1
|
Anishkin A, Adepu KK, Bhandari D, Adams SH, Chintapalli SV. Computational Analysis Reveals Unique Binding Patterns of Oxygenated and Deoxygenated Myoglobin to the Outer Mitochondrial Membrane. Biomolecules 2023; 13:1138. [PMID: 37509174 PMCID: PMC10377724 DOI: 10.3390/biom13071138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Myoglobin (Mb) interaction with the outer mitochondrial membrane (OMM) promotes oxygen (O2) release. However, comprehensive molecular details on specific contact regions of the OMM with oxygenated (oxy-) and deoxygenated (deoxy-)Mb are missing. We used molecular dynamics (MD) simulations to explore the interaction of oxy- and deoxy-Mb with the membrane lipids of the OMM in two lipid compositions: (a) a typical whole membrane on average, and (b) specifically the cardiolipin-enriched cristae region (contact site). Unrestrained relaxations showed that on average, both the oxy- and deoxy-Mb established more stable contacts with the lipids typical of the cristae contact site, then with those of the average OMM. However, in steered detachment simulations, deoxy-Mb clung more tightly to the average OMM, and oxy-Mb strongly preferred the contact sites of the OMM. The MD simulation analysis further indicated that a non-specific binding, mediated by local electrostatic interactions, existed between charged or polar groups of Mb and the membrane, for stable interaction. To the best of our knowledge, this is the first computational study providing the molecular details of the direct Mb-mitochondria interaction that assisted in distinguishing the preferred localization of oxy- and deoxy-Mb on the OMM. Our findings support the existing experimental evidence on Mb-mitochondrial association and shed more insights on Mb-mediated O2 transport for cellular bioenergetics.
Collapse
Affiliation(s)
- Andriy Anishkin
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Kiran Kumar Adepu
- Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | - Sean H Adams
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95616, USA
- Center for Alimentary and Metabolic Science, University of California Davis, Sacramento, CA 95616, USA
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
2
|
Poole DC, Ferguson SK, Musch TI, Porcelli S. Role of nitric oxide in convective and diffusive skeletal microvascular oxygen kinetics. Nitric Oxide 2022; 121:34-44. [PMID: 35123062 DOI: 10.1016/j.niox.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/29/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Progress in understanding physiological mechanisms often consists of discrete discoveries made across different models and species. Accordingly, understanding the mechanistic bases for how altering nitric oxide (NO) bioavailability impacts exercise tolerance (or not) depends on integrating information from cellular energetics and contractile regulation through microvascular/vascular control of O2 transport and pulmonary gas exchange. This review adopts state-of-the-art concepts including the intramyocyte power grid, the Wagner conflation of perfusive and diffusive O2 conductances, and the Critical Power/Critical Speed model of exercise tolerance to address how altered NO bioavailability may, or may not, affect physical performance. This question is germane from the elite athlete to the recreational exerciser and particularly the burgeoning heart failure (and other clinical) populations for whom elevating O2 transport and/or exercise capacity translates directly to improved life quality and reduced morbidity and mortality. The dearth of studies in females is also highlighted, and areas of uncertainty and questions for future research are identified.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Scott K Ferguson
- Department of Kinesiology and Exercise Science, University of Hawaii, Hilo, HI, 96720, USA
| | - Timothy I Musch
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Simone Porcelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
3
|
Oxygen flux from capillary to mitochondria: integration of contemporary discoveries. Eur J Appl Physiol 2022; 122:7-28. [PMID: 34940908 PMCID: PMC8890444 DOI: 10.1007/s00421-021-04854-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023]
Abstract
Resting humans transport ~ 100 quintillion (1018) oxygen (O2) molecules every second to tissues for consumption. The final, short distance (< 50 µm) from capillary to the most distant mitochondria, in skeletal muscle where exercising O2 demands may increase 100-fold, challenges our understanding of O2 transport. To power cellular energetics O2 reaches its muscle mitochondrial target by dissociating from hemoglobin, crossing the red cell membrane, plasma, endothelial surface layer, endothelial cell, interstitial space, myocyte sarcolemma and a variable expanse of cytoplasm before traversing the mitochondrial outer/inner membranes and reacting with reduced cytochrome c and protons. This past century our understanding of O2's passage across the body's final O2 frontier has been completely revised. This review considers the latest structural and functional data, challenging the following entrenched notions: (1) That O2 moves freely across blood cell membranes. (2) The Krogh-Erlang model whereby O2 pressure decreases systematically from capillary to mitochondria. (3) Whether intramyocyte diffusion distances matter. (4) That mitochondria are separate organelles rather than coordinated and highly plastic syncytia. (5) The roles of free versus myoglobin-facilitated O2 diffusion. (6) That myocytes develop anoxic loci. These questions, and the intriguing notions that (1) cellular membranes, including interconnected mitochondrial membranes, act as low resistance conduits for O2, lipids and H+-electrochemical transport and (2) that myoglobin oxy/deoxygenation state controls mitochondrial oxidative function via nitric oxide, challenge established tenets of muscle metabolic control. These elements redefine muscle O2 transport models essential for the development of effective therapeutic countermeasures to pathological decrements in O2 supply and physical performance.
Collapse
|
4
|
Merz T, McCook O, Denoix N, Radermacher P, Waller C, Kapapa T. Biological Connection of Psychological Stress and Polytrauma under Intensive Care: The Role of Oxytocin and Hydrogen Sulfide. Int J Mol Sci 2021; 22:9192. [PMID: 34502097 PMCID: PMC8430789 DOI: 10.3390/ijms22179192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
This paper explored the potential mediating role of hydrogen sulfide (H2S) and the oxytocin (OT) systems in hemorrhagic shock (HS) and/or traumatic brain injury (TBI). Morbidity and mortality after trauma mainly depend on the presence of HS and/or TBI. Rapid "repayment of the O2 debt" and prevention of brain tissue hypoxia are cornerstones of the management of both HS and TBI. Restoring tissue perfusion, however, generates an ischemia/reperfusion (I/R) injury due to the formation of reactive oxygen (ROS) and nitrogen (RNS) species. Moreover, pre-existing-medical-conditions (PEMC's) can aggravate the occurrence and severity of complications after trauma. In addition to the "classic" chronic diseases (of cardiovascular or metabolic origin), there is growing awareness of psychological PEMC's, e.g., early life stress (ELS) increases the predisposition to develop post-traumatic-stress-disorder (PTSD) and trauma patients with TBI show a significantly higher incidence of PTSD than patients without TBI. In fact, ELS is known to contribute to the developmental origins of cardiovascular disease. The neurotransmitter H2S is not only essential for the neuroendocrine stress response, but is also a promising therapeutic target in the prevention of chronic diseases induced by ELS. The neuroendocrine hormone OT has fundamental importance for brain development and social behavior, and, thus, is implicated in resilience or vulnerability to traumatic events. OT and H2S have been shown to interact in physical and psychological trauma and could, thus, be therapeutic targets to mitigate the acute post-traumatic effects of chronic PEMC's. OT and H2S both share anti-inflammatory, anti-oxidant, and vasoactive properties; through the reperfusion injury salvage kinase (RISK) pathway, where their signaling mechanisms converge, they act via the regulation of nitric oxide (NO).
Collapse
Affiliation(s)
- Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Medical Center, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany; (T.M.); (N.D.); (P.R.)
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Medical Center, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany; (T.M.); (N.D.); (P.R.)
| | - Nicole Denoix
- Institute for Anesthesiological Pathophysiology and Process Engineering, Medical Center, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany; (T.M.); (N.D.); (P.R.)
