1
|
Costa ADS, Ghouri I, Johnston A, McGlynn K, McNair A, Bowman P, Malik N, Hurren J, Bingelis T, Dunne M, Smith GL, Kemi OJ. Electrically stimulated in vitro heart cell mimic of acute exercise reveals novel immediate cellular responses to exercise: Reduced contractility and metabolism, but maintained calcium cycling and increased myofilament calcium sensitivity. Cell Biochem Funct 2023; 41:1147-1161. [PMID: 37665041 PMCID: PMC10947300 DOI: 10.1002/cbf.3847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Cardiac cellular responses to acute exercise remain undescribed. We present a model for mimicking acute aerobic endurance exercise to freshly isolated cardiomyocytes by evoking exercise-like contractions over prolonged periods of time with trains of electrical twitch stimulations. We then investigated immediate contractile, Ca2+ , and metabolic responses to acute exercise in perfused freshly isolated left ventricular rat cardiomyocytes, after a matrix-design optimized protocol and induced a mimic for acute aerobic endurance exercise by trains of prolonged field twitch stimulations. Acute exercise decreased cardiomyocyte fractional shortening 50%-80% (p < .01). This was not explained by changes to intracellular Ca2+ handling (p > .05); rather, we observed a weak insignificant Ca2+ transient increase (p = .11), while myofilament Ca2+ sensitivity increased 20%-70% (p < .05). Acidic pH 6.8 decreased fractional shortening 20%-70% (p < .05) because of 20%-30% decreased Ca2+ transients (p < .05), but no difference occurred between control and acute exercise (p > .05). Addition of 1 or 10 mM La- increased fractional shortening in control (1 mM La- : no difference, p > .05; 10 mM La- : 20%-30%, p < .05) and acute exercise (1 mM La- : 40%-90%, p < .01; 10 mM La- : 50%-100%, p < .01) and rendered acute exercise indifferent from control (p > .05). Intrinsic autofluorescence showed a resting NADstate of 0.59 ± 0.04 and FADstate of 0.17 ± 0.03, while acute exercise decreased NADH/FAD ratio 8% (p < .01), indicating intracellular oxidation. In conclusion, we show a novel approach for studying immediate acute cardiomyocyte responses to aerobic endurance exercise. We find that acute exercise in cardiomyocytes decreases contraction, but Ca2+ handling and myofilament Ca2+ sensitivity compensate for this, while acidosis and reduced energy substrate and mitochondrial ATP generation explain this.
Collapse
Affiliation(s)
- Ana Da Silva Costa
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Graduate School, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Iffath Ghouri
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Alexander Johnston
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Karen McGlynn
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Andrew McNair
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Peter Bowman
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Natasha Malik
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Johanne Hurren
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Tomas Bingelis
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Michael Dunne
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Godfrey L. Smith
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Ole J. Kemi
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
2
|
Harisseh R, Chiari P, Villedieu C, Sueur P, Abrial M, Fellahi JL, Ovize M, Gharib A. Cyclophilin D Modulates the Cardiac Mitochondrial Target of Isoflurane, Sevoflurane, and Desflurane. J Cardiovasc Pharmacol 2017; 69:326-334. [PMID: 28328748 DOI: 10.1097/fjc.0000000000000479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Volatile anesthetics are known to limit myocardial ischemia-reperfusion injuries. Mitochondria were shown to be major contributors to cardioprotection. Cyclophilin D (CypD) is one of the main regulators of mitochondria-induced cell death. We compared the effect of isoflurane, sevoflurane, and desflurane in the presence or absence of CypD, to clarify its role in the mechanism of cardioprotection induced by these anesthetics. METHODS Oxidative phosphorylation, mitochondrial membrane potential, and H2O2 production were measured in isolated mitochondria from wild-type (WT) or CypD knockout mice in basal conditions and after hypoxia-reoxygenation in the presence or absence of volatile anesthetics. RESULTS All volatile anesthetics inhibited mitochondrial state 3 of complex I, decreased membrane potential, and increased adenosine diphosphate consumption duration in both WT and CypD knockout mice. However, they differently modified H2O2 production after stimulation by succinate: CypD ablation reduced H2O2 production, isoflurane decreased H2O2 level in WT but not in CypD knockout mice, sevoflurane affected both lines whereas desflurane increased H2O2 production in CypD knockout and had no effect on WT mice. CONCLUSIONS This study showed different effects of isoflurane, sevoflurane, and desflurane on mitochondrial functions and highlighted the implication of CypD in the regulation of adenosine diphosphate consumption and complex I-induced radical oxygen species production.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Anesthetics, Inhalation/pharmacology
