1
|
Braasch-Turi MM, Koehn JT, Crans DC. Chemistry of Lipoquinones: Properties, Synthesis, and Membrane Location of Ubiquinones, Plastoquinones, and Menaquinones. Int J Mol Sci 2022; 23:12856. [PMID: 36361645 PMCID: PMC9656164 DOI: 10.3390/ijms232112856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Lipoquinones are the topic of this review and are a class of hydrophobic lipid molecules with key biological functions that are linked to their structure, properties, and location within a biological membrane. Ubiquinones, plastoquinones, and menaquinones vary regarding their quinone headgroup, isoprenoid sidechain, properties, and biological functions, including the shuttling of electrons between membrane-bound protein complexes within the electron transport chain. Lipoquinones are highly hydrophobic molecules that are soluble in organic solvents and insoluble in aqueous solution, causing obstacles in water-based assays that measure their chemical properties, enzyme activities and effects on cell growth. Little is known about the location and ultimately movement of lipoquinones in the membrane, and these properties are topics described in this review. Computational studies are particularly abundant in the recent years in this area, and there is far less experimental evidence to verify the often conflicting interpretations and conclusions that result from computational studies of very different membrane model systems. Some recent experimental studies have described using truncated lipoquinone derivatives, such as ubiquinone-2 (UQ-2) and menaquinone-2 (MK-2), to investigate their conformation, their location in the membrane, and their biological function. Truncated lipoquinone derivatives are soluble in water-based assays, and hence can serve as excellent analogs for study even though they are more mobile in the membrane than the longer chain counterparts. In this review, we will discuss the properties, location in the membrane, and syntheses of three main classes of lipoquinones including truncated derivatives. Our goal is to highlight the importance of bridging the gap between experimental and computational methods and to incorporate properties-focused considerations when proposing future studies relating to the function of lipoquinones in membranes.
Collapse
Affiliation(s)
| | - Jordan T. Koehn
- Chemistry Department, Colorado State University, Fort Collins, CO 80523, USA
| | - Debbie C. Crans
- Chemistry Department, Colorado State University, Fort Collins, CO 80523, USA
- Cell & Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
2
|
Prince RC, Dutton PL, Gunner MR. The aprotic electrochemistry of quinones. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148558. [PMID: 35413248 DOI: 10.1016/j.bbabio.2022.148558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/26/2022] [Accepted: 04/05/2022] [Indexed: 05/09/2023]
Abstract
Quinones play important roles in biological electron transfer reactions in almost all organisms, with specific roles in many physiological processes and chemotherapy. Quinones participate in two-electron, two-proton reactions in aqueous solution at equilibrium near neutral pH, but protons often lag behind the electron transfers. The relevant reactions in proteins are often sequential one electron redox processes without involving protons. Here we report the aprotic electrochemistry of the two half-couples, Q/Q.- and Q.-/Q=, of 11 parent quinones and 118 substituted 1,4-benzoquinones, 91 1,4-naphthoquinones, and 107 9,10-anthraquinones. The measured redox potentials are fit quite well with the Hammett para sigma (σpara) parameter. Occasional exceptions can involve important groups, such as methoxy substituents in ubiquinone and hydroxy substituents in therapeutics. These can generally be explained by reasonable conjectures involving steric clashes and internal hydrogen bonds. We also provide data for 25 other quinones, 2 double quinones and 15 non-quinones, all measured under similar conditions.
Collapse
Affiliation(s)
| | - P Leslie Dutton
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 10104, USA
| | - M R Gunner
- Physics Department City College of New York in the City University of New York, NY 10031, USA.
| |
Collapse
|
3
|
Quinone transport in the closed light-harvesting 1 reaction center complex from the thermophilic purple bacterium Thermochromatium tepidum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148307. [PMID: 32926863 DOI: 10.1016/j.bbabio.2020.148307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 11/22/2022]
Abstract
Redox-active quinones play essential roles in efficient light energy conversion in type-II reaction centers of purple phototrophic bacteria. In the light-harvesting 1 reaction center (LH1-RC) complex of purple bacteria, QB is converted to QBH2 upon light-induced reduction and QBH2 is transported to the quinone pool in the membrane through the LH1 ring. In the purple bacterium Rhodobacter sphaeroides, the C-shaped LH1 ring contains a gap for quinone transport. In contrast, the thermophilic purple bacterium Thermochromatium (Tch.) tepidum has a closed O-shaped LH1 ring that lacks a gap, and hence the mechanism of photosynthetic quinone transport is unclear. Here we detected light-induced Fourier transform infrared (FTIR) signals responsible for changes of QB and its binding site that accompany photosynthetic quinone reduction in Tch. tepidum and characterized QB and QBH2 marker bands based on their 15N- and 13C-isotopic shifts. Quinone exchanges were monitored using reconstituted photosynthetic membranes comprised of solubilized photosynthetic proteins, membrane lipids, and exogenous ubiquinone (UQ) molecules. In combination with 13C-labeling of the LH1-RC and replacement of native UQ8 by ubiquinones of different tail lengths, we demonstrated that quinone exchanges occur efficiently within the hydrophobic environment of the lipid membrane and depend on the side chain length of UQ. These results strongly indicate that unlike the process in Rba. sphaeroides, quinone transport in Tch. tepidum occurs through the size-restricted hydrophobic channels in the closed LH1 ring and are consistent with structural studies that have revealed narrow hydrophobic channels in the Tch. tepidum LH1 transmembrane region.