- Clinic for Psychosomatic Medicine and Psychotherapy, Medical Center, Ulm University, 89081 Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Medical Center, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany; (T.M.); (N.D.); (P.R.)
| | - Christiane Waller
- Department of Psychosomatic Medicine and Psychotherapy, Nuremberg General Hospital, Paracelsus Medical University, 90471 Nuremberg, Germany;
| | - Thomas Kapapa
- Clinic for Neurosurgery, Medical Center, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
5
|
Blackburn ML, Wankhade UD, Ono-Moore KD, Chintapalli SV, Fox R, Rutkowsky JM, Willis BJ, Tolentino T, Lloyd KCK, Adams SH. On the potential role of globins in brown adipose tissue: a novel conceptual model and studies in myoglobin knockout mice. Am J Physiol Endocrinol Metab 2021; 321:E47-E62. [PMID: 33969705 PMCID: PMC8321818 DOI: 10.1152/ajpendo.00662.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Myoglobin (Mb) regulates O2 bioavailability in muscle and heart as the partial pressure of O2 (Po2) drops with increased tissue workload. Globin proteins also modulate cellular NO pools, "scavenging" NO at higher Po2 and converting NO2- to NO as Po2 falls. Myoglobin binding of fatty acids may also signal a role in fat metabolism. Interestingly, Mb is expressed in brown adipose tissue (BAT), but its function is unknown. Herein, we present a new conceptual model that proposes links between BAT thermogenic activation, concurrently reduced Po2, and NO pools regulated by deoxy/oxy-globin toggling and xanthine oxidoreductase (XOR). We describe the effect of Mb knockout (Mb-/-) on BAT phenotype [lipid droplets, mitochondrial markers uncoupling protein 1 (UCP1) and cytochrome C oxidase 4 (Cox4), transcriptomics] in male and female mice fed a high-fat diet (HFD, 45% of energy, ∼13 wk), and examine Mb expression during brown adipocyte differentiation. Interscapular BAT weights did not differ by genotype, but there was a higher prevalence of mid-large sized droplets in Mb-/-. COX4 protein expression was significantly reduced in Mb-/- BAT, and a suite of metabolic/NO/stress/hypoxia transcripts were lower. All of these Mb-/--associated differences were most apparent in females. The new conceptual model, and results derived from Mb-/- mice, suggest a role for Mb in BAT metabolic regulation, in part through sexually dimorphic systems and NO signaling. This possibility requires further validation in light of significant mouse-to-mouse variability of BAT Mb mRNA and protein abundances in wild-type mice and lower expression relative to muscle and heart.NEW & NOTEWORTHY Myoglobin confers the distinct red color to muscle and heart, serving as an oxygen-binding protein in oxidative fibers. Less attention has been paid to brown fat, a thermogenic tissue that also expresses myoglobin. In a mouse knockout model lacking myoglobin, brown fat had larger fat droplets and lower markers of mitochondrial oxidative metabolism, especially in females. Gene expression patterns suggest a role for myoglobin as an oxygen/nitric oxide-sensor that regulates cellular metabolic and signaling pathways.
Collapse
Affiliation(s)
- Michael L Blackburn
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Umesh D Wankhade
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Sree V Chintapalli
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Renee Fox
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
| | - Jennifer M Rutkowsky
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, University of California, Davis, California
- Mouse Metabolic Phenotyping Center, University of California, Davis, California
| | - Brandon J Willis
- Mouse Biology Program, University of California, Davis, California
| | - Todd Tolentino
- Mouse Metabolic Phenotyping Center, University of California, Davis, California
- Mouse Biology Program, University of California, Davis, California
| | - K C Kent Lloyd
- Mouse Metabolic Phenotyping Center, University of California, Davis, California
- Mouse Biology Program, University of California, Davis, California
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California
| | - Sean H Adams
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California
- Center for Alimentary and Metabolic Science, University of California Davis School of Medicine, Sacramento, California
| |
Collapse
|
6
|
Reversible Oxidative Modifications in Myoglobin and Functional Implications. Antioxidants (Basel) 2020; 9:antiox9060549. [PMID: 32599765 PMCID: PMC7346209 DOI: 10.3390/antiox9060549] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022] Open
Abstract
Myoglobin (Mb), an oxygen-binding heme protein highly expressed in heart and skeletal muscle, has been shown to undergo oxidative modifications on both an inter- and intramolecular level when exposed to hydrogen peroxide (H2O2) in vitro. Here, we show that exposure to H2O2 increases the peroxidase activity of Mb. Reaction of Mb with H2O2 causes covalent binding of heme to the Mb protein (Mb-X), corresponding to an increase in peroxidase activity when ascorbic acid is the reducing co-substrate. Treatment of H2O2-reacted Mb with ascorbic acid reverses the Mb-X crosslink. Reaction with H2O2 causes Mb to form dimers, trimers, and larger molecular weight Mb aggregates, and treatment with ascorbic acid regenerates Mb monomers. Reaction of Mb with H2O2 causes formation of dityrosine crosslinks, though the labile nature of the crosslinks broken by treatment with ascorbic acid suggests that the reversible aggregation of Mb is mediated by crosslinks other than dityrosine. Disappearance of a peptide containing a tryptophan residue when Mb is treated with H2O2 and the peptide’s reappearance after subsequent treatment with ascorbic acid suggest that tryptophan side chains might participate in the labile crosslinking. Taken together, these data suggest that while exposure to H2O2 causes Mb-X formation, increases Mb peroxidase activity, and causes Mb aggregation, these oxidative modifications are reversible by treatment with ascorbic acid. A caveat is that future studies should demonstrate that these and other in vitro findings regarding properties of Mb have relevance in the intracellular milieu, especially in regard to actual concentrations of metMb, H2O2, and ascorbate that would be found in vivo.
Collapse
|
7
|
Shivaraj SM, Vats S, Bhat JA, Dhakte P, Goyal V, Khatri P, Kumawat S, Singh A, Prasad M, Sonah H, Sharma TR, Deshmukh R. Nitric oxide and hydrogen sulfide crosstalk during heavy metal stress in plants. PHYSIOLOGIA PLANTARUM 2020; 168:437-455. [PMID: 31587278 DOI: 10.1111/ppl.13028] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Gases such as ethylene, hydrogen peroxide (H2 O2 ), nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2 S) have been recognized as vital signaling molecules in plants and animals. Of these gasotransmitters, NO and H2 S have recently gained momentum mainly because of their involvement in numerous cellular processes. It is therefore important to study their various attributes including their biosynthetic and signaling pathways. The present review provides an insight into various routes for the biosynthesis of NO and H2 S as well as their signaling role in plant cells under different conditions, more particularly under heavy metal stress. Their beneficial roles in the plant's protection against abiotic and biotic stresses as well as their adverse effects have been addressed. This review describes how H2 S and NO, being very small-sized molecules, can quickly pass through the cell membranes and trigger a multitude of responses to various factors, notably to various stress conditions such as drought, heat, osmotic, heavy metal and multiple biotic stresses. The versatile interactions between H2 S and NO involved in the different molecular pathways have been discussed. In addition to the signaling role of H2 S and NO, their direct role in posttranslational modifications is also considered. The information provided here will be helpful to better understand the multifaceted roles of H2 S and NO in plants, particularly under stress conditions.
Collapse
Affiliation(s)
- Sheelavanta M Shivaraj
- Département de phytologie, University Laval, Quebec City, QC, Canada
- National Institute for Plant Biotechnology, New Delhi, India
| | - Sanskriti Vats
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Javaid A Bhat
- Soybean Research Institution, Nanjing Agricultural University, Jiangsu Sheng, China
| | - Priyanka Dhakte
- National Institute of Plant Genome Research, New Delhi, India
| | - Vinod Goyal
- Department of Botany and Plant Physiology, Chaudhary Charan Singh Haryana Agricultural University, Haryana, India
| | - Praveen Khatri
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Akshay Singh
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Tilak R Sharma
- National Agri-Food Biotechnology Institute, Mohali, India
| | | |
Collapse
|
8
|
High-Resolution Respirometry in Assessment of Mitochondrial Function in Neuroblastoma SH-SY5Y Intact Cells. J Membr Biol 2020; 253:129-136. [PMID: 31970434 DOI: 10.1007/s00232-020-00107-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
Mitochondria are organelles with significant cellular functions, especially cellular bioenergetics and apoptosis. They are structural and functional elements of cell respiration with the electron transport system (ETS), whose role is to provide adenosine triphosphate (ATP), used as a source of chemical energy. The Krebs cycle and fatty acid oxidation take place within mitochondria. Other metabolic pathways and cycles include some steps inside and outside the mitochondria (e.g., the urea cycle, steroid biosynthesis, heme biosynthesis, and cardiolipin synthesis). Dysfunction of mitochondria plays a critical role in the pathophysiology of a variety of diseases including degenerative diseases, aging, and cancer, etc. Nowadays the interest of the mitochondrial respiratory function is still increasing due to their importance in the physiology and pathophysiology of an organism. Neuroblastoma cell line SH-SY5Y is widely used as an in vitro model in neurodegenerative diseases, where mitochondrial dysfunction is considered as a key mechanism in pathophysiology of neurodegenerative disorders. This paper gives first insight into the mitochondrial respiration and characterization of SH-SY5Y cells, with basic information of respiration in different coupling control states including ROUTINE, LEAK, and maximal electron transport (ET) capacity.