- Animals
- Peptidyl-Prolyl Isomerase F
- Cyclophilins/deficiency
- Cyclophilins/genetics
- Cyclophilins/metabolism
- Cytoprotection
- Desflurane
- Energy Metabolism/drug effects
- Genotype
- Hydrogen Peroxide/metabolism
- Isoflurane/analogs & derivatives
- Isoflurane/pharmacology
- Male
- Membrane Potential, Mitochondrial/drug effects
- Methyl Ethers/pharmacology
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/pathology
- Myocardial Reperfusion Injury/enzymology
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Oxidative Phosphorylation/drug effects
- Phenotype
- Protective Agents/pharmacology
- Sevoflurane
- Time Factors
Collapse
Affiliation(s)
- Rania Harisseh
- *INSERM UMR 1060, CarMeN Laboratory, Univ Lyon1, IHU OPERA, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France; †Service d'Anesthésie Réanimation, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France; and ‡Service d'Explorations Fonctionnelles Cardiovasculaires & CIC de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Sedlic F, Muravyeva MY, Sepac A, Sedlic M, Williams AM, Yang M, Bai X, Bosnjak ZJ. Targeted Modification of Mitochondrial ROS Production Converts High Glucose-Induced Cytotoxicity to Cytoprotection: Effects on Anesthetic Preconditioning. J Cell Physiol 2016; 232:216-24. [PMID: 27138089 DOI: 10.1002/jcp.25413] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/28/2016] [Indexed: 11/12/2022]
Abstract
Contradictory reports on the effects of diabetes and hyperglycemia on myocardial infarction range from cytotoxicity to cytoprotection. The study was designed to investigate acute effects of high glucose-driven changes in mitochondrial metabolism and osmolarity on adaptive mechanisms and resistance to oxidative stress of isolated rat cardiomyocytes. We examined the effects of high glucose on several parameters of mitochondrial bioenergetics, including changes in oxygen consumption, mitochondrial membrane potential, and NAD(P)H fluorometry. Effects of high glucose on the endogenous cytoprotective mechanisms elicited by anesthetic preconditioning (APC) and the mediators of cell injury were also tested. These experiments included real-time measurements of reactive oxygen species (ROS) production and mitochondrial permeability transition pore (mPTP) opening in single cells by laser scanning fluorescence confocal microscopy, and cell survival assay. High glucose rapidly enhanced mitochondrial energy metabolism, observed by increase in NAD(P)H fluorescence intensity, oxygen consumption, and mitochondrial membrane potential. This substantially elevated production of ROS, accelerated opening of the mPTP, and decreased survival of cells exposed to oxidative stress. Abrogation of high glucose-induced mitochondrial hyperpolarization with 2,4 dinitrophenol (DNP) significantly, but not completely, attenuated ROS production to a level similar to hyperosmotic mannitol control. DNP treatment reversed high glucose-induced cytotoxicity to cytoprotection. Hyperosmotic mannitol treatment also induced cytoprotection. High glucose abrogated APC-induced mitochondrial depolarization, delay in mPTP opening and cytoprotection. In conclusion, high glucose-induced mitochondrial hyperpolarization abolishes APC and augments cell injury. Attenuation of high glucose-induced ROS production by eliminating mitochondrial hyperpolarization protects cardiomyocytes. J. Cell. Physiol. 232: 216-224, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Filip Sedlic
- Department of Pathophysiology, University of Zagreb, School of Medicine, Croatia.
| | - Maria Y Muravyeva
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ana Sepac
- Department of Pathology, University of Zagreb, School of Medicine, Croatia
| | - Marija Sedlic
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anna Marie Williams
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Meiying Yang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiaowen Bai
- Departments of Anesthesiology and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Zeljko J Bosnjak
- Departments of Anesthesiology and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
4
|
Wu J, Zhang M, Li H, Sun X, Hao S, Ji M, Yang J, Li K. BDNF pathway is involved in the protective effects of SS-31 on isoflurane-induced cognitive deficits in aging mice. Behav Brain Res 2016; 305:115-21. [DOI: 10.1016/j.bbr.2016.02.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/24/2016] [Accepted: 02/28/2016] [Indexed: 01/21/2023]
|
5
|
Lee DN, Kim E, Lee JH, Kim JS, Kang C, Hong JI. Flavin-mediated photo-oxidation for the detection of mitochondrial flavins. Chem Commun (Camb) 2016; 52:13487-13490. [DOI: 10.1039/c6cc07483a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photooxidation-based probe1showed high selectivity for flavins and mitochondrial localization in live cells and tissues.
