1
|
IMPROvER: the Integral Membrane Protein Stability Selector. Sci Rep 2020; 10:15165. [PMID: 32938971 PMCID: PMC7495477 DOI: 10.1038/s41598-020-71744-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 08/04/2020] [Indexed: 01/20/2023] Open
Abstract
Identifying stabilising variants of membrane protein targets is often required for structure determination. Our new computational pipeline, the Integral Membrane Protein Stability Selector (IMPROvER) provides a rational approach to variant selection by employing three independent approaches: deep-sequence, model-based and data-driven. In silico tests using known stability data, and in vitro tests using three membrane protein targets with 7, 11 and 16 transmembrane helices provided measures of success. In vitro, individual approaches alone all identified stabilising variants at a rate better than expected by random selection. Low numbers of overlapping predictions between approaches meant a greater success rate was achieved (fourfold better than random) when approaches were combined and selections restricted to the highest ranked sites. The mix of information IMPROvER uses can be extracted for any helical membrane protein. We have developed the first general-purpose tool for selecting stabilising variants of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upalpha$$\end{document}α-helical membrane proteins, increasing efficiency and reducing workload. IMPROvER can be accessed at http://improver.ddns.net/IMPROvER/.
Collapse
|
2
|
Roles of the Hydrophobic Gate and Exit Channel in Vigna radiata Pyrophosphatase Ion Translocation. J Mol Biol 2019; 431:1619-1632. [PMID: 30878480 DOI: 10.1016/j.jmb.2019.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 12/25/2022]
Abstract
Membrane-embedded pyrophosphatase (M-PPase) hydrolyzes pyrophosphate to drive ion (H+ and/or Na+) translocation. We determined crystal structures and functions of Vigna radiata M-PPase (VrH+-PPase), the VrH+-PPase-2Pi complex and mutants at hydrophobic gate (residue L555) and exit channel (residues T228 and E225). Ion pore diameters along the translocation pathway of three VrH+-PPases complexes (Pi-, 2Pi- and imidodiphosphate-bound states) present a unique wave-like profile, with different pore diameters at the hydrophobic gate and exit channel, indicating that the ligands induced pore size alterations. The 2Pi-bound state with the largest pore diameter might mimic the hydrophobic gate open. In mutant structures, ordered waters detected at the hydrophobic gate among VrH+-PPase imply the possibility of solvation, and numerous waters at the exit channel might signify an open channel. A salt-bridge, E225-R562 is at the way out of the exit channel of VrH+-PPase; E225A mutant makes the interaction eliminated and reveals a decreased pumping ability. E225-R562 might act as a latch to regulate proton release. A water wire from the ion gate (R-D-K-E) through the hydrophobic gate and into the exit channel may reflect the path of proton transfer.
Collapse
|
3
|
Strauss J, Wilkinson C, Vidilaseris K, Harborne SPD, Goldman A. A Simple Strategy to Determine the Dependence of Membrane-Bound Pyrophosphatases on K + as a Cofactor. Methods Enzymol 2018; 607:131-156. [PMID: 30149856 DOI: 10.1016/bs.mie.2018.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Membrane-bound pyrophosphatases (mPPases) couple pyrophosphate hydrolysis to H+ and/or Na+ pumping across membranes and are found in all domains of life except for multicellular animals including humans. They are important for development and stress resistance in plants. Furthermore, mPPases play a role in virulence of human pathogens that cause severe diseases such as malaria and African sleeping sickness. Sequence analysis, functional studies, and recently solved crystal structures have contributed to the understanding of the mPPase catalytic cycle. However, several key mechanistic features remain unknown. During evolution, several subgroups of mPPases differing in their pumping specificity and cofactor dependency arose. mPPases are classified into one of five subgroups, usually by sequence analysis. However, classification based solely on sequence has been inaccurate in several instances due to our limited understanding of the molecular mechanism of mPPases. Thus, pumping specificity and cofactor dependency of mPPases require experimental confirmation. Here, we describe a simple method for the determination of K+ dependency in mPPases using a hydrolytic activity assay. By coupling these dependency studies with site-directed mutagenesis, we have begun to build a better understanding of the molecular mechanisms of mPPases. We optimized the assay for thermostable mPPases that are commonly used as model systems in our lab, but the method is equally applicable to mesophilic mPPases with minor modifications.
