation and validation. J Chem Phys 2018; 149:072338. [DOI: 10.1063/1.5027379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Vinícius Wilian D. Cruzeiro
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020, Brazil
| | - Marcos S. Amaral
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil
| | - Adrian E. Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
16
|
Zhang H, Wu W, Mo Y. Study of proton-coupled electron transfer (PCET) with four explicit diabatic states at the ab initio level. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Gunner MR, Koder R. The design features cells use to build their transmembrane proton gradient. Phys Biol 2017; 14:013001. [DOI: 10.1088/1478-3975/14/1/013001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Electrogenic steps of light-driven proton transport in ESR, a retinal protein from Exiguobacterium sibiricum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1741-1750. [DOI: 10.1016/j.bbabio.2016.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/06/2016] [Accepted: 08/11/2016] [Indexed: 02/01/2023]
|
19
|
Cornish AJ, Ginovska B, Thelen A, da Silva JCS, Soares TA, Raugei S, Dupuis M, Shaw WJ, Hegg EL. Single-Amino Acid Modifications Reveal Additional Controls on the Proton Pathway of [FeFe]-Hydrogenase. Biochemistry 2016; 55:3165-73. [PMID: 27186945 DOI: 10.1021/acs.biochem.5b01044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The proton pathway of [FeFe]-hydrogenase is essential for enzymatic H2 production and oxidation and is composed of four residues and a water molecule. A computational analysis of this pathway in the [FeFe]-hydrogenase from Clostridium pasteurianum revealed that the solvent-exposed residue of the pathway (Glu282) forms hydrogen bonds to two residues outside of the pathway (Arg286 and Ser320), implying that these residues could function in regulating proton transfer. In this study, we show that substituting Arg286 with leucine eliminates hydrogen bonding with Glu282 and results in an ∼3-fold enhancement of H2 production activity when methyl viologen is used as an electron donor, suggesting that Arg286 may help control the rate of proton delivery. In contrast, substitution of Ser320 with alanine reduces the rate ∼5-fold, implying that it either acts as a member of the pathway or influences Glu282 to permit proton transfer. Interestingly, quantum mechanics/molecular mechanics and molecular dynamics calculations indicate that Ser320 does not play a structural role or indirectly influence the barrier for proton movement at the entrance of the channel. Rather, it may act as an additional proton acceptor for the pathway or serve in a regulatory role. While further studies are needed to elucidate the role of Ser320, collectively these data provide insights into the complex proton transport process.
Collapse
Affiliation(s)
- Adam J Cornish
- Department of Biochemistry & Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States.,Great Lakes Bioenergy Research Center, Michigan State University , East Lansing, Michigan 48824, United States
| | - Bojana Ginovska
- Physical Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Adam Thelen
- Department of Biochemistry & Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Julio C S da Silva
- Department of Fundamental Chemistry, Federal University of Pernambuco , Cidade Universitária,50740-560 Recife, PE, Brazil
| | - Thereza A Soares
- Department of Fundamental Chemistry, Federal University of Pernambuco , Cidade Universitária,50740-560 Recife, PE, Brazil
| | - Simone Raugei
- Physical Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Michel Dupuis
- Physical Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Wendy J Shaw
- Physical Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Eric L Hegg
- Department of Biochemistry & Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States.,Great Lakes Bioenergy Research Center, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
20
|
Ge X, Gunner MR. Unraveling the mechanism of proton translocation in the extracellular half-channel of bacteriorhodopsin. Proteins 2016; 84:639-54. [DOI: 10.1002/prot.25013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/24/2016] [Accepted: 02/04/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaoxia Ge
- Physics Department; City College of New York; New York NY 10031
| | - M. R. Gunner
- Physics Department; City College of New York; New York NY 10031
| |
Collapse
|
21
|
Olson TL, Espiritu E, Edwardraja S, Simmons CR, Williams JC, Ghirlanda G, Allen JP. Design of dinuclear manganese cofactors for bacterial reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:539-547. [PMID: 26392146 DOI: 10.1016/j.bbabio.2015.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/14/2015] [Indexed: 12/28/2022]
Abstract
A compelling target for the design of electron transfer proteins with novel cofactors is to create a model for the oxygen-evolving complex, a Mn4Ca cluster, of photosystem II. A mononuclear Mn cofactor can be added to the bacterial reaction center, but the addition of multiple metal centers is constrained by the native protein architecture. Alternatively, metal centers can be incorporated into artificial proteins. Designs for the addition of dinuclear metal centers to four-helix bundles resulted in three artificial proteins with ligands for one, two, or three dinuclear metal centers able to bind Mn. The three-dimensional structure determined by X-ray crystallography of one of the Mn-proteins confirmed the design features and revealed details concerning coordination of the Mn center. Electron transfer between these artificial Mn-proteins and bacterial reaction centers was investigated using optical spectroscopy. After formation of a light-induced, charge-separated state, the experiments showed that the Mn-proteins can donate an electron to the oxidized bacteriochlorophyll dimer of modified reaction centers, with the Mn-proteins having additional metal centers being more effective at this electron transfer reaction. Modeling of the structure of the Mn-protein docked to the reaction center showed that the artificial protein likely binds on the periplasmic surface similarly to cytochrome c2, the natural secondary donor. Combining reaction centers with exogenous artificial proteins provides the opportunity to create ligands and investigate the influence of inhomogeneous protein environments on multinuclear redox-active metal centers. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- Tien L Olson
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Eduardo Espiritu
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | | | - Chad R Simmons
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - JoAnn C Williams
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Giovanna Ghirlanda
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - James P Allen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
22
|
Amin M, Vogt L, Szejgis W, Vassiliev S, Brudvig GW, Bruce D, Gunner MR. Proton-Coupled Electron Transfer During the S-State Transitions of the Oxygen-Evolving Complex of Photosystem II. J Phys Chem B 2015; 119:7366-77. [PMID: 25575266 DOI: 10.1021/jp510948e] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The oxygen-evolving complex (OEC) of photosystem II (PSII) is a unique Mn4O5Ca cluster that catalyzes water oxidation via four photoactivated electron transfer steps. As the protein influence on the redox and protonation chemistry of the OEC remains an open question, we present a classical valence model of the OEC that allows the redox state of each Mn and the protonation state of bridging μ-oxos and terminal waters to remain in equilibrium with the PSII protein throughout the redox cycle. We find that the last bridging oxygen loses its proton during the transition from S0 to S1. Two possible S2 states are found depending on the OEC geometry: S2 has Mn4(IV) with a proton lost from a terminal water (W1) trapped by the nearby D1-D61 if O5 is closer to Mn4, or Mn1(IV), with partial deprotonation of D1-H337 and D1-E329 if O5 is closer to Mn1. In S3, the OEC is Mn4(IV) with W2 deprotonated. The estimated OEC Em's range from +0.7 to +1.3 V, enabling oxidation by P680(+), the primary electron donor in PSII. In chloride-depleted PSII, the proton release increases during the S1 to S2 transition, leaving the OEC unable to properly advance through the water-splitting cycle.