Collapse
|
9
|
Gerber L, Clow KA, Katan T, Emam M, Leeuwis RHJ, Parrish CC, Gamperl AK. Cardiac mitochondrial function, nitric oxide sensitivity and lipid composition following hypoxia acclimation in sablefish. ACTA ACUST UNITED AC 2019; 222:jeb.208074. [PMID: 31645375 DOI: 10.1242/jeb.208074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/21/2019] [Indexed: 01/02/2023]
Abstract
In fishes, the effect of O2 limitation on cardiac mitochondrial function remains largely unexplored. The sablefish (Anoplopoma fimbria) encounters considerable variations in environmental oxygen availability, and is an interesting model for studying the effects of hypoxia on fish cardiorespiratory function. We investigated how in vivo hypoxia acclimation (6 months at 40% then 3 weeks at 20% air saturation) and in vitro anoxia-reoxygenation affected sablefish cardiac mitochondrial respiration and reactive oxygen species (ROS) release rates using high-resolution fluorespirometry. Further, we investigated how hypoxia acclimation affected the sensitivity of mitochondrial respiration to nitric oxide (NO), and compared mitochondrial lipid and fatty acid (FA) composition between groups. Hypoxia acclimation did not alter mitochondrial coupled or uncoupled respiration, or respiratory control ratio, ROS release rates, P 50 or superoxide dismutase activity. However, it increased citrate synthase activity (by ∼20%), increased the sensitivity of mitochondrial respiration to NO inhibition (i.e., the NO IC50 was 25% lower), and enhanced the recovery of respiration (by 21%) and reduced ROS release rates (by 25-30%) post-anoxia. In addition, hypoxia acclimation altered mitochondrial FA composition [increasing arachidonic acid (20:4ω6) and eicosapentaenoic acid (20:5ω3) proportions by 11 and 14%, respectively], and SIMPER analysis revealed that the phospholipid:sterol ratio was the largest contributor (24%) to the dissimilarity between treatments. Overall, these results suggest that hypoxia acclimation may protect sablefish cardiac bioenergetic function during or after periods of O2 limitation, and that this may be related to alterations in mitochondrial sensitivity to NO and to adaptive changes in membrane composition (fluidity).
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Kathy A Clow
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Tomer Katan
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Mohamed Emam
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Robine H J Leeuwis
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | | | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
10
|
Mannino MH, Patel RS, Eccardt AM, Perez Magnelli RA, Robinson CLC, Janowiak BE, Warren DE, Fisher JS. Myoglobin as a versatile peroxidase: Implications for a more important role for vertebrate striated muscle in antioxidant defense. Comp Biochem Physiol B Biochem Mol Biol 2019; 234:9-17. [PMID: 31051268 DOI: 10.1016/j.cbpb.2019.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/29/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022]
Abstract
Myoglobins (Mb) are ubiquitous proteins found in striated muscle of nearly all vertebrate taxa. Although their function is most commonly associated with facilitating oxygen storage and diffusion, Mb has also been implicated in cellular antioxidant defense. The oxidized (Fe3+) form of Mb (metMB) can react with hydrogen peroxide (H2O2) to produce ferrylMb. FerrylMb can be reduced back to metMb for another round of reaction with H2O2. In the present study, we have shown that horse skeletal muscle Mb displays peroxidase activity using 2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) and 3,3',5,5'-tetramethylbenzidine (TMB) as reducing substrates, as well as the biologically-relevant substrates NADH/NADPH, ascorbate, caffeic acid, and resveratrol. We have also shown that ferrylMb can be reduced by both ethanol and acetaldehyde, which are known to accumulate in some vertebrate tissues under anaerobic conditions, such as anoxic goldfish and crucian carp, implying a potential mechanism for ethanol detoxification in striated muscle. We found that metMb peroxidase activity is pH-dependent, increasing as pH decreases from 7.4 to 6.1, which is biologically relevant to anaerobic vertebrate muscle when incurring intracellular lactic acidosis. Finally, we found that metMb reacts with hypochlorite in a heme-dependent fashion, indicating that Mb could play a role in hypochlorite detoxification. Taken together, these data suggest that Mb peroxidase activity might be an important antioxidant mechanism in vertebrate cardiac and skeletal muscle under a variety of physiological conditions, such as those that might occur in contracting skeletal muscle or during hypoxia.
Collapse
|
11
|
Clanton TL. Managing the power grid: how myoglobin can regulate PO2 and energy distribution in skeletal muscle. J Appl Physiol (1985) 2019; 126:787-790. [DOI: 10.1152/japplphysiol.00614.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Thomas L. Clanton
- Department of Applied Physiology and Kinesiology, the University of Florida Gainesville, Florida
| |
Collapse
|
12
|
Castellano-Gonzalez G, Jacobs KR, Don E, Cole NJ, Adams S, Lim CK, Lovejoy DB, Guillemin GJ. Kynurenine 3-Monooxygenase Activity in Human Primary Neurons and Effect on Cellular Bioenergetics Identifies New Neurotoxic Mechanisms. Neurotox Res 2019; 35:530-541. [PMID: 30666558 DOI: 10.1007/s12640-019-9997-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/20/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022]
Abstract
Upregulation of the kynurenine pathway (KP) of tryptophan metabolism is commonly observed in neurodegenerative disease. When activated, L-kynurenine (KYN) increases in the periphery and central nervous system where it is further metabolised to other neuroactive metabolites including 3-hydroxykynurenine (3-HK), kynurenic acid (KYNA) and quinolinic acid (QUIN). Particularly biologically relevant metabolites are 3-HK and QUIN, formed downstream of the enzyme kynurenine 3-monooxygenase (KMO) which plays a pivotal role in maintaining KP homeostasis. Indeed, excessive production of 3-HK and QUIN has been described in neurodegenerative disease including Alzheimer's disease and Huntington's disease. In this study, we characterise KMO activity in human primary neurons and identified new mechanisms by which KMO activation mediates neurotoxicity. We show that while transient activation of the KP promotes synthesis of the essential co-enzyme nicotinamide adenine dinucleotide (NAD+), allowing cells to meet short-term increased energy demands, chronic KMO activation induces production of reactive oxygen species (ROS), mitochondrial damage and decreases spare-respiratory capacity (SRC). We further found that these events generate a vicious-cycle, as mitochondrial dysfunction further shunts the KP towards the KMO branch of the KP to presumably enhance QUIN production. These mechanisms may be especially relevant in neurodegenerative disease as neurons are highly sensitive to oxidative stress and mitochondrial impairment.
Collapse
Affiliation(s)
- Gloria Castellano-Gonzalez
- Neuroinflammation Group, Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences (FMHS), Macquarie University, 2, Technology Place, North Ryde, NSW, 2109, Australia
| | - Kelly R Jacobs
- Neuroinflammation Group, Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences (FMHS), Macquarie University, 2, Technology Place, North Ryde, NSW, 2109, Australia
| | - Emily Don
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences (FMHS), Macquarie University, North Ryde, NSW, 2109, Australia
| | - Nicholas J Cole
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences (FMHS), Macquarie University, North Ryde, NSW, 2109, Australia
| | - Seray Adams
- Neuroinflammation Group, Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences (FMHS), Macquarie University, 2, Technology Place, North Ryde, NSW, 2109, Australia
| | - Chai K Lim
- Neuroinflammation Group, Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences (FMHS), Macquarie University, 2, Technology Place, North Ryde, NSW, 2109, Australia
| | - David B Lovejoy
- Neuroinflammation Group, Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences (FMHS), Macquarie University, 2, Technology Place, North Ryde, NSW, 2109, Australia.
| | - Gilles J Guillemin
- Neuroinflammation Group, Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences (FMHS), Macquarie University, 2, Technology Place, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
13
|
Dias C, Lourenço CF, Barbosa RM, Laranjinha J, Ledo A. Analysis of respiratory capacity in brain tissue preparations: high-resolution respirometry for intact hippocampal slices. Anal Biochem 2018; 551:43-50. [PMID: 29753719 DOI: 10.1016/j.ab.2018.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 12/13/2022]
Abstract
The evaluation of mitochondrial function provides the basis for the study of brain bioenergetics. However, analysis of brain mitochondrial respiration has been hindered by the low yield associated with mitochondria isolation procedures. Furthermore, isolating mitochondria or cells results in loss of the inherent complexity of the central nervous system. High-resolution respirometry (HRR), is a valuable tool to study mitochondrial function and has been used in diverse biological preparations ranging from isolated mitochondria to tissue homogenates and permeabilized tissue biopsies. Here we describe a novel methodology for evaluation of mitochondrial respiration using tissue preparations from the central nervous system, namely acute hippocampal slices from rodents, with HRR. By using acute intact hippocampal slices, tissue cytoarchitecture, intercellular communication and connectivity are preserved. Mitochondrial respiration was evaluated by using an adapted substrate-uncoupler-inhibitor titration (SUIT) protocol and the expected responses were observed. This methodology can be used to detect differences in mitochondrial function at the oxidative phosphorylation level and for studies with different brain oxidative substrates in physiological and neuropathological settings, by using a system that better represents the in vivo conditions than isolated mitochondria and/or cells.