Collapse
|
4
|
Jun D, Richardson-Sanchez T, Mahey A, Murphy MEP, Fernandez RC, Beatty JT. Introduction of the Menaquinone Biosynthetic Pathway into Rhodobacter sphaeroides and de Novo Synthesis of Menaquinone for Incorporation into Heterologously Expressed Integral Membrane Proteins. ACS Synth Biol 2020; 9:1190-1200. [PMID: 32271543 DOI: 10.1021/acssynbio.0c00066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Quinones are redox-active molecules that transport electrons and protons in organelles and cell membranes during respiration and photosynthesis. In addition to the fundamental importance of these processes in supporting life, there has been considerable interest in exploiting their mechanisms for diverse applications ranging from medical advances to innovative biotechnologies. Such applications include novel treatments to target pathogenic bacterial infections and fabricating biohybrid solar cells as an alternative renewable energy source. Ubiquinone (UQ) is the predominant charge-transfer mediator in both respiration and photosynthesis. Other quinones, such as menaquinone (MK), are additional or alternative redox mediators, for example in bacterial photosynthesis of species such as Thermochromatium tepidum and Chloroflexus aurantiacus. Rhodobacter sphaeroides has been used extensively to study electron transfer processes, and recently as a platform to produce integral membrane proteins from other species. To expand the diversity of redox mediators in R. sphaeroides, nine Escherichia coli genes encoding the synthesis of MK from chorismate and polyprenyl diphosphate were assembled into a synthetic operon in a newly designed expression plasmid. We show that the menFDHBCE, menI, menA, and ubiE genes are sufficient for MK synthesis when expressed in R. sphaeroides cells, on the basis of high performance liquid chromatography and mass spectrometry. The T. tepidum and C. aurantiacus photosynthetic reaction centers produced in R. sphaeroides were found to contain MK. We also measured in vitro charge recombination kinetics of the T. tepidum reaction center to demonstrate that the MK is redox-active and incorporated into the QA pocket of this heterologously expressed reaction center.
Collapse
Affiliation(s)
- Daniel Jun
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Tomas Richardson-Sanchez
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Amita Mahey
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Michael E. P. Murphy
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Rachel C. Fernandez
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - J. Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
5
|
Khamees HA, Revanna BN, Madegowda M, Sebastian J, Haruvegowda DB, Kumar S. Structural, Quantum Chemical and Spectroscopic Investigations on Photophysical Properties of Fluorescent Saccharide Sensor: Theoretical and Experimental Studies. ChemistrySelect 2020. [DOI: 10.1002/slct.202000966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hussien A. Khamees
- Department of Studies in PhysicsManasagangotriUniversity of Mysore Mysuru 570006 Karnataka India
| | - Bhavya N. Revanna
- Department of Studies in PhysicsManasagangotriUniversity of Mysore Mysuru 570006 Karnataka India
| | - Mahendra Madegowda
- Department of Studies in PhysicsManasagangotriUniversity of Mysore Mysuru 570006 Karnataka India
| | - Jeyaseelan Sebastian
- Department of PhysicsSt. Philomena's College (Autonomous) Mysore 570015 Karnataka India
| | - Doreswamy B. Haruvegowda
- Department of Studies in PhysicsSJB Institute of Technology, Kengeri Bengaluru 560060 Karnataka India
| | - Shamantha Kumar
- Department of Studies in PhysicsSJB Institute of Technology, Kengeri Bengaluru 560060 Karnataka India
| |
Collapse
|
6
|
Ding Z, Sun C, Yi SM, Gennis RB, Dikanov SA. The Ubiquinol Binding Site of Cytochrome bo3 from Escherichia coli Accommodates Menaquinone and Stabilizes a Functional Menasemiquinone. Biochemistry 2019; 58:4559-4569. [PMID: 31644263 DOI: 10.1021/acs.biochem.9b00750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome bo3, one of three terminal oxygen reductases in the aerobic respiratory chain of Escherichia coli, has been well characterized as a ubiquinol oxidase. The ability of cytochrome bo3 to catalyze the two-electron oxidation of ubiquinol-8 requires the enzyme to stabilize the one-electron oxidized ubisemiquinone species that is a transient intermediate in the reaction. Cytochrome bo3 has been shown recently to also utilize demethylmenaquinol-8 as a substrate that, along with menaquinol-8, replaces ubiquinol-8 when E. coli is grown under microaerobic or anaerobic conditions. In this work, we show that its steady-state turnover with 2,3-dimethyl-1,4-naphthoquinol, a water-soluble menaquinol analogue, is just as efficient as with ubiquinol-1. Using pulsed electron paramagnetic resonance spectroscopy, we demonstrate that the same residues in cytochrome bo3 that stabilize the semiquinone state of ubiquinone also stabilize the semiquinone state of menaquinone, with the hydrogen bond strengths and the distribution of unpaired spin density accommodated for the different substrate. Catalytic function with menaquinol is more tolerant of mutations at the active site than with ubiquinol. A mutation of one of the stabilizing residues (R71H in subunit I) that eliminates the ubiquinol oxidase activity of cytochrome bo3 does not abolish activity with soluble menaquinol analogues.