Collapse
Affiliation(s)
- Muhamed Amin
- †Department of Physics, J-419, City College of New York, 138th Street, Convent Avenue, New York, New York 10031, United States
| | - Leslie Vogt
- ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Witold Szejgis
- †Department of Physics, J-419, City College of New York, 138th Street, Convent Avenue, New York, New York 10031, United States
| | - Serguei Vassiliev
- §Department of Biological Sciences, Brock University, 500 Glenridge Ave., St. Catherines, ON LS2 3A1, Canada
| | - Gary W Brudvig
- ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Doug Bruce
- §Department of Biological Sciences, Brock University, 500 Glenridge Ave., St. Catherines, ON LS2 3A1, Canada
| | - M R Gunner
- †Department of Physics, J-419, City College of New York, 138th Street, Convent Avenue, New York, New York 10031, United States
| |
Collapse
|
23
|
Morozova OB, Yurkovskaya AV. Modulation of the Rate of Reversible Electron Transfer in Oxidized Tryptophan and Tyrosine Containing Peptides in Acidic Aqueous Solution. J Phys Chem B 2014; 119:140-9. [DOI: 10.1021/jp511068n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Olga B. Morozova
- International Tomography Center, Institutskaya
3a, 630090 Novosibirsk, Russia
| | - Alexandra V. Yurkovskaya
- International Tomography Center, Institutskaya
3a, 630090 Novosibirsk, Russia
- Novosibirsk State University, Pirogova
2, 630090, Novosibirsk, Russia
| |
Collapse
|
24
|
Halorhodopsin pumps Cl- and bacteriorhodopsin pumps protons by a common mechanism that uses conserved electrostatic interactions. Proc Natl Acad Sci U S A 2014; 111:16377-82. [PMID: 25362051 DOI: 10.1073/pnas.1411119111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Key mutations differentiate the functions of homologous proteins. One example compares the inward ion pump halorhodopsin (HR) and the outward proton pump bacteriorhodopsin (BR). Of the nine essential buried ionizable residues in BR, six are conserved in HR. However, HR changes three BR acids, D85 in a central cluster of ionizable residues, D96, nearer the intracellular, and E204, nearer the extracellular side of the membrane to the small, neutral amino acids T111, V122, and T230, respectively. In BR, acidic amino acids are stationary anions whose proton affinity is modulated by conformational changes, establishing a sequence of directed binding and release of protons. Multiconformation continuum electrostatics calculations of chloride affinity and residue protonation show that, in reaction intermediates where an acid is ionized in BR, a Cl(-) is bound to HR in a position near the deleted acid. In the HR ground state, Cl(-) binds tightly to the central cluster T111 site and weakly to the extracellular T230 site, recovering the charges on ionized BR-D85 and neutral E204 in BR. Imposing key conformational changes from the BR M intermediate into the HR structure results in the loss of Cl(-) from the central T111 site and the tight binding of Cl(-) to the extracellular T230 site, mirroring the changes that protonate BR-D85 and ionize E204 in BR. The use of a mobile chloride in place of D85 and E204 makes HR more susceptible to the environmental pH and salt concentrations than BR. These studies shed light on how ion transfer mechanisms are controlled through the interplay of protein and ion electrostatics.
Collapse
|
25
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 584] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
26
|
Zizzari ZV, Smolders I, Koene JM. Alternative delivery of male accessory gland products. Front Zool 2014; 11:32. [PMID: 24708537 PMCID: PMC3984499 DOI: 10.1186/1742-9994-11-32] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/01/2014] [Indexed: 02/04/2023] Open
Abstract
To increase fertilization success, males transfer accessory gland products (Acps). Several species have evolved unconventional Acps transfer modes, meaning that Acps are transferred separately from the sperm. By surveying the sperm-free Acps transfer cases, we show that these animals have evolved a common strategy to deliver Acps: they all inject Acps directly through the partner’s body wall into the hemolymph. Our review of this mode of Acps transfer reveals another striking similarity: they all transfer sperm in packages or via the skin, which may leave little room for Acps transfer via the conventional route in seminal fluid. We synthesise the knowledge about the function, and the effects in the recipients, of the Acps found in the widely diverse taxa (including earthworms, sea slugs, terrestrial snails, scorpions and salamanders) that inject these substances. Despite the clearly independent evolution of the injection devices, these animals have evolved a common alternative strategy to get their partners to accept and/or use their sperm. Most importantly, the evolution of the injection devices for the delivery of Acps highlights how the latter are pivotal for male reproductive success and, hence, strongly influence sexual selection.