Collapse
Affiliation(s)
- Cândida Dias
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Rui M Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | - Ana Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.
| |
Collapse
|
14
|
Gallinat A, Lu J, von Horn C, Kaths M, Ingenwerth M, Paul A, Minor T. Transplantation of Cold Stored Porcine Kidneys After Controlled Oxygenated Rewarming. Artif Organs 2018; 42:647-654. [PMID: 29607529 DOI: 10.1111/aor.13096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/17/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022]
Abstract
The concept of "controlled oxygenated rewarming" (COR) using ex vivo machine perfusion after cold storage was evaluated as tool to improve renal graft function after transplantation. Renal function after 20 min warm ischemia and 21 h cold storage was studied in an auto-transplant model in pigs (25-30 kg, n = 6 per group). In the study group, preimplant ex vivo machine perfusion for 90 min was added after cold storage, including gentle warming up of the graft to 20°C (COR). Kidneys that were only cold stored for 21 h served as controls. In vivo follow up was one week; the remaining native kidney was removed during transplantation. COR significantly improved cortical microcirculation upon early reperfusion and reduced free radical mediated injury and cellular apoptosis. Post-transplant kidney function (peak levels in serum) was also largely and significantly improved in comparison to the control group. A weak inverse correlation was found between renal flow during COR and later peak creatinine after transplantation (r2 = 0.5), better values were seen for oxygen consumption, measured during machine perfusion at 20°C (r2 = 0.81). Gentle graft rewarming prior to transplantation by COR improves post-transplant graft outcome and may also be a valuable adjunct in pretransplant graft assessment.
Collapse
Affiliation(s)
- Anja Gallinat
- Clinic of General, Visceral and Transplantation Surgery, University Hospital of Essen, Germany
| | - Jing Lu
- Department for Surgical Research, General, Visceral and Transplantation Surgery, University Hospital of Essen, Germany
| | - Charlotte von Horn
- Department for Surgical Research, General, Visceral and Transplantation Surgery, University Hospital of Essen, Germany
| | - Moritz Kaths
- Clinic of General, Visceral and Transplantation Surgery, University Hospital of Essen, Germany
| | - Marc Ingenwerth
- Department for Pathology, University Hospital of Essen, Germany
| | - Andreas Paul
- Clinic of General, Visceral and Transplantation Surgery, University Hospital of Essen, Germany
| | - Thomas Minor
- Department for Surgical Research, General, Visceral and Transplantation Surgery, University Hospital of Essen, Germany
| |
Collapse
|
15
|
High-Resolution FluoRespirometry and OXPHOS Protocols for Human Cells, Permeabilized Fibers from Small Biopsies of Muscle, and Isolated Mitochondria. Methods Mol Biol 2018; 1782:31-70. [PMID: 29850993 DOI: 10.1007/978-1-4939-7831-1_3] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protocols for High-Resolution FluoRespirometry of intact cells, permeabilized cells, permeabilized muscle fibers, isolated mitochondria, and tissue homogenates offer sensitive diagnostic tests of integrated mitochondrial function using standard cell culture techniques, small needle biopsies of muscle, and mitochondrial preparation methods. Multiple substrate-uncoupler-inhibitor titration (SUIT) protocols for analysis of oxidative phosphorylation (OXPHOS) improve our understanding of mitochondrial respiratory control and the pathophysiology of mitochondrial diseases. Respiratory states are defined in functional terms to account for the network of metabolic interactions in complex SUIT protocols with stepwise modulation of coupling control and electron transfer pathway states. A regulated degree of intrinsic uncoupling is a hallmark of oxidative phosphorylation, whereas pathological and toxicological dyscoupling is evaluated as a mitochondrial defect. The noncoupled state of maximum respiration is experimentally induced by titration of established uncouplers (CCCP, FCCP, DNP) to collapse the protonmotive force across the mitochondrial inner membrane and measure the electron transfer (ET) capacity (open-circuit operation of respiration). Intrinsic uncoupling and dyscoupling are evaluated as the flux control ratio between non-phosphorylating LEAK respiration (electron flow coupled to proton pumping to compensate for proton leaks) and ET capacity. If OXPHOS capacity (maximally ADP-stimulated O2 flux) is less than ET capacity, the phosphorylation pathway contributes to flux control. Physiological substrate combinations supporting the NADH and succinate pathway are required to reconstitute tricarboxylic acid cycle function. This supports maximum ET and OXPHOS capacities, due to the additive effect of multiple electron supply pathways converging at the Q-junction. ET pathways with electron entry separately through NADH (pyruvate and malate or glutamate and malate) or succinate (succinate and rotenone) restrict ET capacity and artificially enhance flux control upstream of the Q-cycle, providing diagnostic information on specific ET-pathway branches. O2 concentration is maintained above air saturation in protocols with permeabilized muscle fibers to avoid experimental O2 limitation of respiration. Standardized two-point calibration of the polarographic oxygen sensor (static sensor calibration), calibration of the sensor response time (dynamic sensor calibration), and evaluation of instrumental background O2 flux (systemic flux compensation) provide the unique experimental basis for high accuracy of quantitative results and quality control in High-Resolution FluoRespirometry.
Collapse
|
16
|
Nitric oxide blocks the development of the human parasite Schistosoma japonicum. Proc Natl Acad Sci U S A 2017; 114:10214-10219. [PMID: 28874579 DOI: 10.1073/pnas.1708578114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human schistosomiasis, caused by Schistosoma species, is a major public health problem affecting more than 700 million people in 78 countries, with over 40 mammalian host reservoir species complicating the transmission ecosystem. The primary cause of morbidity is considered to be granulomas induced by fertilized eggs of schistosomes in the liver and intestines. Some host species, like rats (Rattus norvegicus), are naturally intolerant to Schistosoma japonicum infection, and do not produce granulomas or pose a threat to transmission, while others, like mice and hamsters, are highly susceptible. The reasons behind these differences are still a mystery. Using inducible nitric oxide synthase knockout (iNOS-/-) Sprague-Dawley rats, we found that inherent high expression levels of iNOS in wild-type (WT) rats play an important role in blocking growth, reproductive organ formation, and egg development in S. japonicum, resulting in production of nonfertilized eggs. Granuloma formation, induced by fertilized eggs in the liver, was considerably exacerbated in the iNOS-/- rats compared with the WT rats. This inhibition by nitric oxide acts by affecting mitochondrial respiration and energy production in the parasite. Our work not only elucidates the innate mechanism that blocks the development and production of fertilized eggs in S. japonicum but also offers insights into a better understanding of host-parasite interactions and drug development strategies against schistosomiasis.
Collapse
|
17
|
Nonalcoholic Fatty liver disease: pathogenesis and therapeutics from a mitochondria-centric perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:637027. [PMID: 25371775 PMCID: PMC4211163 DOI: 10.1155/2014/637027] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/31/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of disorders characterized by the accumulation of triglycerides within the liver. The global prevalence of NAFLD has been increasing as the obesity epidemic shows no sign of relenting. Mitochondria play a central role in hepatic lipid metabolism and also are affected by upstream signaling pathways involved in hepatic metabolism. This review will focus on the role of mitochondria in the pathophysiology of NAFLD and touch on some of the therapeutic approaches targeting mitochondria as well as metabolically important signaling pathways. Mitochondria are able to adapt to lipid accumulation in hepatocytes by increasing rates of beta-oxidation; however increased substrate delivery to the mitochondrial electron transport chain (ETC) leads to increased reactive oxygen species (ROS) production and eventually ETC dysfunction. Decreased ETC function combined with increased rates of fatty acid beta-oxidation leads to the accumulation of incomplete products of beta-oxidation, which combined with increased levels of ROS contribute to insulin resistance. Several related signaling pathways, nuclear receptors, and transcription factors also regulate hepatic lipid metabolism, many of which are redox sensitive and regulated by ROS.