Collapse
Affiliation(s)
- Ziqiao Ding
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Chang Sun
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Sophia M Yi
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Robert B Gennis
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Center for Biophysics and Computational Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Sergei A Dikanov
- Department of Veterinary Clinical Medicine , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
7
|
Schulz CE, Dutta AK, Izsák R, Pantazis DA. Systematic High-Accuracy Prediction of Electron Affinities for Biological Quinones. J Comput Chem 2018; 39:2439-2451. [PMID: 30281169 DOI: 10.1002/jcc.25570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 11/07/2022]
Abstract
Quinones play vital roles as electron carriers in fundamental biological processes; therefore, the ability to accurately predict their electron affinities is crucial for understanding their properties and function. The increasing availability of cost-effective implementations of correlated wave function methods for both closed-shell and open-shell systems offers an alternative to density functional theory approaches that have traditionally dominated the field despite their shortcomings. Here, we define a benchmark set of quinones with experimentally available electron affinities and evaluate a range of electronic structure methods, setting a target accuracy of 0.1 eV. Among wave function methods, we test various implementations of coupled cluster (CC) theory, including local pair natural orbital (LPNO) approaches to canonical and parameterized CCSD, the domain-based DLPNO approximation, and the equations-of-motion approach for electron affinities, EA-EOM-CCSD. In addition, several variants of canonical, spin-component-scaled, orbital-optimized, and explicitly correlated (F12) Møller-Plesset perturbation theory are benchmarked. Achieving systematically the target level of accuracy is challenging and a composite scheme that combines canonical CCSD(T) with large basis set LPNO-based extrapolation of correlation energy proves to be the most accurate approach. Methods that offer comparable performance are the parameterized LPNO-pCCSD, the DLPNO-CCSD(T0 ), and the orbital optimized OO-SCS-MP2. Among DFT methods, viable practical alternatives are only the M06 and the double hybrids, but the latter should be employed with caution because of significant basis set sensitivity. A highly accurate yet cost-effective DLPNO-based coupled cluster approach is used to investigate the methoxy conformation effect on the electron affinities of ubiquinones found in photosynthetic bacterial reaction centers. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christine E Schulz
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Achintya Kumar Dutta
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Róbert Izsák
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
8
|
Sun C, Taguchi AT, Beal NJ, O'Malley PJ, Dikanov SA, Wraight CA. Regulation of the primary quinone binding conformation by the H subunit in reaction centers from Rhodobacter sphaeroides. J Phys Chem Lett 2015; 6:4541-4546. [PMID: 26517602 DOI: 10.1021/acs.jpclett.5b01851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Unlike photosystem II (PSII) in higher plants, bacterial photosynthetic reaction centers (bRCs) from Proteobacteria have an additional peripheral membrane subunit "H". The H subunit is necessary for photosynthetic growth, but can be removed chemically in vitro. The remaining LM dimer retains its activity to perform light-induced charge separation. Here we investigate the influence of the H subunit on interactions between the primary semiquinone and the protein matrix, using a combination of site-specific isotope labeling, pulsed electron paramagnetic resonance (EPR), and density functional theory (DFT) calculations. The data reveal substantially weaker binding interactions between the primary semiquinone and the LM dimer than observed for the intact bRC; the amount of electron spin transferred to the nitrogen hydrogen bond donors is significantly reduced, the methoxy groups are more free to rotate, and the spectra indicate a heterogeneous mixture of bound semiquinone states. These results are consistent with a loosening of the primary quinone binding pocket in the absence of the H subunit.
Collapse
Affiliation(s)
- Chang Sun
- Department of Biochemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Alexander T Taguchi
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Nathan J Beal
- School of Chemistry, University of Manchester , Manchester M13 9PL, U.K
| | | | - Sergei A Dikanov
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Colin A Wraight
- Department of Biochemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Anuratha M, Jawahar A, Umadevi M, Sathe VG, Vanelle P, Terme T, Khoumeri O, Meenakumari V, Milton Franklin Benial A. SERS investigations on orientation of 2-bromo-3-methyl-1,4-dimethoxy-9,10-anthraquinone on silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 149:558-563. [PMID: 25983057 DOI: 10.1016/j.saa.2015.04.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/26/2015] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
Silver nanoparticles (Ag NPs) were prepared by solution combustion method with urea as fuel. Silver nanoparticles were characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Surface-enhanced Raman scattering (SERS) of 2-bromo-3-methyl-1,4-dimethoxy-9,10-anthraquinone (BMDMAQ) adsorbed on silver nanoparticles was investigated. The orientation of BMDMAQ on silver nanoparticles was inferred from nRs and SERS spectral features. Density functional theory (DFT) calculation was also performed to study the theoretical performance. The observed spectral features such as the high intensity of C-H out-of-plane bending mode and ring C-C stretching mode revealed that BMDMAQ adsorbed on silver surface through 'stand-on' orientation. Anthraquinone (AQ) derivatives have wide biomedical application which includes laxatives, antimalarials and antineoplastics used in the treatment of cancer. This present study would help to identify the interaction of drug molecules with DNA.