Collapse
Affiliation(s)
| | | | - Joris M Koene
- Animal Ecology, Department of Ecological Science, VU University Amsterdam, De Boelelaan, 1085, Amsterdam 1081 HV, Netherlands.
| |
Collapse
|
27
|
Dutta A, Lense S, Hou J, Engelhard MH, Roberts JAS, Shaw WJ. Minimal proton channel enables H2 oxidation and production with a water-soluble nickel-based catalyst. J Am Chem Soc 2013; 135:18490-6. [PMID: 24206187 DOI: 10.1021/ja407826d] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hydrogenase enzymes use first-row transition metals to interconvert H2 with protons and electrons, reactions that are important for the storage and recovery of energy from intermittent sources such as solar, hydroelectric, and wind. Here we present Ni(P(Cy)2N(Gly)2)2, a water-soluble molecular electrocatalyst with the amino acid glycine built into the diphosphine ligand framework. Proton transfer between the outer coordination sphere carboxylates and the second coordination sphere pendant amines is rapid, as observed by cyclic voltammetry and FTIR spectroscopy, indicating that the carboxylate groups may participate in proton transfer during catalysis. This complex oxidizes H2 (1-33 s(-1)) at low overpotentials (150-365 mV) over a range of pH values (0.1-9.0) and produces H2 under identical solution conditions (>2400 s(-1) at pH 0.5). Enzymes employ proton channels for the controlled movement of protons over long distances-the results presented here demonstrate the effects of a simple two-component proton channel in a synthetic molecular electrocatalyst.
Collapse
Affiliation(s)
- Arnab Dutta
- Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | | | | | | | | | | |
Collapse
|
28
|
Gunner MR, Amin M, Zhu X, Lu J. Molecular mechanisms for generating transmembrane proton gradients. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:892-913. [PMID: 23507617 PMCID: PMC3714358 DOI: 10.1016/j.bbabio.2013.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 01/02/2023]
Abstract
Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side.
Collapse
Affiliation(s)
- M R Gunner
- Department of Physics, City College of New York, New York, NY 10031, USA.
| | | | | | | |
Collapse
|
29
|
Brzezinski P, Öjemyr LN, Ädelroth P. Intermediates generated during the reaction of reduced Rhodobacter sphaeroides cytochrome c oxidase with dioxygen. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:843-7. [DOI: 10.1016/j.bbabio.2013.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/18/2013] [Accepted: 04/23/2013] [Indexed: 10/26/2022]
|
30
|
Amin M, Vogt L, Vassiliev S, Rivalta I, Sultan MM, Bruce D, Brudvig GW, Batista VS, Gunner MR. Electrostatic effects on proton coupled electron transfer in oxomanganese complexes inspired by the oxygen-evolving complex of photosystem II. J Phys Chem B 2013; 117:6217-26. [PMID: 23570540 DOI: 10.1021/jp403321b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The influence of electrostatic interactions on the free energy of proton coupled electron transfer in biomimetic oxomanganese complexes inspired by the oxygen-evolving complex (OEC) of photosystem II (PSII) are investigated. The reported study introduces an enhanced multiconformer continuum electrostatics (MCCE) model, parametrized at the density functional theory (DFT) level with a classical valence model for the oxomanganese core. The calculated pKa's and oxidation midpoint potentials (E(m)'s) match experimental values for eight complexes, indicating that purely electrostatic contributions account for most of the observed couplings between deprotonation and oxidation state transitions. We focus on pKa's of terminal water ligands in [Mn(II/III)(H2O)6](2+/3+) (1), [Mn(III)(P)(H2O)2](3-) (2, P = 5,10,15,20-tetrakis(2,6-dichloro-3-sulfonatophenyl)porphyrinato), [Mn2(IV,IV)(μ-O)2(terpy)2(H2O)2](4+) (3, terpy = 2,2':6',2″-terpyridine), and [Mn3(IV,IV,IV)(μ-O)4(phen)4(H2O)2](4+) (4, phen = 1,10-phenanthroline) and the pKa's of μ-oxo bridges and Mn E(m)'s in [Mn2(μ-O)2(bpy)4] (5, bpy = 2,2'-bipyridyl), [Mn2(μ-O)2(salpn)2] (6, salpn = N,N'-bis(salicylidene)-1,3-propanediamine), [Mn2(μ-O)2(3,5-di(Cl)-salpn)2] (7), and [Mn2(μ-O)2(3,5-di(NO2)-salpn)2] (8). The analysis of complexes 6-8 highlights the strong coupling between electron and proton transfers, with any Mn oxidation lowering the pKa of an oxo bridge by 10.5 ± 0.9 pH units. The model also accounts for changes in the E(m)'s by ligand substituents, such as found in complexes 6-8, due to the electron withdrawing Cl (7) and NO2 (8). The reported study provides the foundation for analysis of electrostatic effects in other oxomanganese complexes and metalloenzymes, where proton coupled electron transfer plays a fundamental role in redox-leveling mechanisms.