Collapse
|
18
|
Ullrich V, Schildknecht S. Sensing hypoxia by mitochondria: a unifying hypothesis involving S-nitrosation. Antioxid Redox Signal 2014; 20:325-38. [PMID: 22793377 DOI: 10.1089/ars.2012.4788] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Sudden hypoxia requires a rapid response in tissues with high energy demand. Mitochondria are rapid sensors for a lack of oxygen, but no consistent mechanism for the sensing process and the subsequent counter-regulation has been described. RECENT ADVANCES In the present hypothesis review, we suggest an oxygen-sensing mechanism by mitochondria that is initiated at low oxygen tension by electrons from the respiratory chain, leading to the reduction of intracellular nitrite to nitric oxide ((•)NO) that would subsequently compete with oxygen for binding to cytochrome c oxidase. This allows superoxide ((•)O2(-)) formation in hypoxic areas, leading to S-nitrosation and the inhibition of mitochondrial Krebs cycle enzymes. With more formation of (•)O2(-), peroxynitrite is generated and known to damage the connection between the mitochondrial matrix and the outer membrane. CRITICAL ISSUES A fundamental question on a regulatory mechanism is its reversibility. Readmission of oxygen and opening of the mitochondrial KATP-channel would allow electrons from glycerol-3-phosphate to selectively reduce the ubiquinone pool to generate (•)O2(-) at both sides of the inner mitochondrial membrane. On the cytosolic side, superoxide is dismutated and will support H2O2/Fe(2+)-dependent transcription processes and on the mitochondrial matrix side, it could lead to the one-electron reduction and reactivation of S-nitrosated proteins. FUTURE DIRECTIONS It remains to be elucidated up to which stage the herein proposed silencing of mitochondria remains reversible and when irreversible changes that ultimately lead to classical reperfusion injury are initiated.
Collapse
Affiliation(s)
- Volker Ullrich
- Department of Biology, University of Konstanz , Konstanz, Germany
| | | |
Collapse
|
19
|
Clanton TL, Hogan MC, Gladden LB. Regulation of cellular gas exchange, oxygen sensing, and metabolic control. Compr Physiol 2013; 3:1135-90. [PMID: 23897683 DOI: 10.1002/cphy.c120030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells must continuously monitor and couple their metabolic requirements for ATP utilization with their ability to take up O2 for mitochondrial respiration. When O2 uptake and delivery move out of homeostasis, cells have elaborate and diverse sensing and response systems to compensate. In this review, we explore the biophysics of O2 and gas diffusion in the cell, how intracellular O2 is regulated, how intracellular O2 levels are sensed and how sensing systems impact mitochondrial respiration and shifts in metabolic pathways. Particular attention is paid to how O2 affects the redox state of the cell, as well as the NO, H2S, and CO concentrations. We also explore how these agents can affect various aspects of gas exchange and activate acute signaling pathways that promote survival. Two kinds of challenges to gas exchange are also discussed in detail: when insufficient O2 is available for respiration (hypoxia) and when metabolic requirements test the limits of gas exchange (exercising skeletal muscle). This review also focuses on responses to acute hypoxia in the context of the original "unifying theory of hypoxia tolerance" as expressed by Hochachka and colleagues. It includes discourse on the regulation of mitochondrial electron transport, metabolic suppression, shifts in metabolic pathways, and recruitment of cell survival pathways preventing collapse of membrane potential and nuclear apoptosis. Regarding exercise, the issues discussed relate to the O2 sensitivity of metabolic rate, O2 kinetics in exercise, and influences of available O2 on glycolysis and lactate production.
Collapse
Affiliation(s)
- T L Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.
| | | | | |
Collapse
|
20
|
Sobotta MC, Barata AG, Schmidt U, Mueller S, Millonig G, Dick TP. Exposing cells to H2O2: a quantitative comparison between continuous low-dose and one-time high-dose treatments. Free Radic Biol Med 2013; 60:325-35. [PMID: 23485584 DOI: 10.1016/j.freeradbiomed.2013.02.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/07/2013] [Accepted: 02/15/2013] [Indexed: 01/01/2023]
Abstract
Most studies investigating the influence of H2O2 on cells in culture apply nonphysiological concentrations over nonphysiological time periods (i.e., a one-time bolus that is metabolized in minutes). As an alternative, the glucose oxidase/catalase (GOX/CAT) system allows application of physiologically relevant H2O2 concentrations (300nM-10µM) over physiologically relevant time periods (up to 24h). Recent findings suggest that bolus and GOX/CAT treatments can lead to opposing cellular responses, thus warranting a quantitative comparison between the two approaches. First, we established a reaction-diffusion model that can predict the behavior of the GOX/CAT system with spatiotemporal resolution, thus aiding selection of optimal experimental conditions for its application. Measurements of H2O2 concentration in the cellular supernatant with the luminol/hypochlorite system were consistent with the predictions of the model. Second, we compared the impact of bolus and GOX/CAT treatments on cytosolic H2O2 levels over time. Intracellular H2O2 was monitored by the response of the thiol peroxidase Prx2 and the H2O2 sensor roGFP2-Orp1. We found that Prx2 rapidly and reversibly responds to submicromolar H2O2 levels and accurately reflects kinetic competition with cellular catalase. Our measurements reveal fundamental differences in the dynamic response of cellular H2O2 concentrations following either bolus or GOX/CAT treatments. Thus, different, or even opposing, biological outcomes from differing means of H2O2 delivery may be expected. Cellular responses induced by bolus treatment may not occur under GOX/CAT conditions, and vice versa.
Collapse
Affiliation(s)
- Mirko C Sobotta
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Figueira TR, Barros MH, Camargo AA, Castilho RF, Ferreira JCB, Kowaltowski AJ, Sluse FE, Souza-Pinto NC, Vercesi AE. Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid Redox Signal 2013; 18:2029-74. [PMID: 23244576 DOI: 10.1089/ars.2012.4729] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondrially generated reactive oxygen species are involved in a myriad of signaling and damaging pathways in different tissues. In addition, mitochondria are an important target of reactive oxygen and nitrogen species. Here, we discuss basic mechanisms of mitochondrial oxidant generation and removal and the main factors affecting mitochondrial redox balance. We also discuss the interaction between mitochondrial reactive oxygen and nitrogen species, and the involvement of these oxidants in mitochondrial diseases, cancer, neurological, and cardiovascular disorders.
Collapse
Affiliation(s)
- Tiago R Figueira
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Robinson JL, Brynildsen MP. A kinetic platform to determine the fate of nitric oxide in Escherichia coli. PLoS Comput Biol 2013; 9:e1003049. [PMID: 23658508 PMCID: PMC3642044 DOI: 10.1371/journal.pcbi.1003049] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 03/19/2013] [Indexed: 12/14/2022] Open
Abstract
Nitric oxide (NO•) is generated by the innate immune response to neutralize pathogens. NO• and its autoxidation products have an extensive biochemical reaction network that includes reactions with iron-sulfur clusters, DNA, and thiols. The fate of NO• inside a pathogen depends on a kinetic competition among its many targets, and is of critical importance to infection outcomes. Due to the complexity of the NO• biochemical network, where many intermediates are short-lived and at extremely low concentrations, several species can be measured, but stable products are non-unique, and damaged biomolecules are continually repaired or regenerated, kinetic models are required to understand and predict the outcome of NO• treatment. Here, we have constructed a comprehensive kinetic model that encompasses the broad reactivity of NO• in Escherichia coli. The incorporation of spontaneous and enzymatic reactions, as well as damage and repair of biomolecules, allowed for a detailed analysis of how NO• distributes in E. coli cultures. The model was informed with experimental measurements of NO• dynamics, and used to identify control parameters of the NO• distribution. Simulations predicted that NO• dioxygenase (Hmp) functions as a dominant NO• consumption pathway at O2 concentrations as low as 35 µM (microaerobic), and interestingly, loses utility as the NO• delivery rate increases. We confirmed these predictions experimentally by measuring NO• dynamics in wild-type and mutant cultures at different NO• delivery rates and O2 concentrations. These data suggest that the kinetics of NO• metabolism must be considered when assessing the importance of cellular components to NO• tolerance, and that models such as the one described here are necessary to rigorously investigate NO• stress in microbes. This model provides a platform to identify novel strategies to potentiate the effects of NO•, and will serve as a template from which analogous models can be generated for other organisms.