Collapse
Affiliation(s)
- M Anuratha
- Department of Chemistry, Thamirabharani Engineering College, Tirunelveli, Tamil Nadu, India
| | - A Jawahar
- Department of Chemistry, N.M.S.S.V.N. College, Madurai 625 019, Tamil Nadu, India
| | - M Umadevi
- Department of Physics, Mother Teresa Women's University, Kodaikanal 624101, Tamil Nadu, India
| | - V G Sathe
- UGC-DAE-CSR, University Campus, Khandwa Road, Indore 452017, India
| | - P Vanelle
- Laboratory of Radical Pharmaco-Chemistry, UMR CNRS 6264, University of the Méditerranée, Faculty of Pharmacy, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - T Terme
- Laboratory of Radical Pharmaco-Chemistry, UMR CNRS 6264, University of the Méditerranée, Faculty of Pharmacy, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - O Khoumeri
- Laboratory of Radical Pharmaco-Chemistry, UMR CNRS 6264, University of the Méditerranée, Faculty of Pharmacy, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - V Meenakumari
- Department of Physics, N.M.S.S.V.N. College, Madurai 625 019, Tamil Nadu, India
| | | |
Collapse
|
10
|
Vermaas JV, Taguchi AT, Dikanov SA, Wraight CA, Tajkhorshid E. Redox potential tuning through differential quinone binding in the photosynthetic reaction center of Rhodobacter sphaeroides. Biochemistry 2015; 54:2104-16. [PMID: 25734689 DOI: 10.1021/acs.biochem.5b00033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ubiquinone forms an integral part of the electron transport chain in cellular respiration and photosynthesis across a vast number of organisms. Prior experimental results have shown that the photosynthetic reaction center (RC) from Rhodobacter sphaeroides is only fully functional with a limited set of methoxy-bearing quinones, suggesting that specific interactions with this substituent are required to drive electron transport and the formation of quinol. The nature of these interactions has yet to be determined. Through parameterization of a CHARMM-compatible quinone force field and subsequent molecular dynamics simulations of the quinone-bound RC, we have investigated and characterized the interactions of the protein with the quinones in the Q(A) and Q(B) sites using both equilibrium simulation and thermodynamic integration. In particular, we identify a specific interaction between the 2-methoxy group of ubiquinone in the Q(B) site and the amide nitrogen of GlyL225 that we implicate in locking the orientation of the 2-methoxy group, thereby tuning the redox potential difference between the quinones occupying the Q(A) and Q(B) sites. Disruption of this interaction leads to weaker binding in a ubiquinone analogue that lacks a 2-methoxy group, a finding supported by reverse electron transfer electron paramagnetic resonance experiments of the Q(A)⁻Q(B)⁻ biradical and competitive binding assays.
Collapse
Affiliation(s)
- Josh V Vermaas
- †Center for Biophysics and Computational Biology, ‡Department of Biochemistry, §Beckman Institute, and ∥Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Alexander T Taguchi
- †Center for Biophysics and Computational Biology, ‡Department of Biochemistry, §Beckman Institute, and ∥Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sergei A Dikanov
- †Center for Biophysics and Computational Biology, ‡Department of Biochemistry, §Beckman Institute, and ∥Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Colin A Wraight
- †Center for Biophysics and Computational Biology, ‡Department of Biochemistry, §Beckman Institute, and ∥Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- †Center for Biophysics and Computational Biology, ‡Department of Biochemistry, §Beckman Institute, and ∥Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
de Almeida WB, Taguchi A, Dikanov SA, Wraight CA, O’Malley PJ. The 2-Methoxy Group Orientation Regulates the Redox Potential Difference between the Primary (Q A) and Secondary (Q B) Quinones of Type II Bacterial Photosynthetic Reaction Centers. J Phys Chem Lett 2014; 5:2506-2509. [PMID: 25126386 PMCID: PMC4126703 DOI: 10.1021/jz500967d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/24/2014] [Indexed: 05/24/2023]
Abstract
Recent studies have shown that only quinones with a 2-methoxy group can act simultaneously as the primary (QA) and secondary (QB) electron acceptors in photosynthetic reaction centers from purple bacteria such as Rb. sphaeroides. 13C HYSCORE measurements of the 2-methoxy group in the semiquinone states, SQA and SQB, were compared with DFT calculations of the 13C hyperfine couplings as a function of the 2-methoxy dihedral angle. X-ray structure comparisons support 2-methoxy dihedral angle assignments corresponding to a redox potential gap (ΔEm) between QA and QB of 175-193 mV. A model having a methyl group substituted for the 2-methoxy group exhibits no electron affinity difference. This is consistent with the failure of a 2-methyl ubiquinone analogue to function as QB in mutant reaction centers with a ΔEm of ∼160-195 mV. The conclusion reached is that the 2-methoxy group is the principal determinant of electron transfer from QA to QB in type II photosynthetic reaction centers with ubiquinone serving as both acceptor quinones.