Collapse
Affiliation(s)
- Muhamed Amin
- Department of Physics, City College of New York, New York, New York 10031, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Paasche A, Schirmeister T, Engels B. Benchmark Study for the Cysteine-Histidine Proton Transfer Reaction in a Protein Environment: Gas Phase, COSMO, QM/MM Approaches. J Chem Theory Comput 2013; 9:1765-77. [PMID: 26587634 DOI: 10.1021/ct301082y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proton transfer reactions are of crucial interest for the investigation of proteins. We have investigated the accuracy of commonly used quantum chemical methods for the description of proton transfer reactions in different environments (gas phase, COSMO, QM/MM) using the proton transfer between the catalytic dyad residues cysteine 145 and histidine 41 of SARS coronavirus main protease as a case study. The test includes thermodynamic, kinetic, and structural properties. The study comprises computationally demanding ab initio approaches (HF, CC2, MP2, SCS-CC2, SCS-MP2, CCSD(T)), popular density functional theories (BLYP, B3LYP, M06-2X), and semiempirical methods (MNDO/d, AM1, RM1, PM3, PM6). The approximated coupled cluster approach LCCSD(T) is taken as a reference method. We find that the robustness of the tested methods with respect to the environment correlates well with the level of theory. As an example HF, CC2, MP2, and their SCS variants show similar errors for gas phase, COSMO, or QM/MM computations. In contrast for semiempirical methods, the errors strongly diversify if one goes from gas phase to COSMO or QM/MM. Particular problems are observed for the recent semiempirical methods PM6 and RM1, which show the best performance for gas phase calculations but possess larger errors in conjunction with COSMO. Finally, a combination of SCS-MP2 and B3LYP or M06-2X allows reliable estimates about remaining errors.
Collapse
Affiliation(s)
- Alexander Paasche
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| | - Tanja Schirmeister
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| |
Collapse
|
32
|
Renger T, Müh F. Understanding photosynthetic light-harvesting: a bottom up theoretical approach. Phys Chem Chem Phys 2013; 15:3348-71. [PMID: 23361062 DOI: 10.1039/c3cp43439g] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss a bottom up approach for modeling photosynthetic light-harvesting. Methods are reviewed for a full structure-based parameterization of the Hamiltonian of pigment-protein complexes (PPCs). These parameters comprise (i) the local transition energies of the pigments in their binding sites in the protein, the site energies; (ii) the couplings between optical transitions of the pigments, the excitonic couplings; and (iii) the spectral density characterizing the dynamic modulation of pigment transition energies and excitonic couplings by protein vibrations. Starting with quantum mechanics perturbation theory, we provide a microscopic foundation for the standard PPC Hamiltonian and relate the expressions obtained for its matrix elements to quantities that can be calculated with classical molecular mechanics/electrostatics approaches including the whole PPC in atomic detail and using charge and transition densities obtained with quantum chemical calculations on the isolated building blocks of the PPC. In the second part of this perspective, the Hamiltonian is utilized to describe the quantum dynamics of excitons. Situations are discussed that differ in the relative strength of excitonic and exciton-vibrational coupling. The predictive power of the approaches is demonstrated in application to different PPCs, and challenges for future work are outlined.
Collapse
Affiliation(s)
- Thomas Renger
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Linz, Austria.
| | | |
Collapse
|
33
|
Wang L, Luan Q, Yang D, Yao X, Zhou K. Strong electron-conjugation interaction facilitates electron transfer of hemoglobin by Ce(OH)3 nanorods. RSC Adv 2013. [DOI: 10.1039/c3ra40336j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
34
|
Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A. Modeling and simulation of ion channels. Chem Rev 2012; 112:6250-84. [PMID: 23035940 PMCID: PMC3633640 DOI: 10.1021/cr3002609] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Christopher Maffeo
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Swati Bhattacharya
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Jejoong Yoo
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - David Wells
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| |
Collapse
|
35
|
Di Russo NV, Estrin DA, Martí MA, Roitberg AE. pH-Dependent conformational changes in proteins and their effect on experimental pK(a)s: the case of Nitrophorin 4. PLoS Comput Biol 2012; 8:e1002761. [PMID: 23133364 PMCID: PMC3486867 DOI: 10.1371/journal.pcbi.1002761] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/13/2012] [Indexed: 11/21/2022] Open
Abstract
The acid-base behavior of amino acids is an important subject of study due to their prominent role in enzyme catalysis, substrate binding and protein structure. Due to interactions with the protein environment, their pKas can be shifted from their solution values and, if a protein has two stable conformations, it is possible for a residue to have different “microscopic”, conformation-dependent pKa values. In those cases, interpretation of experimental measurements of the pKa is complicated by the coupling between pH, protonation state and protein conformation. We explored these issues using Nitrophorin 4 (NP4), a protein that releases NO in a pH sensitive manner. At pH 5.5 NP4 is in a closed conformation where NO is tightly bound, while at pH 7.5 Asp30 becomes deprotonated, causing the conformation to change to an open state from which NO can easily escape. Using constant pH molecular dynamics we found two distinct microscopic Asp30 pKas: 8.5 in the closed structure and 4.3 in the open structure. Using a four-state model, we then related the obtained microscopic values to the experimentally observed “apparent” pKa, obtaining a value of 6.5, in excellent agreement with experimental data. This value must be interpreted as the pH at which the closed to open population transition takes place. More generally, our results show that it is possible to relate microscopic structure dependent pKa values to experimentally observed ensemble dependent apparent pKas and that the insight gained in the relatively simple case of NP4 can be useful in several more complex cases involving a pH dependent transition, of great biochemical interest. The interaction of an amino acid with its protein environment can result in an acid-base behavior that is very different from what would be observed in solution. This environment can be greatly altered when the protein changes conformation. As a result, the amino acid will have two different “microscopic” pKa values. Nitrophorin 4 is a good case study to explore this behavior, because it undergoes a pH-dependent conformational change that is well characterized experimentally. Using computer simulation tools, we found that the key titratable Aspartic acid 30, has two very different microscopic pKas: 4.3 and 8.5, which are significantly different to the observed transition pKa in solution. However, using a simple model, we were able to understand how this causes the conformational change to take place at pH∼6.5, as measured experimentally. The insight gained in this relatively simple case can be useful in other more complex cases where the apparent pKa is also a result of the interplay of different conformations where some amino acids experience very different environments.