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
23
|
Nitric oxide inhibits succinate dehydrogenase-driven oxygen consumption in potato tuber mitochondria in an oxygen tension-independent manner. Biochem J 2012; 449:263-73. [DOI: 10.1042/bj20120396] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NO (nitric oxide) is described as an inhibitor of plant and mammalian respiratory chains owing to its high affinity for COX (cytochrome c oxidase), which hinders the reduction of oxygen to water. In the present study we show that in plant mitochondria NO may interfere with other respiratory complexes as well. We analysed oxygen consumption supported by complex I and/or complex II and/or external NADH dehydrogenase in Percoll-isolated potato tuber (Solanum tuberosum) mitochondria. When mitochondrial respiration was stimulated by succinate, adding the NO donors SNAP (S-nitroso-N-acetyl-DL-penicillamine) or DETA-NONOate caused a 70% reduction in oxygen consumption rate in state 3 (stimulated with 1 mM of ADP). This inhibition was followed by a significant increase in the Km value of SDH (succinate dehydrogenase) for succinate (Km of 0.77±0.19 to 34.3±5.9 mM, in the presence of NO). When mitochondrial respiration was stimulated by external NADH dehydrogenase or complex I, NO had no effect on respiration. NO itself and DETA-NONOate had similar effects to SNAP. No significant inhibition of respiration was observed in the absence of ADP. More importantly, SNAP inhibited PTM (potato tuber mitochondria) respiration independently of oxygen tensions, indicating a different kinetic mechanism from that observed in mammalian mitochondria. We also observed, in an FAD reduction assay, that SNAP blocked the intrinsic SDH electron flow in much the same way as TTFA (thenoyltrifluoroacetone), a non-competitive SDH inhibitor. We suggest that NO inhibits SDH in its ubiquinone site or its Fe–S centres. These data indicate that SDH has an alternative site of NO action in plant mitochondria.
Collapse
|
24
|
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease that is considered by many people to have an autoimmune aetiology. In recent years, new data emerging from histopathology, imaging and other studies have expanded our understanding of the disease and may change the way in which it is treated. Conceptual shifts have included: first, an appreciation of the extent to which the neuron and its axon are affected in MS, and second, elucidation of how the neurobiology of axon-glial and, particularly, axon-myelin interaction may influence disease progression. In this article, we review advances in both areas, focusing on the molecular mechanisms underlying axonal loss in acute inflammation and in chronic demyelination, and discussing how the restoration of myelin sheaths via the regenerative process of remyelination might prevent axon degeneration. An understanding of these processes could lead to better strategies for the prevention and treatment of axonal loss, which will ultimately benefit patients with MS.
Collapse
|
25
|
Horan MP, Pichaud N, Ballard JWO. Review: Quantifying Mitochondrial Dysfunction in Complex Diseases of Aging. ACTA ACUST UNITED AC 2012; 67:1022-35. [DOI: 10.1093/gerona/glr263] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Pintus F, Spanò D, Bellelli A, Angelucci F, Forte E, Medda R, Floris G. Nitric oxide, substrate of Euphorbia characias peroxidase, switches off the CN(-) inhibitory effect. FEBS Open Bio 2012; 2:305-12. [PMID: 23772363 PMCID: PMC3678129 DOI: 10.1016/j.fob.2012.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/10/2012] [Accepted: 09/23/2012] [Indexed: 11/16/2022] Open
Abstract
The oxidation of nitric oxide (NO) by Euphorbia characias latex peroxidase (ELP-FeIII), in the presence or in the absence of added calcium, has been investigated. The addition of hydrogen peroxide to the native enzyme leads to the formation of Compound I and serves to catalyse the NO oxidation. The addition of NO to Compound I leads to the formation of Compound II and, afterwards, to the native enzyme spectrum. Under anaerobic conditions, the incubation of the native enzyme (ELP-FeIII)with NO leads to the formation of the stable complex, showing a characteristic absorption spectrum (ELP-FeII–NO+). The rate of the formation of this complex is slower in the presence of calcium than in its absence, and the same applies to the rate of the formation of Compound II from Compound I, using NO as substrate. Finally, we demonstrate that NO protects ELP from the inactivation caused by CN−via a mechanism presumably requiring the formation of an enzyme-nitrosyl cyanide complex.
Collapse
Affiliation(s)
- Francesca Pintus
- Department of Sciences of Life and Environment, University of Cagliari, I-09042 Monserrato, Cagliari, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Pesta D, Gnaiger E. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol 2012; 810:25-58. [PMID: 22057559 DOI: 10.1007/978-1-61779-382-0_3] [Citation(s) in RCA: 711] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protocols for high-resolution respirometry (HRR) of intact cells, permeabilized cells, and permeabilized muscle fibers offer sensitive diagnostic tests of integrated mitochondrial function using standard cell culture techniques and small needle biopsies of muscle. Multiple substrate-uncoupler-inhibitor titration (SUIT) protocols for analysis of oxidative phosphorylation improve our understanding of mitochondrial respiratory control and the pathophysiology of mitochondrial diseases. Respiratory states are defined in functional terms to account for the network of metabolic interactions in complex SUIT protocols with stepwise modulation of coupling and substrate control. A regulated degree of intrinsic uncoupling is a hallmark of oxidative phosphorylation, whereas pathological and toxicological dyscoupling is evaluated as a mitochondrial defect. The noncoupled state of maximum respiration is experimentally induced by titration of established uncouplers (FCCP, DNP) to collapse the proton gradient across the mitochondrial inner membrane and measure the capacity of the electron transfer system (ETS, open-circuit operation of respiration). Intrinsic uncoupling and dyscoupling are evaluated as the flux control ratio between nonphosphorylating LEAK respiration (electron flow coupled to proton pumping to compensate for proton leaks) and ETS capacity. If OXPHOS capacity (maximally ADP-stimulated oxygen flux) is less than ETS capacity, the phosphorylation system contributes to flux control. Physiological Complex I + II substrate combinations are required to reconstitute TCA cycle function. This supports maximum ETS and OXPHOS capacities, due to the additive effect of multiple electron supply pathways converging at the Q-junction. Substrate control with electron entry separately through Complex I (pyruvate + malate or glutamate + malate) or Complex II (succinate + rotenone) restricts ETS capacity and artificially enhances flux control upstream of the Q-cycle, providing diagnostic information on specific branches of the ETS. Oxygen levels are maintained above air saturation in protocols with permeabilized muscle fibers to avoid experimental oxygen limitation of respiration. Standardized two-point calibration of the polarographic oxygen sensor (static sensor calibration), calibration of the sensor response time (dynamic sensor calibration), and evaluation of instrumental background oxygen flux (systemic flux compensation) provide the unique experimental basis for high accuracy of quantitative results and quality control in HRR.
Collapse
Affiliation(s)
- Dominik Pesta
- D.Swarovski Research Laboratory, Department of General and Transplant Surgery, Medical University of Innsbruck, Innrain 52, Christoph-Probst-Platz, 6020 Innsbruck, Austria
| | | |
Collapse
|
28
|
Tello D, Balsa E, Acosta-Iborra B, Fuertes-Yebra E, Elorza A, Ordóñez Á, Corral-Escariz M, Soro I, López-Bernardo E, Perales-Clemente E, Martínez-Ruiz A, Enríquez JA, Aragonés J, Cadenas S, Landázuri MO. Induction of the mitochondrial NDUFA4L2 protein by HIF-1α decreases oxygen consumption by inhibiting Complex I activity. Cell Metab 2011; 14:768-79. [PMID: 22100406 DOI: 10.1016/j.cmet.2011.10.008] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/21/2011] [Accepted: 10/07/2011] [Indexed: 01/26/2023]
Abstract
The fine regulation of mitochondrial function has proved to be an essential metabolic adaptation to fluctuations in oxygen availability. During hypoxia, cells activate an anaerobic switch that favors glycolysis and attenuates the mitochondrial activity. This switch involves the hypoxia-inducible transcription factor-1 (HIF-1). We have identified a HIF-1 target gene, the mitochondrial NDUFA4L2 (NADH dehydrogenase [ubiquinone] 1 alpha subcomplex, 4-like 2). Our results, obtained employing NDUFA4L2-silenced cells and NDUFA4L2 knockout murine embryonic fibroblasts, indicate that hypoxia-induced NDUFA4L2 attenuates mitochondrial oxygen consumption involving inhibition of Complex I activity, which limits the intracellular ROS production under low-oxygen conditions. Thus, reducing mitochondrial Complex I activity via NDUFA4L2 appears to be an essential element in the mitochondrial reprogramming induced by HIF-1.