Collapse
Affiliation(s)
- Jannik Strauss
- Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom
| | - Craig Wilkinson
- Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom
| | - Keni Vidilaseris
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Steven P D Harborne
- Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom.
| | - Adrian Goldman
- Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom; Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Membrane pyrophosphatases from Thermotoga maritima and Vigna radiata suggest a conserved coupling mechanism. Nat Commun 2016; 7:13596. [PMID: 27922000 PMCID: PMC5150537 DOI: 10.1038/ncomms13596] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/18/2016] [Indexed: 11/08/2022] Open
Abstract
Membrane-bound pyrophosphatases (M-PPases), which couple proton/sodium ion transport to pyrophosphate synthesis/hydrolysis, are important in abiotic stress resistance and in the infectivity of protozoan parasites. Here, three M-PPase structures in different catalytic states show that closure of the substrate-binding pocket by helices 5-6 affects helix 13 in the dimer interface and causes helix 12 to move down. This springs a 'molecular mousetrap', repositioning a conserved aspartate and activating the nucleophilic water. Corkscrew motion at helices 6 and 16 rearranges the key ionic gate residues and leads to ion pumping. The pumped ion is above the ion gate in one of the ion-bound structures, but below it in the other. Electrometric measurements show a single-turnover event with a non-hydrolysable inhibitor, supporting our model that ion pumping precedes hydrolysis. We propose a complete catalytic cycle for both proton and sodium-pumping M-PPases, and one that also explains the basis for ion specificity.
Collapse
|
5
|
Regmi KC, Pizzio GA, Gaxiola RA. Structural basis for the reversibility of proton pyrophosphatase. PLANT SIGNALING & BEHAVIOR 2016; 11:e1231294. [PMID: 27611445 PMCID: PMC5257167 DOI: 10.1080/15592324.2016.1231294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Proton Pyrophosphatase (H+-PPase) is an evolutionarily conserved enzyme regarded as a bona fide vacuolar marker. However, H+-PPase also localizes at the plasma membrane of the phloem, where, evidence suggests that it functions as a Pyrophosphate Synthase and participates in phloem loading and photosynthate partitioning. We believe that this pyrophosphate synthesising function of H+-PPase is fundamentally rooted to its molecular structure, and here we postulate, on the basis of published crystal structures of membrane-bound pyrophosphatases, a plausible mechanism of pyrophosphate synthesis.
Collapse
Affiliation(s)
- Kamesh C. Regmi
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Gaston A. Pizzio
- Center for Research in Agricultural Genomics, Cerdanyola del Vallès, Barcelona, Spain
| | - Roberto A. Gaxiola
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- CONTACT Roberto A. Gaxiola
| |
Collapse
|
6
|
Proton/sodium pumping pyrophosphatases: the last of the primary ion pumps. Curr Opin Struct Biol 2014; 27:38-47. [DOI: 10.1016/j.sbi.2014.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/18/2014] [Accepted: 03/25/2014] [Indexed: 11/24/2022]
|
7
|
Asaoka M, Segami S, Maeshima M. Identification of the critical residues for the function of vacuolar H+-pyrophosphatase by mutational analysis based on the 3D structure. ACTA ACUST UNITED AC 2014; 156:333-44. [DOI: 10.1093/jb/mvu046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Venancio JB, Catunda MG, Ogliari J, Rima JAH, Okorokova-Facanha AL, Okorokov LA, Facanha AR. A vacuolar H(+)-pyrophosphatase differential activation and energy coupling integrate the responses of weeds and crops to drought stress. Biochim Biophys Acta Gen Subj 2013; 1840:1987-92. [PMID: 24365406 DOI: 10.1016/j.bbagen.2013.