Collapse
Affiliation(s)
- Natali V. Di Russo
- Quantum Theory Project and Department of Chemistry, University of Florida, Gainesville, Florida, United States of America
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Dario A. Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Marcelo A. Martí
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- * E-mail: (MAM); (AER)
| | - Adrian E. Roitberg
- Quantum Theory Project and Department of Chemistry, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (MAM); (AER)
| |
Collapse
|
36
|
Site saturation mutagenesis demonstrates a central role for cysteine 298 as proton donor to the catalytic site in CaHydA [FeFe]-hydrogenase. PLoS One 2012; 7:e48400. [PMID: 23133586 PMCID: PMC3485046 DOI: 10.1371/journal.pone.0048400] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/25/2012] [Indexed: 01/24/2023] Open
Abstract
[FeFe]-hydrogenases reversibly catalyse molecular hydrogen evolution by reduction of two protons. Proton supply to the catalytic site (H-cluster) is essential for enzymatic activity. Cysteine 298 is a highly conserved residue in all [FeFe]-hydrogenases; moreover C298 is structurally very close to the H-cluster and it is important for hydrogenase activity. Here, the function of C298 in catalysis was investigated in detail by means of site saturation mutagenesis, simultaneously studying the effect of C298 replacement with all other 19 amino acids and selecting for mutants with high retained activity. We demonstrated that efficient enzymatic turnover was maintained only when C298 was replaced by aspartic acid, despite the structural diversity between the two residues. Purified CaHydA C298D does not show any significant structural difference in terms of secondary structure and iron incorporation, demonstrating that the mutation does not affect the overall protein fold. C298D retains the hydrogen evolution activity with a decrease of kcat only by 2-fold at pH 8.0 and it caused a shift of the optimum pH from 8.0 to 7.0. Moreover, the oxygen inactivation rate was not affected demonstrating that the mutation does not influence O2 diffusion to the active site or its reactivity with the H-cluster. Our results clearly demonstrate that, in order to maintain the catalytic efficiency and the high turnover number typical of [FeFe] hydrogenases, the highly conserved C298 can be replaced only by another ionisable residue with similar steric hindrance, giving evidence of its involvement in the catalytic function of [FeFe]-hydrogenases in agreement with an essential role in proton transfer to the active site.
Collapse
|
37
|
Trana EN, Nocek JM, Knutson AK, Hoffman BM. Evolving the [myoglobin, cytochrome b(5)] complex from dynamic toward simple docking: charging the electron transfer reactive patch. Biochemistry 2012; 51:8542-53. [PMID: 23067206 DOI: 10.1021/bi301134f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We describe photoinitiated electron transfer (ET) from a suite of Zn-substituted myoglobin (Mb) variants to cytochrome b(5) (b(5)). An electrostatic interface redesign strategy has led to the introduction of positive charges into the vicinity of the heme edge through D/E → K charge-reversal mutation combinations at "hot spot" residues (D44, D60, and E85), augmented by the elimination of negative charges from Mb or b(5) by neutralization of heme propionates. These variations create an unprecedentedly large range in the product of the ET partners' total charges (-5 < -q(Mb)q(b(5)) < 40). The binding affinity (K(a)) increases 1000-fold as -q(Mb)q(b(5)) increases through this range and exhibits a surprisingly simple, exponential dependence on -q(Mb)q(b(5)). This is explained in terms of electrostatic interactions between a "charged reactive patch" (crp) on each partner's surface, defined as a compact region around the heme edge that (i) contains the total protein charge of each variant and (ii) encompasses a major fraction of the "reactive region" (Rr) comprising surface atoms with large matrix elements for electron tunneling to the heme. As -q(Mb)q(b(5)) increases, the complex undergoes a transition from fast to slow-exchange dynamics on the triplet ET time scale, with a correlated progression in the rate constants for intracomplex (k(et)) and bimolecular (k(2)) ET. This progression is analyzed by integrating the crp and Rr descriptions of ET into the textbook steady-state treatment of reversible binding between partners that undergo intracomplex ET and found to encompass the full range of behaviors predicted by the model. The generality of this approach is demonstrated by its application to the extensive body of data for the ET complex between the photosynthetic reaction center and cytochrome c(2). Deviations from this model also are discussed.
Collapse
Affiliation(s)
- Ethan N Trana
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
38
|
Lošdorfer Božič A, Siber A, Podgornik R. How simple can a model of an empty viral capsid be? Charge distributions in viral capsids. J Biol Phys 2012; 38:657-71. [PMID: 24615225 PMCID: PMC3473132 DOI: 10.1007/s10867-012-9278-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/13/2012] [Indexed: 12/21/2022] Open
Abstract
We investigate and quantify salient features of the charge distributions on viral capsids. Our analysis combines the experimentally determined capsid geometry with simple models for ionization of amino acids, thus yielding a detailed description of spatial distribution for positive and negative charges across the capsid wall. The obtained data is processed in order to extract the mean radii of distributions, surface charge densities, as well as dipole moment densities. The results are evaluated and examined in light of previously proposed models of capsid charge distributions, which are shown to have to some extent limited value when applied to real viruses.