Collapse
Affiliation(s)
- Wagner B. de Almeida
- LQC-MM, Departamento
de Química, ICEx, Universidade
Federal de Minas Gerais (UFMG), Campus
Pampulh, Belo Horizonte, MG 31.910-270, Brazil
| | - Alexander
T. Taguchi
- Center for Biophysics and Computational Biology, Department of Veterinary Clinical
Medicine, and Department of BiochemistryUniversity of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sergei A. Dikanov
- Center for Biophysics and Computational Biology, Department of Veterinary Clinical
Medicine, and Department of BiochemistryUniversity of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Colin A. Wraight
- Center for Biophysics and Computational Biology, Department of Veterinary Clinical
Medicine, and Department of BiochemistryUniversity of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Patrick J. O’Malley
- School
of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
12
|
Zhang X, Gunner MR. Affinity and activity of non-native quinones at the Q(B) site of bacterial photosynthetic reaction centers. PHOTOSYNTHESIS RESEARCH 2014; 120:181-96. [PMID: 23715773 PMCID: PMC4442677 DOI: 10.1007/s11120-013-9850-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 05/08/2013] [Indexed: 05/11/2023]
Abstract
Purple, photosynthetic reaction centers from Rhodobacter sphaeroides bacteria use ubiquinone (UQ10) as both primary (Q(A)) and secondary (Q(B)) electron acceptors. Many quinones reconstitute Q(A) function, while a few will act as Q(B). Nine quinones were tested for their ability to bind and reconstitute Q(A) and Q(B) functions. Only ubiquinone (UQ) reconstitutes both functions in the same protein. The affinities of the non-native quinones for the Q(B) site were determined by a competitive inhibition assay. The affinities of benzoquinones, naphthoquinone (NQ), and 2-methyl-NQ for the Q(B) site are 7 ± 3 times weaker than that at Q(A) site. However, di-ortho-substituted NQs and anthraquinone bind tightly to the Q(A) site (K d ≤ 200 nM), and ≥1,000 times more weakly to the Q(B) site, perhaps setting a limit on the size of the site. With a low-potential electron donor, 2-methyl, 3-dimethylamino-1,4-NQ, (Me-diMeAm-NQ) at Q(A), Q(B) reduction is 260 meV, more favorable than with UQ as Q(A). Electron transfer from Me-diMeAm-NQ at the Q(A) site to NQ at the Q(B) site can be detected. In the Q(B) site, the NQ semiquinone is estimated to be ≈60-100 meV higher in energy than the UQ semiquinone, while in the Q(A) site, the semiquinone energy level is similar or lower with NQ than with UQ. Thus, the NQ semiquinone is more stable in the Q(A) than in the Q(B) site. In contrast, the native UQ semiquinone is ≈60 meV lower in energy in the Q(B) than in the Q(A) site, stabilizing forward electron transfer from Q(A) to Q(B).
Collapse
Affiliation(s)
| | - M. R. Gunner
- To whom correspondence should be addressed. Telephone: 212-650-5557. Fax: 212-650-6940
| |
Collapse
|
13
|
Ganesh K, El-Mossalamy EH, Satheshkumar A, Balraj C, Elango KP. Molecular complexes of l-phenylalanine with substituted 1,4-benzoquinones in aqueous medium: spectral and theoretical investigations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 116:301-310. [PMID: 23973571 DOI: 10.1016/j.saa.2013.07.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/29/2013] [Accepted: 07/16/2013] [Indexed: 06/02/2023]
Abstract
Various spectral techniques such as UV-Vis, FT-IR, and fluorescence have been employed to investigate the charge transfer interaction of L-phenylalanine (LPA) with substituted 1,4-benzoquinones (MQ(1-4)). Kinetic and thermodynamic properties of the complexes were determined in aqueous medium at physiological condition (pH=7). The interaction of MQ(1-4) with L-phenylalanine (LPA) was found to proceed through the formation of donor-acceptor complex, yielding a radical anion. The stoichiometry of the complexes was determined by Jobs continuous variation method and was found to be 1:1 in all the cases. Fluorescence quenching studies showed that the interaction between the donor and the acceptors is spontaneous. The results indicated that the progressive replacement of chlorine atom (-I effect) by methoxy group (+M effect) in the quinone decreased the electron acceptor property of the quinone. The order of the experimentally measured association constant of these complexes was well supported by DFT/B3LYP calculations.