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/04/2013] [Accepted: 12/15/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cyperus rotundus L. is a C4 weed of large vegetative and reproductive vigor endowed with competitive advantages over most crop species mainly under adverse environmental conditions. Vacuole functions are critical for the mechanisms of drought resistance, and here the modulation of the primary system of vacuolar ion transport is investigated during a transient water stress imposed to this weed and to C4 crop species (Zea mays L.). METHODS The vacuolar H(+) pumps, the H(+)-ATPase and H(+)-PPiase, expression, activities and the energy coupling were spectrophotometrically investigated as key elements in the differential drought-resistance mechanisms developed by weeds and crops. RESULTS In C. rotundus tonoplasts, ATP hydrolysis was more sensitive to drought than its coupled H(+) transport, which was in turn at least 3-folds faster than that mediated by the H(+)-PPiase. Its PPi hydrolysis was only slightly affected by severe water deficit, contrasting with the disruption induced in the PPi-dependent H(+)-gradient. This effect was antagonized by plant rehydration as the H(+)-PPiase activity was highly stimulated, reassuming a coupled PPi-driven H(+) pumping. Maize tonoplasts exhibited 2-4 times lower hydrolytic activities than that of C. rotundus, but were able to overactivate specifically PPi-dependent H(+) pumping in response to stress relief, resulting in an enhanced H(+)-pumps coupling efficiency. CONCLUSION These results together with immunoanalysis revealed profiles consistent with pre- and post-translational changes occurring on the tonoplast H(+)-pumps, which differ between weeds and crops upon water deficit. GENERAL SIGNIFICANCE The evidences highlight an unusual modulation of the H(+)-PPiase energy coupling as a key biochemical change related to environmental stresses adaptive capacity of plants.
Collapse
Affiliation(s)
- Josimara Barcelos Venancio
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil; Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | | | - Juarez Ogliari
- Instituto Federal Fluminense, Bom Jesus do Itabapoana, RJ, Brazil
| | - Janaína Aparecida Hottz Rima
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil; Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Anna Lvovna Okorokova-Facanha
- Laboratório de Fisiologia e Bioquímica de Microorganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Lev Alexandrovitich Okorokov
- Laboratório de Fisiologia e Bioquímica de Microorganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Arnoldo Rocha Facanha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil; Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
9
|
Luoto HH, Nordbo E, Baykov AA, Lahti R, Malinen AM. Membrane Na+-pyrophosphatases can transport protons at low sodium concentrations. J Biol Chem 2013; 288:35489-99. [PMID: 24158447 DOI: 10.1074/jbc.m113.510909] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane-bound Na(+)-pyrophosphatase (Na(+)-PPase), working in parallel with the corresponding ATP-energized pumps, catalyzes active Na(+) transport in bacteria and archaea. Each ~75-kDa subunit of homodimeric Na(+)-PPase forms an unusual funnel-like structure with a catalytic site in the cytoplasmic part and a hydrophilic gated channel in the membrane. Here, we show that at subphysiological Na(+) concentrations (<5 mM), the Na(+)-PPases of Chlorobium limicola, four other bacteria, and one archaeon additionally exhibit an H(+)-pumping activity in inverted membrane vesicles prepared from recombinant Escherichia coli strains. H(+) accumulation in vesicles was measured with fluorescent pH indicators. At pH 6.2-8.2, H(+) transport activity was high at 0.1 mM Na(+) but decreased progressively with increasing Na(+) concentrations until virtually disappearing at 5 mM Na(+). In contrast, (22)Na(+) transport activity changed little over a Na(+) concentration range of 0.05-10 mM. Conservative substitutions of gate Glu(242) and nearby Ser(243) and Asn(677) residues reduced the catalytic and transport functions of the enzyme but did not affect the Na(+) dependence of H(+) transport, whereas a Lys(681) substitution abolished H(+) (but not Na(+)) transport. All four substitutions markedly decreased PPase affinity for the activating Na(+) ion. These results are interpreted in terms of a model that assumes the presence of two Na(+)-binding sites in the channel: one associated with the gate and controlling all enzyme activities and the other located at a distance and controlling only H(+) transport activity. The inherent H(+) transport activity of Na(+)-PPase provides a rationale for its easy evolution toward specific H(+) transport.