Collapse
Affiliation(s)
- Anže Lošdorfer Božič
- Department of Theoretical Physics, Jožef Stefan Institute, 1000, Ljubljana, Slovenia,
| | | | | |
Collapse
|
39
|
Ullmann RT, Andrade SLA, Ullmann GM. Thermodynamics of transport through the ammonium transporter Amt-1 investigated with free energy calculations. J Phys Chem B 2012; 116:9690-703. [PMID: 22804733 DOI: 10.1021/jp305440f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Amt-1 from Archaeoglobus fulgidus (AfAmt-1) belongs to the Amt/Rh family of ammonium/ammonia transporting membrane proteins. The transport mode and the precise microscopic permeation mechanism utilized by these proteins are intensely debated. Open questions concern the identity of the transported substrate (ammonia and/or ammonium) and whether the transport is passive or active. To address these questions, we studied the overall thermodynamics of the different transport modes as a function of the environmental conditions. Then, we investigated the thermodynamics of the underlying microscopic transport mechanisms with free energy calculations within a continuum electrostatics model. The formalism developed for this purpose is of general utility in the calculation of binding free energies for ligands with multiple protonation forms or other binding forms. The results of our calculations are compared to the available experimental and theoretical data on Amt/Rh proteins and discussed in light of the current knowledge on the physiological conditions experienced by microorganisms and plants. We found that microscopic models of electroneutral and electrogenic transport modes are in principle thermodynamically viable. However, only the electrogenic variants have a net thermodynamic driving force under the physiological conditions experienced by microorganisms and plants. Thus, the transport mechanism of AfAmt-1 is most likely electrogenic.
Collapse
Affiliation(s)
- R Thomas Ullmann
- Structural Biology/Bioinformatics, University of Bayreuth, Universitätsstrasse 30, BGI, 95447 Bayreuth, Germany.
| | | | | |
Collapse
|
40
|
Yuan S, Le Roy K, Venken T, Lammens W, Van den Ende W, De Maeyer M. pKa modulation of the acid/base catalyst within GH32 and GH68: a role in substrate/inhibitor specificity? PLoS One 2012; 7:e37453. [PMID: 22662155 PMCID: PMC3360783 DOI: 10.1371/journal.pone.0037453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 04/21/2012] [Indexed: 11/18/2022] Open
Abstract
Glycoside hydrolases of families 32 (GH32) and 68 (GH68) belong to clan GH-J, containing hydrolytic enzymes (sucrose/fructans as donor substrates) and fructosyltransferases (sucrose/fructans as donor and acceptor substrates). In GH32 members, some of the sugar substrates can also function as inhibitors, this regulatory aspect further adding to the complexity in enzyme functionalities within this family. Although 3D structural information becomes increasingly available within this clan and huge progress has been made on structure-function relationships, it is not clear why some sugars bind as inhibitors without being catalyzed. Conserved aspartate and glutamate residues are well known to act as nucleophile and acid/bases within this clan. Based on the available 3D structures of enzymes and enzyme-ligand complexes as well as docking simulations, we calculated the pKa of the acid-base before and after substrate binding. The obtained results strongly suggest that most GH-J members show an acid-base catalyst that is not sufficiently protonated before ligand entrance, while the acid-base can be fully protonated when a substrate, but not an inhibitor, enters the catalytic pocket. This provides a new mechanistic insight aiming at understanding the complex substrate and inhibitor specificities observed within the GH-J clan. Moreover, besides the effect of substrate entrance on its own, we strongly suggest that a highly conserved arginine residue (in the RDP motif) rather than the previously proposed Tyr motif (not conserved) provides the proton to increase the pKa of the acid-base catalyst.
Collapse
Affiliation(s)
- Shuguang Yuan
- Laboratory of Molecular Plant Physiology, Institute of Botany and Microbiology, KU Leuven, Heverlee, Belgium
- Laboratory for Biomolecular Modelling, Department of Chemistry, Division of Biochemistry, Molecular and Structural Biology, KU Leuven, Heverlee, Belgium
| | - Katrien Le Roy
- Laboratory of Molecular Plant Physiology, Institute of Botany and Microbiology, KU Leuven, Heverlee, Belgium
| | - Tom Venken
- Laboratory for Biomolecular Modelling, Department of Chemistry, Division of Biochemistry, Molecular and Structural Biology, KU Leuven, Heverlee, Belgium
| | - Willem Lammens
- Laboratory of Molecular Plant Physiology, Institute of Botany and Microbiology, KU Leuven, Heverlee, Belgium
| | - Wim Van den Ende
- Laboratory of Molecular Plant Physiology, Institute of Botany and Microbiology, KU Leuven, Heverlee, Belgium
- * E-mail: (WV); (MDM)
| | - Marc De Maeyer
- Laboratory for Biomolecular Modelling, Department of Chemistry, Division of Biochemistry, Molecular and Structural Biology, KU Leuven, Heverlee, Belgium
- * E-mail: (WV); (MDM)
| |
Collapse
|
41
|
Nazmutdinov RR, Bronshtein MD, Zinkicheva TT, Chi Q, Zhang J, Ulstrup J. Modeling and computations of the intramolecular electron transfer process in the two-heme protein cytochrome c(4). Phys Chem Chem Phys 2012; 14:5953-65. [PMID: 22430606 DOI: 10.1039/c2cp24084j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The di-heme protein Pseudomonas stutzeri cytochrome c(4) (cyt c(4)) has emerged as a useful model for studying long-range protein electron transfer (ET). Recent experimental observations have shown a dramatically different pattern of intramolecular ET between the two heme groups in different local environments. Intramolecular ET in homogeneous solution is too slow (>10 s) to be detected but fast (ms-μs) intramolecular ET in an electrochemical environment has recently been achieved by controlling the molecular orientation of the protein assembled on a gold electrode surface. In this work we have performed computational modeling of the intramolecular ET process by a combination of density functional theory (DFT) and quantum mechanical charge transfer theory to disclose reasons for this difference. We first address the electronic structures of the model heme core with histidine and methionine axial ligands in both low- and high-spin states by structure-optimized DFT. The computations enable estimating the intramolecular reorganization energy of the ET process for different combinations of low- and high-spin heme couples. Environmental reorganization free energies, work terms ("gating") and driving force were determined using dielectric continuum models. We then calculated the electronic transmission coefficient of the intramolecular ET rate using perturbation theory combined with the electronic wave functions determined by the DFT calculations for different heme group orientations and Fe-Fe separations. The reactivity of low- and high-spin heme groups was notably different. The ET rate is exceedingly low for the crystallographic equilibrium orientation but increases by several orders of magnitude for thermally accessible non-equilibrium configurations. Deprotonation of the propionate carboxyl group was also found to enhance the ET rate significantly. The results are discussed in relation to the observed surface immobilization effect and support the notion of conformationally gated ET.