Collapse
Affiliation(s)
- K Ganesh
- Department of Chemistry, Gandhigram Rural Institute (Deemed University), Gandhigram 624 302, India
| | | | | | | | | |
Collapse
|
14
|
Taguchi AT, Mattis AJ, O'Malley PJ, Dikanov SA, Wraight CA. Tuning cofactor redox potentials: the 2-methoxy dihedral angle generates a redox potential difference of >160 mV between the primary (Q(A)) and secondary (Q(B)) quinones of the bacterial photosynthetic reaction center. Biochemistry 2013; 52:7164-6. [PMID: 24079813 DOI: 10.1021/bi4011896] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Only quinones with a 2-methoxy group can act simultaneously as the primary (QA) and secondary (QB) electron acceptors in photosynthetic reaction centers from Rhodobacter sphaeroides. (13)C hyperfine sublevel correlation measurements of the 2-methoxy in the semiquinone states, SQA and SQB, were compared with quantum mechanics calculations of the (13)C couplings as a function of the dihedral angle. X-ray structures support dihedral angle assignments corresponding to a redox potential gap (ΔEm) between QA and QB of ~180 mV. This is consistent with the failure of a ubiquinone analogue lacking the 2-methoxy to function as QB in mutant reaction centers with a ΔEm of ≈160-195 mV.
Collapse
Affiliation(s)
- Alexander T Taguchi
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | | | |
Collapse
|
15
|
Gunner MR, Amin M, Zhu X, Lu J. Molecular mechanisms for generating transmembrane proton gradients. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:892-913. [PMID: 23507617 PMCID: PMC3714358 DOI: 10.1016/j.bbabio.2013.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 01/02/2023]
Abstract
Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side.
Collapse
Affiliation(s)
- M R Gunner
- Department of Physics, City College of New York, New York, NY 10031, USA.
| | | | | | | |
Collapse
|
16
|
Taguchi AT, O'Malley PJ, Wraight CA, Dikanov SA. Conformational differences between the methoxy groups of QA and QB site ubisemiquinones in bacterial reaction centers: a key role for methoxy group orientation in modulating ubiquinone redox potential. Biochemistry 2013; 52:4648-55. [PMID: 23745576 DOI: 10.1021/bi400489b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ubiquinone is an almost universal, membrane-associated redox mediator. Its ability to accept either one or two electrons allows it to function in critical roles in biological electron transport. The redox properties of ubiquinone in vivo are determined by its environment in the binding sites of proteins and by the dihedral angle of each methoxy group relative to the ring plane. This is an attribute unique to ubiquinone among natural quinones and could account for its widespread function with many different redox complexes. In this work, we use the photosynthetic reaction center as a model system for understanding the role of methoxy conformations in determining the redox potential of the ubiquinone/semiquinone couple. Despite the abundance of X-ray crystal structures for the reaction center, quinone site resolution has thus far been too low to provide a reliable measure of the methoxy dihedral angles of the primary and secondary quinones, QA and QB. We performed 2D ESEEM (HYSCORE) on isolated reaction centers with ubiquinones (13)C-labeled at the headgroup methyl and methoxy substituents, and have measured the (13)C isotropic and anisotropic components of the hyperfine tensors. Hyperfine couplings were compared to those derived by DFT calculations as a function of methoxy torsional angle allowing estimation of the methoxy dihedral angles for the semiquinones in the QA and QB sites. Based on this analysis, the orientation of the 2-methoxy groups are distinct in the two sites, with QB more out of plane by 20-25°. This corresponds to an ≈50 meV larger electron affinity for the QB quinone, indicating a substantial contribution to the experimental difference in redox potentials (60-75 mV) of the two quinones. The methods developed here can be readily extended to ubiquinone-binding sites in other protein complexes.
Collapse
Affiliation(s)
- Alexander T Taguchi
- Center for Biophysics and Computational Biology, §Department of Biochemistry, and ‡Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | |
Collapse
|
17
|
Ganesh K, Satheshkumar A, Balraj C, Elango KP. Substituent effect on the electron acceptor property of 1,4-benzoquinone towards the formation of molecular complex with sulfamethoxazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 107:156-166. [PMID: 23416920 DOI: 10.1016/j.saa.2013.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 12/28/2012] [Accepted: 01/10/2013] [Indexed: 06/01/2023]
Abstract
UV-Vis, (1)H NMR, FT-IR, LC-MS and fluorescence spectral techniques were employed to investigate the mechanism of interaction of sulfamethoxazole with varying number of methoxy/chloro substituted 1,4-benzoquinones (MQ1-4) and to characterize the reaction products. The interactions of MQ1-4 with sulfamethoxazole (SULF) were found to proceed through the formation of a donor-acceptor complex, containing radical anion and its conversion to the product. Fluorescence quenching studies showed that the interaction between the donor and the acceptors are spontaneous. The results indicated that the progressive replacement of chlorine atom (-I effect) by methoxy group (+M effect) in the quinone decreased the electron acceptor property of the quinone. The results of the correlation of experimentally measured binding constants with electrochemical data and ab initio DFT calculations supported these observations.