Collapse
Affiliation(s)
- Heidi H Luoto
- From the Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland and
| | | | | | | | | |
Collapse
|
10
|
Baykov AA, Malinen AM, Luoto HH, Lahti R. Pyrophosphate-fueled Na+ and H+ transport in prokaryotes. Microbiol Mol Biol Rev 2013; 77:267-76. [PMID: 23699258 PMCID: PMC3668671 DOI: 10.1128/mmbr.00003-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In its early history, life appeared to depend on pyrophosphate rather than ATP as the source of energy. Ancient membrane pyrophosphatases that couple pyrophosphate hydrolysis to active H(+) transport across biological membranes (H(+)-pyrophosphatases) have long been known in prokaryotes, plants, and protists. Recent studies have identified two evolutionarily related and widespread prokaryotic relics that can pump Na(+) (Na(+)-pyrophosphatase) or both Na(+) and H(+) (Na(+),H(+)-pyrophosphatase). Both these transporters require Na(+) for pyrophosphate hydrolysis and are further activated by K(+). The determination of the three-dimensional structures of H(+)- and Na(+)-pyrophosphatases has been another recent breakthrough in the studies of these cation pumps. Structural and functional studies have highlighted the major determinants of the cation specificities of membrane pyrophosphatases and their potential use in constructing transgenic stress-resistant organisms.
Collapse
Affiliation(s)
- Alexander A. Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anssi M. Malinen
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Heidi H. Luoto
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Reijo Lahti
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| |
Collapse
|
11
|
Huang YT, Liu TH, Lin SM, Chen YW, Pan YJ, Lee CH, Sun YJ, Tseng FG, Pan RL. Squeezing at entrance of proton transport pathway in proton-translocating pyrophosphatase upon substrate binding. J Biol Chem 2013; 288:19312-20. [PMID: 23720778 DOI: 10.1074/jbc.m113.469353] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homodimeric proton-translocating pyrophosphatase (H(+)-PPase; EC 3.6.1.1) is indispensable for many organisms in maintaining organellar pH homeostasis. This unique proton pump couples the hydrolysis of PPi to proton translocation across the membrane. H(+)-PPase consists of 14-16 relatively hydrophobic transmembrane domains presumably for proton translocation and hydrophilic loops primarily embedding a catalytic site. Several highly conserved polar residues located at or near the entrance of the transport pathway in H(+)-PPase are essential for proton pumping activity. In this investigation single molecule FRET was employed to dissect the action at the pathway entrance in homodimeric Clostridium tetani H(+)-PPase upon ligand binding. The presence of the substrate analog, imidodiphosphate mediated two sites at the pathway entrance moving toward each other. Moreover, single molecule FRET analyses after the mutation at the first proton-carrying residue (Arg-169) demonstrated that conformational changes at the entrance are conceivably essential for the initial step of H(+)-PPase proton translocation. A working model is accordingly proposed to illustrate the squeeze at the entrance of the transport pathway in H(+)-PPase upon substrate binding.
Collapse
Affiliation(s)
- Yun-Tzu Huang
- Department of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsin Chu 30013, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kellosalo J, Kajander T, Kogan K, Pokharel K, Goldman A. The structure and catalytic cycle of a sodium-pumping pyrophosphatase. Science 2012; 337:473-6. [PMID: 22837527 DOI: 10.1126/science.1222505] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Membrane-integral pyrophosphatases (M-PPases) are crucial for the survival of plants, bacteria, and protozoan parasites. They couple pyrophosphate hydrolysis or synthesis to Na(+) or H(+) pumping. The 2.6-angstrom structure of Thermotoga maritima M-PPase in the resting state reveals a previously unknown solution for ion pumping. The hydrolytic center, 20 angstroms above the membrane, is coupled to the gate formed by the conserved Asp(243), Glu(246), and Lys(707) by an unusual "coupling funnel" of six α helices. Comparison with our 4.0-angstrom resolution structure of the product complex suggests that helix 12 slides down upon substrate binding to open the gate by a simple binding-change mechanism. Below the gate, four helices form the exit channel. Superimposing helices 3 to 6, 9 to 12, and 13 to 16 suggests that M-PPases arose through gene triplication.