Collapse
Affiliation(s)
- Daniel Tello
- Servicio de Inmunología, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, 28006, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Robinson MA, Baumgardner JE, Otto CM. Oxygen-dependent regulation of nitric oxide production by inducible nitric oxide synthase. Free Radic Biol Med 2011; 51:1952-65. [PMID: 21958548 DOI: 10.1016/j.freeradbiomed.2011.08.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 12/19/2022]
Abstract
Inducible nitric oxide synthase (iNOS) catalyzes the reaction that converts the substrates O(2) and l-arginine to the products nitric oxide (NO) and l-citrulline. Macrophages, and many other cell types, upregulate and express iNOS primarily in response to inflammatory stimuli. Physiological and pathophysiological oxygen tension can regulate NO production by iNOS at multiple levels, including transcriptional, translational, posttranslational, enzyme dimerization, cofactor availability, and substrate dependence. Cell culture techniques that emphasize control of cellular PO(2), and measurement of NO or its stable products, have been used by several investigators for in vitro study of the O(2) dependence of NO production at one or more of these levels. In most cell types, prior or concurrent exposure to cytokines or other inflammatory stimuli is required for the upregulation of iNOS mRNA and protein by hypoxia. Important transcription factors that target the iNOS promoter in hypoxia include hypoxia-inducible factor 1 and/or nuclear factor κB. In contrast to the upregulation of iNOS by hypoxia, in most cell types NO production is reduced by hypoxia. Recent work suggests a prominent role for O(2) substrate dependence in the short-term regulation of iNOS-mediated NO production.
Collapse
Affiliation(s)
- Mary A Robinson
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6010, USA
| | | | | |
Collapse
|
30
|
Kristiansen G, Hu J, Wichmann D, Stiehl DP, Rose M, Gerhardt J, Bohnert A, ten Haaf A, Moch H, Raleigh J, Varia MA, Subarsky P, Scandurra FM, Gnaiger E, Gleixner E, Bicker A, Gassmann M, Hankeln T, Dahl E, Gorr TA. Endogenous myoglobin in breast cancer is hypoxia-inducible by alternative transcription and functions to impair mitochondrial activity: a role in tumor suppression? J Biol Chem 2011; 286:43417-28. [PMID: 21930697 DOI: 10.1074/jbc.m111.227553] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recently, immunohistochemical analysis of myoglobin (MB) in human breast cancer specimens has revealed a surprisingly widespread expression of MB in this nonmuscle context. The positive correlation with hypoxia-inducible factor 2α (HIF-2α) and carbonic anhydrase IX suggested that oxygen regulates myoglobin expression in breast carcinomas. Here, we report that MB mRNA and protein levels are robustly induced by prolonged hypoxia in breast cancer cell lines, in part via HIF-1/2-dependent transactivation. The hypoxia-induced MB mRNA originated from a novel alternative transcription start site 6 kb upstream of the ATG codon. MB regulation in normal and tumor tissue may thus be fundamentally different. Functionally, the knockdown of MB in MDA-MB468 breast cancer cells resulted in an unexpected increase of O(2) uptake and elevated activities of mitochondrial enzymes during hypoxia. Silencing of MB transcription attenuated proliferation rates and motility capacities of hypoxic cancer cells and, surprisingly, also fully oxygenated breast cancer cells. Endogenous MB in cancer cells is apparently involved in controlling oxidative cell energy metabolism, contrary to earlier findings on mouse heart, where the targeted disruption of the Mb gene did not effect myocardial energetics and O(2) consumption. This control function of MB seemingly impacts mitochondria and influences cell proliferation and motility, but it does so in ways not directly related to the facilitated diffusion or storage of O(2). Hypothetically, the mitochondrion-impairing role of MB in hypoxic cancer cells is part of a novel tumor-suppressive function.
Collapse
Affiliation(s)
- Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sarti P, Forte E, Mastronicola D, Giuffrè A, Arese M. Cytochrome c oxidase and nitric oxide in action: molecular mechanisms and pathophysiological implications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:610-9. [PMID: 21939634 DOI: 10.1016/j.bbabio.2011.09.002] [Citation(s) in RCA: 340] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND The reactions between Complex IV (cytochrome c oxidase, CcOX) and nitric oxide (NO) were described in the early 60's. The perception, however, that NO could be responsible for physiological or pathological effects, including those on mitochondria, lags behind the 80's, when the identity of the endothelial derived relaxing factor (EDRF) and NO synthesis by the NO synthases were discovered. NO controls mitochondrial respiration, and cytotoxic as well as cytoprotective effects have been described. The depression of OXPHOS ATP synthesis has been observed, attributed to the inhibition of mitochondrial Complex I and IV particularly, found responsible of major effects. SCOPE OF REVIEW The review is focused on CcOX and NO with some hints about pathophysiological implications. The reactions of interest are reviewed, with special attention to the molecular mechanisms underlying the effects of NO observed on cytochrome c oxidase, particularly during turnover with oxygen and reductants. MAJOR CONCLUSIONS AND GENERAL SIGNIFICANCE The NO inhibition of CcOX is rapid and reversible and may occur in competition with oxygen. Inhibition takes place following two pathways leading to formation of either a relatively stable nitrosyl-derivative (CcOX-NO) of the enzyme reduced, or a more labile nitrite-derivative (CcOX-NO(2)(-)) of the enzyme oxidized, and during turnover. The pathway that prevails depends on the turnover conditions and concentration of NO and physiological substrates, cytochrome c and O(2). All evidence suggests that these parameters are crucial in determining the CcOX vs NO reaction pathway prevailing in vivo, with interesting physiological and pathological consequences for cells.
Collapse
Affiliation(s)
- Paolo Sarti
- Department of Biochemical Sciences, Sapienza University of Rome, Italy.
| | | | | | | | | |
Collapse
|
32
|
Martínez-Ruiz A, Cadenas S, Lamas S. Nitric oxide signaling: classical, less classical, and nonclassical mechanisms. Free Radic Biol Med 2011; 51:17-29. [PMID: 21549190 DOI: 10.1016/j.freeradbiomed.2011.04.010] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/10/2011] [Accepted: 04/04/2011] [Indexed: 12/20/2022]
Abstract
Although nitric oxide (NO) was identified more than 150 years ago and its effects were clinically tested in the form of nitroglycerine, it was not until the decades of 1970-1990 that it was described as a gaseous signal transducer. Since then, a canonical pathway linked to cyclic GMP (cGMP) as its quintessential effector has been established, but other modes of action have emerged and are now part of the common body of knowledge within the field. Classical (or canonical) signaling involves the selective activation of soluble guanylate cyclase, the generation of cGMP, and the activation of specific kinases (cGMP-dependent protein kinases) by this cyclic nucleotide. Nonclassical signaling alludes to the formation of NO-induced posttranslational modifications (PTMs), especially S-nitrosylation, S-glutathionylation, and tyrosine nitration. These PTMs are governed by specific biochemical mechanisms as well as by enzymatic systems. In addition, a less classical but equally important pathway is related to the interaction between NO and mitochondrial cytochrome c oxidase, which might have important implications for cell respiration and intermediary metabolism. Cross talk trespassing these necessarily artificial conceptual boundaries is progressively being identified and hence an integrated systems biology approach to the comprehension of NO function will probably emerge in the near future.
Collapse
Affiliation(s)
- Antonio Martínez-Ruiz
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | | | | |
Collapse
|
33
|
Aguirre E, López-Bernardo E, Cadenas S. Functional evidence for nitric oxide production by skeletal-muscle mitochondria from lipopolysaccharide-treated mice. Mitochondrion 2011; 12:126-31. [PMID: 21664300 DOI: 10.1016/j.mito.2011.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 05/06/2011] [Accepted: 05/25/2011] [Indexed: 01/07/2023]
Abstract
The possible existence of a mitochondrially localized nitric oxide (NO) synthase (mtNOS) is controversial. To clarify this, we studied the ability of intact mitochondria to generate NO and the effect of mitochondrial NO on respiration. Respiratory rates and oxygen kinetics (P(50) values) were determined by high-resolution respirometry in skeletal-muscle mitochondria from control mice and mice injected with Escherichia coli lipopolysaccharide (LPS). In the presence of the NOS substrate L-arginine, mitochondria from LPS-treated mice had lower respiration rates and higher P(50) values than control animals. These effects were prevented by the NOS inhibitor L-NMMA. Our results suggest that mitochondrially derived NO is generated by an LPS-inducible NOS protein other than iNOS and modulates oxygen consumption in mouse skeletal muscle.