Collapse
Affiliation(s)
- K Ganesh
- Department of Chemistry, Gandhigram Rural Institute (Deemed University), Gandhigram 624 302, India
| | | | | | | |
Collapse
|
18
|
Defining a direction: electron transfer and catalysis in Escherichia coli complex II enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:668-78. [PMID: 23396003 DOI: 10.1016/j.bbabio.2013.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 11/24/2022]
Abstract
There are two homologous membrane-bound enzymes in Escherichia coli that catalyze reversible conversion between succinate/fumarate and quinone/quinol. Succinate:ubiquinone reductase (SQR) is a component of aerobic respiratory chains, whereas quinol:fumarate reductase (QFR) utilizes menaquinol to reduce fumarate in a final step of anaerobic respiration. Although, both protein complexes are capable of supporting bacterial growth on either minimal succinate or fumarate media, the enzymes are more proficient in their physiological directions. Here we evaluate factors that may underlie this catalytic bias. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
|
19
|
Lin MT, Shubin AA, Samoilova RI, Narasimhulu KV, Baldansuren A, Gennis RB, Dikanov SA. Exploring by pulsed EPR the electronic structure of ubisemiquinone bound at the QH site of cytochrome bo3 from Escherichia coli with in vivo 13C-labeled methyl and methoxy substituents. J Biol Chem 2011; 286:10105-14. [PMID: 21247900 PMCID: PMC3060462 DOI: 10.1074/jbc.m110.206821] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/13/2011] [Indexed: 11/06/2022] Open
Abstract
The cytochrome bo(3) ubiquinol oxidase from Escherichia coli resides in the bacterial cytoplasmic membrane and catalyzes the two-electron oxidation of ubiquinol-8 and four-electron reduction of O(2) to water. The one-electron reduced semiquinone forms transiently during the reaction, and the enzyme has been demonstrated to stabilize the semiquinone. The semiquinone is also formed in the D75E mutant, where the mutation has little influence on the catalytic activity, and in the D75H mutant, which is virtually inactive. In this work, wild-type cytochrome bo(3) as well as the D75E and D75H mutant proteins were prepared with ubiquinone-8 (13)C-labeled selectively at the methyl and two methoxy groups. This was accomplished by expressing the proteins in a methionine auxotroph in the presence of l-methionine with the side chain methyl group (13)C-labeled. The (13)C-labeled quinone isolated from cytochrome bo(3) was also used for the generation of model anion radicals in alcohol. Two-dimensional pulsed EPR and ENDOR were used for the study of the (13)C methyl and methoxy hyperfine couplings in the semiquinone generated in the three proteins indicated above and in the model system. The data were used to characterize the transferred unpaired spin densities on the methyl and methoxy substituents and the conformations of the methoxy groups. In the wild type and D75E mutant, the constraints on the configurations of the methoxy side chains are similar, but the D75H mutant appears to have altered methoxy configurations, which could be related to the perturbed electron distribution in the semiquinone and the loss of enzymatic activity.
Collapse
Affiliation(s)
| | | | - Rimma I. Samoilova
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Kuppala V. Narasimhulu
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 and
| | | | | | - Sergei A. Dikanov
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 and
| |
Collapse
|
20
|
Martin E, Samoilova RI, Narasimhulu KV, Lin TJ, O'Malley PJ, Wraight CA, Dikanov SA. Hydrogen bonding and spin density distribution in the Qb semiquinone of bacterial reaction centers and comparison with the Qa site. J Am Chem Soc 2011; 133:5525-37. [PMID: 21417328 DOI: 10.1021/ja2001538] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the photosynthetic reaction center from Rhodobacter sphaeroides, the primary (Q(A)) and secondary (Q(B)) electron acceptors are both ubiquinone-10, but with very different properties and functions. To investigate the protein environment that imparts these functional differences, we have applied X-band HYSCORE, a 2D pulsed EPR technique, to characterize the exchangeable protons around the semiquinone (SQ) in the Q(A) and Q(B) sites, using samples of (15)N-labeled reaction centers, with the native high spin Fe(2+) exchanged for diamagnetic Zn(2+), prepared in (1)H(2)O and (2)H(2)O solvent. The powder HYSCORE method is first validated against the orientation-selected Q-band ENDOR study of the Q(A) SQ by Flores et al. (Biophys. J.2007, 92, 671-682), with good agreement for two exchangeable protons with anisotropic hyperfine tensor components, T, both in the range 4.6-5.4 MHz. HYSCORE was then applied to the Q(B) SQ where we found proton lines corresponding to T ≈ 5.2, 3.7 MHz and T ≈ 1.9 MHz. Density functional-based quantum mechanics/molecular mechanics (QM/MM) calculations, employing a model of the Q(B) site, were used to assign the observed couplings to specific hydrogen bonding interactions with the Q(B) SQ. These calculations allow us to assign the T = 5.2 MHz proton to the His-L190 N(δ)H···O(4) (carbonyl) hydrogen bonding interaction. The T = 3.7 MHz spectral feature most likely results from hydrogen bonding interactions of O1 (carbonyl) with both Gly-L225 peptide NH and Ser-L223 hydroxyl OH, which possess calculated couplings very close to this value. The smaller 1.9 MHz coupling is assigned to a weakly bound peptide NH proton of Ile-L224. The calculations performed with this structural model of the Q(B) site show less asymmetric distribution of unpaired spin density over the SQ than seen for the Q(A) site, consistent with available experimental data for (13)C and (17)O carbonyl hyperfine couplings. The implications of these interactions for Q(B) function and comparisons with the Q(A) site are discussed.