Collapse
Affiliation(s)
- Juho Kellosalo
- Structural Biology and Biophysics Program, Institute of Biotechnology, Post Office Box 65, University of Helsinki, FIN-00014, Finland
| | | | | | | | | |
Collapse
|
13
|
Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature 2012; 484:399-403. [PMID: 22456709 DOI: 10.1038/nature10963] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 02/17/2012] [Indexed: 11/08/2022]
Abstract
H(+)-translocating pyrophosphatases (H(+)-PPases) are active proton transporters that establish a proton gradient across the endomembrane by means of pyrophosphate (PP(i)) hydrolysis. H(+)-PPases are found primarily as homodimers in the vacuolar membrane of plants and the plasma membrane of several protozoa and prokaryotes. The three-dimensional structure and detailed mechanisms underlying the enzymatic and proton translocation reactions of H(+)-PPases are unclear. Here we report the crystal structure of a Vigna radiata H(+)-PPase (VrH(+)-PPase) in complex with a non-hydrolysable substrate analogue, imidodiphosphate (IDP), at 2.35 Å resolution. Each VrH(+)-PPase subunit consists of an integral membrane domain formed by 16 transmembrane helices. IDP is bound in the cytosolic region of each subunit and trapped by numerous charged residues and five Mg(2+) ions. A previously undescribed proton translocation pathway is formed by six core transmembrane helices. Proton pumping can be initialized by PP(i) hydrolysis, and H(+) is then transported into the vacuolar lumen through a pathway consisting of Arg 242, Asp 294, Lys 742 and Glu 301. We propose a working model of the mechanism for the coupling between proton pumping and PP(i) hydrolysis by H(+)-PPases.
Collapse
|
14
|
Segami S, Nakanishi Y, Sato MH, Maeshima M. Quantification, organ-specific accumulation and intracellular localization of type II H(+)-pyrophosphatase in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2010; 51:1350-60. [PMID: 20605924 DOI: 10.1093/pcp/pcq096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Most plants have two types of H(+)-translocating inorganic pyrophosphatases (H(+)-PPases), I and II, which differ in primary sequence and K(+) dependence of enzyme function. Arabidopsis thaliana has three genes for H(+)-PPases: one for type I and two for type II. The type I H(+)-PPase requires K(+) for maximal enzyme activity and functions together with H(+)-ATPase in vacuolar membranes. The physiological role of the type II enzyme, which does not require K(+), is not clear. We focused on the type II enzymes (AtVHP2;1 and AtVHP2;2) of A. thaliana. Total amounts of AtVHP2s were quantified immunochemically using a specific antibody and determined to be 22 and 12 ng mg(-1) of total protein in the microsomal fractions of suspension-cultured cells and young roots, respectively, and the values are approximately 0.1 and 0.2%, respectively, of the vacuolar H(+)-PPase. In plants, AtVHP2s were detected immunochemically in all tissues except mature leaves, and were abundant in roots and flowers. The intracellular localization of AtVHP2s in suspension cells was determined by sucrose density gradient centrifugation and immunoblotting. Comparison with a number of marker proteins revealed localization in the Golgi apparatus and the trans-Golgi network. These results suggest that the type II H(+)-PPase functions as a proton pump in the Golgi and related vesicles in young tissues, although its content is very low compared with the type I enzyme.
Collapse
Affiliation(s)
- Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | |
Collapse
|
15
|
Hydrothermal focusing of chemical and chemiosmotic energy, supported by delivery of catalytic Fe, Ni, Mo/W, Co, S and Se, forced life to emerge. J Mol Evol 2009; 69:481-96. [PMID: 19911220 DOI: 10.1007/s00239-009-9289-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
Abstract
Energised by the protonmotive force and with the intervention of inorganic catalysts, at base Life reacts hydrogen from a variety of sources with atmospheric carbon dioxide. It seems inescapable that life emerged to fulfil the same role (i.e., to hydrogenate CO(2)) on the early Earth, thus outcompeting the slow geochemical reduction to methane. Life would have done so where hydrothermal hydrogen interfaced a carbonic ocean through inorganic precipitate membranes. Thus we argue that the first carbon-fixing reaction was the molybdenum-dependent, proton-translocating formate hydrogenlyase system described by Andrews et al. (Microbiology 143:3633-3647, 1997), but driven in reverse. Alkaline on the inside and acidic and carbonic on the outside - a submarine chambered hydrothermal mound built above an alkaline hydrothermal spring of long duration - offered just the conditions for such a reverse reaction imposed by the ambient protonmotive force. Assisted by the same inorganic catalysts and potential energy stores that were to evolve into the active centres of enzymes supplied variously from ocean or hydrothermal system, the formate reaction enabled the rest of the acetyl coenzyme-A pathway to be followed exergonically, first to acetate, then separately to methane. Thus the two prokaryotic domains both emerged within the hydrothermal mound-the acetogens were the forerunners of the Bacteria and the methanogens were the forerunners of the Archaea.