Collapse
Affiliation(s)
- Renat R Nazmutdinov
- Kazan National Research Technological University, 420015 Kazan, Republic Tatarstan, Russian Federation
| | | | | | | | | | | |
Collapse
|
42
|
Blind prediction of host-guest binding affinities: a new SAMPL3 challenge. J Comput Aided Mol Des 2012; 26:475-87. [PMID: 22366955 DOI: 10.1007/s10822-012-9554-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
Abstract
The computational prediction of protein-ligand binding affinities is of central interest in early-stage drug-discovery, and there is a widely recognized need for improved methods. Low molecular weight receptors and their ligands--i.e., host-guest systems--represent valuable test-beds for such affinity prediction methods, because their small size makes for fast calculations and relatively facile numerical convergence. The SAMPL3 community exercise included the first ever blind prediction challenge for host-guest binding affinities, through the incorporation of 11 new host-guest complexes. Ten participating research groups addressed this challenge with a variety of approaches. Statistical assessment indicates that, although most methods performed well at predicting some general trends in binding affinity, overall accuracy was not high, as all the methods suffered from either poor correlation or high RMS errors or both. There was no clear advantage in using explicit versus implicit solvent models, any particular force field, or any particular approach to conformational sampling. In a few cases, predictions using very similar energy models but different sampling and/or free-energy methods resulted in significantly different results. The protonation states of one host and some guest molecules emerged as key uncertainties beyond the choice of computational approach. The present results have implications for methods development and future blind prediction exercises.
Collapse
|
43
|
Ullmann RT, Ullmann GM. GMCT : a Monte Carlo simulation package for macromolecular receptors. J Comput Chem 2012; 33:887-900. [PMID: 22278916 DOI: 10.1002/jcc.22919] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/21/2011] [Accepted: 12/02/2011] [Indexed: 11/08/2022]
Abstract
Generalized Monte Carlo titration (GMCT) is a versatile suite of computer programs for the efficient simulation of complex macromolecular receptor systems as for example proteins. The computational model of the system is based on a microstate description of the receptor and an average description of its surroundings in terms of chemical potentials. The receptor can be modeled in great detail including conformational flexibility and many binding sites with multiple different forms that can bind different ligand types. Membrane embedded systems can be modeled including electrochemical potential gradients. Overall properties of the receptor as well as properties of individual sites can be studied with a variety of different Monte Carlo (MC) simulation methods. Metropolis MC, Wang-Landau MC and efficient free energy calculation methods are included. GMCT is distributed as free open source software at www.bisb.uni-bayreuth.de under the terms of the GNU Affero General Public License.
Collapse
Affiliation(s)
- R Thomas Ullmann
- Structural Biology/Bioinformatics, University of Bayreuth, Universitätsstr. 30, BGI, Bayreuth 95447, Germany.
| | | |
Collapse
|
44
|
Riccardi D, Zhu X, Goyal P, Yang S, Hou G, Cui Q. Toward molecular models of proton pumping: Challenges, methods and relevant applications. Sci China Chem 2011. [DOI: 10.1007/s11426-011-4458-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Nielsen JE, Gunner MR, Bertrand García-Moreno E. The pKa Cooperative: a collaborative effort to advance structure-based calculations of pKa values and electrostatic effects in proteins. Proteins 2011; 79:3249-59. [PMID: 22002877 PMCID: PMC3375608 DOI: 10.1002/prot.23194] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 12/13/2022]
Abstract
The pK(a) Cooperative (http://www.pkacoop.org) was organized to advance development of accurate and useful computational methods for structure-based calculation of pK(a) values and electrostatic energies in proteins. The Cooperative brings together laboratories with expertise and interest in theoretical, computational, and experimental studies of protein electrostatics. To improve structure-based energy calculations, it is necessary to better understand the physical character and molecular determinants of electrostatic effects. Thus, the Cooperative intends to foment experimental research into fundamental aspects of proteins that depend on electrostatic interactions. It will maintain a depository for experimental data useful for critical assessment of methods for structure-based electrostatics calculations. To help guide the development of computational methods, the Cooperative will organize blind prediction exercises. As a first step, computational laboratories were invited to reproduce an unpublished set of experimental pK(a) values of acidic and basic residues introduced in the interior of staphylococcal nuclease by site-directed mutagenesis. The pK(a) values of these groups are unique and challenging to simulate owing to the large magnitude of their shifts relative to normal pK(a) values in water. Many computational methods were tested in this first Blind Prediction Challenge and critical assessment exercise. A workshop was organized in the Telluride Science Research Center to objectively assess the performance of many computational methods tested on this one extensive data set. This volume of Proteins: Structure, Function, and Bioinformatics introduces the pK(a) Cooperative, presents reports submitted by participants in the Blind Prediction Challenge, and highlights some of the problems in structure-based calculations identified during this exercise.