Collapse
Affiliation(s)
- Erik Martin
- Center for Biophysics & Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Zheng Z, Dutton PL, Gunner MR. The measured and calculated affinity of methyl- and methoxy-substituted benzoquinones for the Q(A) site of bacterial reaction centers. Proteins 2010; 78:2638-54. [PMID: 20607696 DOI: 10.1002/prot.22779] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quinones play important roles in mitochondrial and photosynthetic energy conversion acting as intramembrane, mobile electron, and proton carriers between catalytic sites in various electron transfer proteins. They display different affinity, selectivity, functionality, and exchange dynamics in different binding sites. The computational analysis of quinone binding sheds light on the requirements for quinone affinity and specificity. The affinities of 10 oxidized, neutral benzoquinones were measured for the high affinity Q(A) site in the detergent-solubilized Rhodobacter sphaeroides bacterial photosynthetic reaction center. Multiconformation Continuum Electrostatics was then used to calculate their relative binding free energies by grand canonical Monte Carlo sampling with a rigid protein backbone, flexible ligand, and side chain positions and protonation states. Van der Waals and torsion energies, Poisson-Boltzmann continuum electrostatics, and accessible surface area-dependent ligand-solvent interactions are considered. An initial, single cycle of GROMACS backbone optimization improves the match with experiment as do coupled-ligand and side-chain motions. The calculations match experiment with an root mean square deviation (RMSD) of 2.29 and a slope of 1.28. The affinities are dominated by favorable protein-ligand van der Waals rather than electrostatic interactions. Each quinone appears in a closely clustered set of positions. Methyl and methoxy groups move into the same positions as found for the native quinone. Difficulties putting methyls into methoxy sites are observed. Calculations using a solvent-accessible surface area-dependent implicit van der Waals interaction smoothed out small clashes, providing a better match to experiment with a RMSD of 0.77 and a slope of 0.97.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Physics, City College of New York, New York, New York 10031, USA
| | | | | |
Collapse
|
22
|
Maklashina E, Cecchini G. The quinone-binding and catalytic site of complex II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1877-82. [PMID: 20175986 DOI: 10.1016/j.bbabio.2010.02.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 02/08/2010] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
Abstract
The complex II family of proteins includes succinate:quinone oxidoreductase (SQR) and quinol:fumarate oxidoreductase (QFR). In the facultative bacterium Escherichia coli both are expressed as part of the aerobic (SQR) and anaerobic (QFR) respiratory chains. SQR from E. coli is homologous to mitochondrial complex II and has proven to be an excellent model system for structure/function studies of the enzyme. Both SQR and QFR from E. coli are tetrameric membrane-bound enzymes that couple succinate/fumarate interconversion with quinone/quinol reduction/oxidation. Both enzymes are capable of binding either ubiquinone or menaquinone, however, they have adopted different quinone binding sites where catalytic reactions with quinones occur. A comparison of the structures of the quinone binding sites in SQR and QFR reveals how the enzymes have adapted in order to accommodate both benzo- and napthoquinones. A combination of structural, computational, and kinetic studies of members of the complex II family of enzymes has revealed that the catalytic quinone adopts different positions in the quinone-binding pocket. These data suggest that movement of the quinone within the quinone-binding pocket is essential for catalysis.
Collapse
Affiliation(s)
- Elena Maklashina
- Molecular Biology Division, VA Medical Center, San Francisco, CA 94121, USA
| | | |
Collapse
|
23
|
Cheap H, Bernad S, Derrien V, Gerencsér L, Tandori J, de Oliveira P, Hanson DK, Maróti P, Sebban P. M234Glu is a component of the proton sponge in the reaction center from photosynthetic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1505-15. [PMID: 19632193 DOI: 10.1016/j.bbabio.2009.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/13/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
Abstract
Bacterial reaction centers use light energy to couple the uptake of protons to the successive semi-reduction of two quinones, namely Q(A) and Q(B). These molecules are situated symmetrically in regard to a non-heme iron atom. Four histidines and one glutamic acid, M234Glu, constitute the five ligands of this atom. By flash-induced absorption spectroscopy and delayed fluorescence we have studied in the M234EH and M234EL variants the role played by this acidic residue on the energetic balance between the two quinones as well as in proton uptake. Delayed fluorescence from the P(+)Q(A)(-) state (P is the primary electron donor) and temperature dependence of the rate of P(+)Q(A)(-) charge recombination that are in good agreement show that in the two RC variants, both Q(A)(-) and Q(B)(-) are destabilized by about the same free energy amount: respectively approximately 100 +/- 5 meV and 90 +/- 5 meV for the M234EH and M234EL variants, as compared to the WT. Importantly, in the M234EH and M234EL variants we observe a collapse of the high pH band (present in the wild-type reaction center) of the proton uptake amplitudes associated with formation of Q(A)(-) and Q(B)(-). This band has recently been shown to be a signature of a collective behaviour of an extended, multi-entry, proton uptake network. M234Glu seems to play a central role in the proton sponge-like system formed by the RC protein.
Collapse
Affiliation(s)
- Hélène Cheap
- Laboratoire de Chimie Physique, UMR 8000, University of Paris-Sud 11/CNRS, 91405 cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|