Collapse
Affiliation(s)
- Dong-Nam Lee
- Department of Chemistry
- College of Natural Sciences
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Eunjin Kim
- Graduate School of Medical Science
- Kyung Hee University
- Yongin
- Republic of Korea
| | - Jae Hong Lee
- Department of Chemistry
- Korea University
- Seoul 136-701
- Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry
- Korea University
- Seoul 136-701
- Republic of Korea
| | - Chulhun Kang
- Graduate School of Medical Science
- Kyung Hee University
- Yongin
- Republic of Korea
| | - Jong-In Hong
- Department of Chemistry
- College of Natural Sciences
- Seoul National University
- Seoul 08826
- Republic of Korea
| |
Collapse
|
6
|
MicroRNA-21 Mediates Isoflurane-induced Cardioprotection against Ischemia-Reperfusion Injury via Akt/Nitric Oxide Synthase/Mitochondrial Permeability Transition Pore Pathway. Anesthesiology 2015; 123:786-798. [PMID: 26259139 DOI: 10.1097/aln.0000000000000807] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The role of microRNA-21 in isoflurane-induced cardioprotection is unknown. The authors addressed this issue by using microRNA-21 knockout mice and explored the underlying mechanisms. METHODS C57BL/6 and microRNA-21 knockout mice were echocardiographically examined. Mouse hearts underwent 30 min of ischemia followed by 2 h of reperfusion in vivo or ex vivo in the presence or absence of 1.0 minimum alveolar concentration of isoflurane administered before ischemia. Cardiac Akt, endothelial nitric oxide synthase (eNOS), and neuronal nitric oxide synthase (nNOS) proteins were determined by Western blot analysis. Opening of the mitochondrial permeability transition pore (mPTP) in cardiomyocytes was induced by photoexcitation-generated oxidative stress and detected by rapid dissipation of tetramethylrhodamine ethyl ester fluorescence using a confocal microscope. RESULTS Genetic disruption of miR-21 gene did not alter phenotype of the left ventricle, baseline cardiac function, area at risk, and the ratios of phosphorylated-Akt/Akt, phosphorylated-eNOS/eNOS, and phosphorylated-nNOS/nNOS. Isoflurane decreased infarct size from 54 ± 10% in control to 36 ± 10% (P < 0.05, n = 8 mice per group), improved cardiac function after reperfusion, and increased the ratios of phosphorylated-Akt/AKT, phosphorylated-eNOS/eNOS, and phosphorylated-nNOS/nNOS in C57BL/6 mice subjected to ischemia-reperfusion injury. These beneficial effects of isoflurane were lost in microRNA-21 knockout mice. There were no significant differences in time of the mPTP opening induced by photoexcitation-generated oxidative stress in cardiomyocytes isolated between C57BL/6 and microRNA-21 knockout mice. Isoflurane significantly delayed mPTP opening in cardiomyocytes from C57BL/6 but not from microRNA-21 knockout mice. CONCLUSIONS Isoflurane protects mouse hearts from ischemia-reperfusion injury by a microRNA-21-dependent mechanism. The Akt/NOS/mPTP pathway is involved in the microRNA-21-mediated protective effect of isoflurane.