Collapse
Affiliation(s)
- Jens E. Nielsen
- School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - M. R. Gunner
- Department of Physics, City College of New York, New York, NY 10031
| | | |
Collapse
|
46
|
Ullmann RT, Ullmann GM. Coupling of Protonation, Reduction, and Conformational Change in azurin from Pseudomonas aeruginosa Investigated with Free Energy Measures of Cooperativity. J Phys Chem B 2011; 115:10346-59. [DOI: 10.1021/jp204644h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. Thomas Ullmann
- Structural Biology/Bioinformatics, University of Bayreuth, Universitätsstrasse 30, BGI, 95447 Bayreuth, Germany
| | - G. Matthias Ullmann
- Structural Biology/Bioinformatics, University of Bayreuth, Universitätsstrasse 30, BGI, 95447 Bayreuth, Germany
| |
Collapse
|
47
|
Mellor BL, Cruz Cortés E, Busath DD, Mazzeo BA. Method for Estimating the Internal Permittivity of Proteins Using Dielectric Spectroscopy. J Phys Chem B 2011; 115:2205-13. [DOI: 10.1021/jp1111873] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brett L. Mellor
- Department of Electrical and Computer Engineering and ‡Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, United States
| | - Efrén Cruz Cortés
- Department of Electrical and Computer Engineering and ‡Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, United States
| | - David D. Busath
- Department of Electrical and Computer Engineering and ‡Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, United States
| | - Brian A. Mazzeo
- Department of Electrical and Computer Engineering and ‡Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, United States
| |
Collapse
|
48
|
Gamiz-Hernandez AP, Kieseritzky G, Ishikita H, Knapp EW. Rubredoxin Function: Redox Behavior from Electrostatics. J Chem Theory Comput 2011; 7:742-52. [DOI: 10.1021/ct100476h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ana Patricia Gamiz-Hernandez
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Fabeckstrasse 36a, D-14195, Berlin, Germany
| | - Gernot Kieseritzky
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Fabeckstrasse 36a, D-14195, Berlin, Germany
| | - Hiroshi Ishikita
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, 202 Building E, Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - E. W. Knapp
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Fabeckstrasse 36a, D-14195, Berlin, Germany
| |
Collapse
|
49
|
Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH. PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. J Chem Theory Comput 2011; 7:525-37. [PMID: 26596171 DOI: 10.1021/ct100578z] [Citation(s) in RCA: 2930] [Impact Index Per Article: 225.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we have revised the rules and parameters for one of the most commonly used empirical pKa predictors, PROPKA, based on better physical description of the desolvation and dielectric response for the protein. We have introduced a new and consistent approach to interpolate the description between the previously distinct classifications into internal and surface residues, which otherwise is found to give rise to an erratic and discontinuous behavior. Since the goal of this study is to lay out the framework and validate the concept, it focuses on Asp and Glu residues where the protein pKa values and structures are assumed to be more reliable. The new and improved implementation is evaluated and discussed; it is found to agree better with experiment than the previous implementation (in parentheses): rmsd = 0.79 (0.91) for Asp and Glu, 0.75 (0.97) for Tyr, 0.65 (0.72) for Lys, and 1.00 (1.37) for His residues. The most significant advance, however, is in reducing the number of outliers and removing unreasonable sensitivity to small structural changes that arise from classifying residues as either internal or surface.
Collapse
Affiliation(s)
- Mats H M Olsson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, Denmark
| | - Chresten R Søndergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, Denmark
| | - Michal Rostkowski
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, Denmark
| | - Jan H Jensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, Denmark
| |
Collapse
|
50
|
Ma L, Sundlass NK, Raines RT, Cui Q. Disruption and formation of surface salt bridges are coupled to DNA binding by the integration host factor: a computational analysis. Biochemistry 2010; 50:266-75. [PMID: 21121696 DOI: 10.1021/bi101096k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Revealing the thermodynamic driving force of protein-DNA interactions is crucial to the understanding of factors that dictate the properties and function of protein-DNA complexes. For the binding of DNA to DNA-wrapping proteins, such as the integration host factor (IHF), Record and co-workers proposed that the disruption of a large number of preexisting salt bridges is coupled with the binding process [Holbrook, J. A., et al. (2001) J. Mol. Biol. 310, 379]. To test this proposal, we have conducted explicit solvent MD simulations (multiple ∼25-50 ns trajectories for each salt concentration) to examine the behavior of charged residues in IHF, especially concerning their ability to form salt bridges at different salt concentrations. Of the 17 cationic residues noted by Record and co-workers, most are engaged in salt bridge interactions for a significant portion of the trajectories, especially in the absence of salt. This observation suggests that, from a structural point of view, their proposal is plausible. However, the complex behaviors of charged residues observed in the MD simulations also suggest that the unusual thermodynamic characteristics of IHF-DNA binding likely arise from the interplay between complex dynamics of charged residues both in and beyond the DNA binding site. Moreover, a comparison of MD simulations at different salt concentrations suggests that the strong dependence of the IHF-DNA binding enthalpy on salt concentration may not be due to a significant decrease in the number of stable salt bridges in apo IHF at high salt concentrations. In addition to the Hofmeister effects quantified in more recent studies of IHF-DNA binding, we recommend consideration of the variation of the enthalpy change of salt bridge disruption at different salt concentrations. Finally, the simulation study presented here explicitly highlights the fact that the electrostatic properties of DNA-binding proteins can be rather different in the apo and DNA-bound states, which has important implications for the design of robust methods for predicting DNA binding sites in proteins.
Collapse
Affiliation(s)
- L Ma
- Graduate Program in Biophysics, University of Wisconsin, Madison, 53706, United States
| | | | | | | |
Collapse
|