Collapse
|
16
|
Hirono M, Maeshima M. Functional enhancement by single-residue substitution of Streptomyces coelicolor A3(2) H+-translocating pyrophosphatase. J Biochem 2009; 146:617-21. [PMID: 19628678 DOI: 10.1093/jb/mvp114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
H(+)-translocating pyrophosphatase converts energy from hydrolysis of pyrophosphate to active H(+) transport across biomembranes. Mutational analysis of Streptomyces coelicolor A3(2) enzyme revealed that amino acid substitution of Phe-388 and Ala-514 altered the enzyme activity. Both residues are located at the interface between the transmembrane domains and cytosolic loops, in which the catalytic domain exists. Systematic amino acid substitution was carried out using the Escherichia coli heterologous expression system. Two of the 38 mutant enzymes, F388Y and A514S, showed a high ratio of H(+)-pump to substrate hydrolysis without decrease in the substrate hydrolysis activity, indicating high energy-coupling efficiency.
Collapse
Affiliation(s)
- Megumi Hirono
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | | |
Collapse
|
17
|
Malinen AM, Baykov AA, Lahti R. Mutual effects of cationic ligands and substrate on activity of the Na+-transporting pyrophosphatase of Methanosarcina mazei. Biochemistry 2009; 47:13447-54. [PMID: 19053266 DOI: 10.1021/bi801803b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The PP(i)-driven sodium pump (membrane pyrophosphatase) of Methanosarcina mazei (Mm-PPase) absolutely requires Na(+) and Mg(2+) for activity and additionally employs K(+) as a modulating cation. Here we explore relationships among Na(+), K(+), Mg(2+), and PP(i) binding sites by analyzing the dependency of the Mm-PPase PP(i)-hydrolyzing function on these ligands and protection offered by the ligands against Mm-PPase inactivation by trypsin and the SH-reagent mersalyl. Steady-state kinetic analysis of PP(i) hydrolysis indicated that catalysis involves random order binding of two Mg(2+) ions and two Na(+) ions, and the binding was almost independent of substrate (Mg(2)PP(i) complex) attachment. Each pair of metal ions, however, binds in a positively cooperative (or ordered) manner. The apparent cooperativity is lost only when Na(+) binds to preformed enzyme-Mg(2+)-substrate complex. The binding of K(+) increases, by a factor of 2.5, the catalytic constant, the Michaelis constant, and the Mg(2+) binding affinity, and these effects may result from K(+) binding to either one of the Na(+) sites or to a separate site. The effects of ligands on Mm-PPase inactivation by mersalyl and trypsin are highly correlated and are strongly indicative of ligand-induced enzyme conformational changes. Importantly, Na(+) binding induces a conformational change only when completing formation of the catalytically competent enzyme-substrate complex or a similar complex with a diphosphonate substrate analog. These data indicate considerable flexibility in Mm-PPase structure and provide evidence for its cyclic change in the course of catalytic turnover.
Collapse
Affiliation(s)
- Anssi M Malinen
- Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | | | |
Collapse
|
18
|
Hirono M, Nakanishi Y, Maeshima M. Identification of amino acid residues participating in the energy coupling and proton transport of Streptomyces coelicolor A3(2) H+-pyrophosphatase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1401-11. [DOI: 10.1016/j.bbabio.2007.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Revised: 09/05/2007] [Accepted: 09/20/2007] [Indexed: 11/30/2022]
|