Collapse
Affiliation(s)
- Enara Aguirre
- Department of Regenerative Cardiology, Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | | | |
Collapse
|
34
|
Larsen FJ, Schiffer TA, Borniquel S, Sahlin K, Ekblom B, Lundberg JO, Weitzberg E. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab 2011; 13:149-59. [PMID: 21284982 DOI: 10.1016/j.cmet.2011.01.004] [Citation(s) in RCA: 491] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 10/22/2010] [Accepted: 12/07/2010] [Indexed: 02/04/2023]
Abstract
Nitrate, an inorganic anion abundant in vegetables, is converted in vivo to bioactive nitrogen oxides including NO. We recently demonstrated that dietary nitrate reduces oxygen cost during physical exercise, but the mechanism remains unknown. In a double-blind crossover trial we studied the effects of a dietary intervention with inorganic nitrate on basal mitochondrial function and whole-body oxygen consumption in healthy volunteers. Skeletal muscle mitochondria harvested after nitrate supplementation displayed an improvement in oxidative phosphorylation efficiency (P/O ratio) and a decrease in state 4 respiration with and without atractyloside and respiration without adenylates. The improved mitochondrial P/O ratio correlated to the reduction in oxygen cost during exercise. Mechanistically, nitrate reduced the expression of ATP/ADP translocase, a protein involved in proton conductance. We conclude that dietary nitrate has profound effects on basal mitochondrial function. These findings may have implications for exercise physiology- and lifestyle-related disorders that involve dysfunctional mitochondria.
Collapse
Affiliation(s)
- Filip J Larsen
- Department of Physiology and Pharmacology, Karolinska Institutet, 11486 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Nitric oxide (NO) is just one member of a new class of gaseous signalling molecules with fundamental actions in biology. In higher vertebrates it has key roles in maintaining haemostasis and in smooth muscle (especially vascular smooth muscle), neurons and the gastrointestinal tract. It is intimately involved in regulating all aspects of our lives from waking, digestion, sexual function, perception of pain and pleasure, memory recall and sleeping. Finally, the way it continues to function in our bodies will influence how we degenerate with age. It will likely play a role in our deaths through cardiovascular disease, stroke, diabetes and cancer. Our ability to control NO signalling and to use NO effectively in therapy must therefore have a major bearing on the future quality and duration of human life.
Collapse
Affiliation(s)
- David G Hirst
- School of Pharmacy, Queen's University Belfast, BT9 7BL Belfast, UK.
| | | |
Collapse
|
36
|
Bassuk JI, Wu H, Arias J, Kurlansky P, Adams JA. Whole body periodic acceleration (pGz) improves survival and allows for resuscitation in a model of severe hemorrhagic shock in pigs. J Surg Res 2010; 164:e281-9. [PMID: 20869084 DOI: 10.1016/j.jss.2010.07.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/07/2010] [Accepted: 07/18/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Whole body periodic acceleration (pGz), the repetitive, head-foot sinusoidal motion of the body, increases pulsatile shear stress on the vascular endothelium producing increased release of endothelial derived nitric oxide (eNO) into circulation. Based upon prior CPR investigations, we hypothesized that pGz instituted prior to and during hemorrhagic shock (HS) should improve survival. MATERIALS AND METHODS Sixteen anesthetized male pigs, 23 ± 5 kg, were randomized to receive 1 h pGz or no pGz (CONT) prior to and during severe controlled graded HS up to 2-1/2 h. HS was induced by removing blood at 10 mL/kg increments from the circulation at 30-min intervals up to a maximum blood loss of 50 mL/kg. Thirty minutes after maximum blood loss, shed blood and lactated Ringers solution was infused intravenously. RESULTS All animals survived up to 30 mL/kg blood loss. Survival and return to normal blood pressure to 120 min was achieved in 50% of animals receiving pGz compared with none in CONT. Cardiac output, blood pressure, and oxygen delivery decreased equally in both groups but oxygen consumption was significantly lower with pGz than CONT during all hemorrhage time points. Regional blood flow (RBF) was preserved in brain, heart, kidneys, ileum, and stomach in both groups up to 40 mL/kg of blood loss. After 40 mL/kg blood loss, RBF was much better preserved in pGz than CONT. CONCLUSIONS pGz applied 1 h prior to and during severe graded hemorrhagic shock delays onset of irreversible shock, enabling potential restoration of blood loss and survival.
Collapse
Affiliation(s)
- Jorge I Bassuk
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, Florida 33140, USA
| | | | | | | | | |
Collapse
|
37
|
Cadenas S, Aragonés J, Landázuri MO. Mitochondrial reprogramming through cardiac oxygen sensors in ischaemic heart disease. Cardiovasc Res 2010; 88:219-28. [PMID: 20679415 DOI: 10.1093/cvr/cvq256] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Under hypoxic conditions, mitochondria can represent a threat to the cell because of their capacity to generate toxic reactive oxygen species (ROS). However, cardiomyocytes are equipped with an oxygen-sensing pathway that involves prolyl hydroxylase oxygen sensors and hypoxia-inducible factors (HIFs), which induces a tightly regulated programme to keep ischaemic mitochondrial activity under control. The aim of this review is to provide an update on the pathways leading to mitochondrial reprogramming, which occurs in the myocardium during ischaemia, with particular emphasis on those induced by HIF activation. We start by studying the mechanisms of mitochondrial damage during ischaemia and upon reperfusion, highlighting the importance of the formation of the mitochondrial permeability transition pore during reperfusion and its consequences for cardiomyocyte survival. Next, we analyse hypoxia-induced metabolic reprogramming through HIF and its important consequences for mitochondrial bioenergetics, as well as the phenomenon known as the hibernating myocardium. Subsequently, we examine the mechanisms underlying ischaemic preconditioning, focusing, in particular, on those that involve the HIF pathway, such as adenosine signalling, sub-lethal ROS generation, and nitric oxide production. Finally, the role of the mitochondrial uncoupling proteins in ischaemia tolerance is discussed.
Collapse
Affiliation(s)
- Susana Cadenas
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa , Diego de León 62, 28006 Madrid, Spain.
| | | | | |
Collapse
|
38
|
Aguirre E, Cadenas S. GDP and carboxyatractylate inhibit 4-hydroxynonenal-activated proton conductance to differing degrees in mitochondria from skeletal muscle and heart. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1716-26. [PMID: 20599679 DOI: 10.1016/j.bbabio.2010.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 06/15/2010] [Accepted: 06/19/2010] [Indexed: 12/17/2022]
Abstract
The lipid peroxidation product 4-hydroxynonenal (HNE) increases the proton conductance of the inner mitochondrial membrane through effects on uncoupling proteins (UCPs) and the adenine nucleotide translocase (ANT); however, the relative contribution of the two carriers to these effects is unclear. To clarify this we isolated mitochondria from skeletal muscle and heart of wild-type and Ucp3 knockout (Ucp3KO) mice. To increase UCP3 expression, some mice were i.p. injected with LPS (12mg/kg body weight). In spite of the increased UCP3 expression levels, basal proton conductance did not change. HNE increased the proton conductance of skeletal muscle and heart mitochondria. In skeletal muscle, this increase was lower in Ucp3KO mice and higher in LPS-treated wild-type mice, and was partially abolished by GDP (UCPs inhibitor) and completely abolished by carboxyatractylate (ANT inhibitor) or addition of both inhibitors. GDP had no effect on HNE-induced conductance in heart mitochondria, but carboxyatractylate or administration of both inhibitors had a partial effect. GDP-mediated inhibition of HNE-activated proton conductance in skeletal muscle mitochondria was not observed in Ucp3KO mice, indicating that GDP is specific for UCP3, at least in muscle. Carboxyatractylate was able to inhibit UCP3, probably through an indirect mechanism. Our results are consistent with the conclusion that, in skeletal muscle, HNE-induced increase in proton conductance is mediated by UCP3 (30%) and ANT, whereas in the heart the increase is mediated by ANT and other carriers, possibly including UCP3.
Collapse
Affiliation(s)
- Enara Aguirre
- Department of Regenerative Cardiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | |
Collapse
|