Collapse
|
7
|
Lotz C, Zhang J, Fang C, Liem D, Ping P. Isoflurane protects the myocardium against ischemic injury via the preservation of mitochondrial respiration and its supramolecular organization. Anesth Analg 2015; 120:265-74. [PMID: 25383718 DOI: 10.1213/ane.0000000000000494] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Isoflurane has been demonstrated to limit myocardial ischemic injury. This effect is hypothesized to be mediated in part via effects on mitochondria. We investigated the hypothesis that isoflurane maintains mitochondrial respiratory chain functionality, in turn limiting mitochondrial damage and mitochondrial membrane disintegration during myocardial ischemic injury. METHODS Mice (9-12 weeks of age) received isoflurane (1.0 minimum alveolar concentration) 36 hours before a 30-minute coronary artery occlusion that was followed by 24 hours of reperfusion. Cardiac mitochondria were isolated at a time point corresponding to 4 hours of reperfusion. 2,3,5-Triphenyltetrazoliumchloride staining was used to determine myocardial infarct size. Mitochondrial respiratory chain functionality was investigated using blue native polyacrylamide gel electrophoresis, as well as specific biochemical assays. Mitochondrial lipid peroxidation was quantified via the formation of malondialdehyde; mitochondrial membrane integrity was assessed by Ca-induced swelling. Protein identification was achieved via liquid chromatography mass spectrometry/mass spectrometry. RESULTS Thirty-one mice were studied. Mice receiving isoflurane displayed a reduced myocardial infarct size (P = 0.0011 versus ischemia/reperfusion [I/R]), accompanied by a preserved activity of respiratory complex III (P = 0.0008 versus I/R). Isoflurane stabilized mitochondrial supercomplexes consisting of oligomers from complex III/IV (P = 0.0086 versus I/R). Alleviation of mitochondrial damage after isoflurane treatment was further demonstrated as decreased malondialdehyde formation (P = 0.0019 versus I/R) as well as a diminished susceptibility to Ca-induced swelling (P = 0.0010 versus I/R). CONCLUSIONS Our findings support the hypothesis that isoflurane protects the heart from ischemic injury by maintaining the in vivo functionality of the mitochondrial respiratory chain. These effects may result in part from the preservation of mitochondrial supramolecular organization and minimized oxidative damage, circumventing the loss of mitochondrial membrane integrity.
Collapse
Affiliation(s)
- Christopher Lotz
- From the Department of Physiology, Division of Cardiology, University of California, Los Angeles, Los Angeles, California
| | | | | | | | | |
Collapse
|
8
|
Wüst RCI, Helmes M, Stienen GJM. Rapid changes in NADH and flavin autofluorescence in rat cardiac trabeculae reveal large mitochondrial complex II reserve capacity. J Physiol 2015; 593:1829-40. [PMID: 25640645 DOI: 10.1113/jphysiol.2014.286153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/27/2015] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS A photometry-based technique was developed to measure nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) autofluorescence and contractile properties simultaneously in intact rat trabeculae at a high time resolution. This provides insight into the function of mitochondrial complex I and II. Maximal complex I and complex II activities were determined in saponin-permeabilized right ventricular tissue by respirometry. In trabeculae, complex II function was considerably smaller than the maximal complex II activity, suggesting large complex II reserve capacity. Up-down asymmetry in NADH and FAD kinetics suggests a complex interaction between mitochondrial and contractile function. These data show that simultaneous measurement of contractile properties and NADH and FAD kinetics in cardiac trabeculae provides a mean to study the differences in complex I and II function in intact preparations in health and disease. ABSTRACT The functional properties of cardiac mitochondria in intact preparations have been mainly studied by measurements of nicotinamide adenine dinucleotide (NADH) autofluorescence, which reflects mitochondrial complex I function. To assess complex II function, we extended this method by measuring flavin adenine dinucleotide (FAD)-related autofluorescence in electrically stimulated cardiac trabeculae isolated from the right ventricle from the rat at 27°C. NADH and FAD autofluorescence and tension responses were measured when stimulation frequency was increased from 0.5 Hz to 1, 2 or 3 Hz for 3 min, and thereafter decreased to 0.5 Hz. Maximal complex I and complex II activity in vitro were determined in saponin-permeabilized right ventricular tissue by respirometry. NADH responses upon an increase in stimulation frequency showed a rapid decline, followed by a slow recovery towards the initial level. FAD responses followed a similar time course, but in the opposite direction. The amplitudes of early rapid changes in the NADH and FAD concentration correlated well with the change in tension time integral per second (R(2) = 0.833 and 0.660 for NADH and FAD, respectively), but with different slopes for the up and down transient. Maximal velocity of the increase in FAD concentration (16 ± 4 μm s(-1) ), measured upon an increase in stimulation frequency from 0.5 to 3 Hz was considerably smaller than that of the decrease in NADH (78 ± 13 μm s(-1) ). The respiration measurements indicated that the maximal velocity of NADH utilization (143 ± 14 μm s(-1) ) was 2 times smaller than that of FADH2 (291 ± 19 μm s(-1) ). This indicates that in cardiac mitochondria considerable complex II activity reserve is present.
Collapse
Affiliation(s)
- Rob C I Wüst
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, the Netherlands
| | | | | |
Collapse
|
9
|
Kikuchi C, Dosenovic S, Bienengraeber M. Anaesthetics as cardioprotectants: translatability and mechanism. Br J Pharmacol 2015; 172:2051-61. [PMID: 25322898 DOI: 10.1111/bph.12981] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/06/2014] [Accepted: 10/11/2014] [Indexed: 12/22/2022] Open
Abstract
The pharmacological conditioning of the heart with anaesthetics, such as volatile anaesthetics or opioids, is a phenomenon whereby a transient exposure to an anaesthetic agent protects the heart from the harmful consequences of myocardial ischaemia and reperfusion injury. The cellular and molecular mechanisms of anaesthetic conditioning appear largely to mimic those of ischaemic pre- and post-conditioning. Progress has been made on the understanding of the underlying mechanisms although the order of events and the specific targets of anaesthetics that trigger protection are not always clear. In the laboratory, the protection afforded by certain anaesthetics against cardiac ischaemia and reperfusion injury is powerful and reproducible but this has not necessarily translated into similarly robust clinical benefits. Indeed, clinical studies and meta-analyses delivered variable results when comparing in the laboratory setting protective and non-protective anaesthetics. Reasons for this include underlying conditions such as age, obesity and diabetes. Animal models for disease or ageing, human cardiomyocytes derived from stem cells of patients and further clinical studies are employed to better understand the underlying causes that prevent a more robust protection in patients.
Collapse
Affiliation(s)
- C Kikuchi
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Anesthesiology, Asahikawa Medical University, Asahikawa, Japan
| | | | | |
Collapse
|
10
|
Kikuchi C, Dosenovic S, Bienengraeber M. Anaesthetics as cardioprotectants: translatability and mechanism. Br J Pharmacol 2015. [PMID: 25322898 DOI: 10.1111/bph.2015.172.issue-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The pharmacological conditioning of the heart with anaesthetics, such as volatile anaesthetics or opioids, is a phenomenon whereby a transient exposure to an anaesthetic agent protects the heart from the harmful consequences of myocardial ischaemia and reperfusion injury. The cellular and molecular mechanisms of anaesthetic conditioning appear largely to mimic those of ischaemic pre- and post-conditioning. Progress has been made on the understanding of the underlying mechanisms although the order of events and the specific targets of anaesthetics that trigger protection are not always clear. In the laboratory, the protection afforded by certain anaesthetics against cardiac ischaemia and reperfusion injury is powerful and reproducible but this has not necessarily translated into similarly robust clinical benefits. Indeed, clinical studies and meta-analyses delivered variable results when comparing in the laboratory setting protective and non-protective anaesthetics. Reasons for this include underlying conditions such as age, obesity and diabetes. Animal models for disease or ageing, human cardiomyocytes derived from stem cells of patients and further clinical studies are employed to better understand the underlying causes that prevent a more robust protection in patients.
Collapse
Affiliation(s)
- C Kikuchi
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Anesthesiology, Asahikawa Medical University, Asahikawa, Japan
| | | | | |
Collapse
|
11
|
Agarwal B, Stowe DF, Dash RK, Bosnjak ZJ, Camara AKS. Mitochondrial targets for volatile anesthetics against cardiac ischemia-reperfusion injury. Front Physiol 2014; 5:341. [PMID: 25278902 PMCID: PMC4165278 DOI: 10.3389/fphys.2014.00341] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are critical modulators of cell function and are increasingly recognized as proximal sensors and effectors that ultimately determine the balance between cell survival and cell death. Volatile anesthetics (VA) are long known for their cardioprotective effects, as demonstrated by improved mitochondrial and cellular functions, and by reduced necrotic and apoptotic cell death during cardiac ischemia and reperfusion (IR) injury. The molecular mechanisms by which VA impart cardioprotection are still poorly understood. Because of the emerging role of mitochondria as therapeutic targets in diseases, including ischemic heart disease, it is important to know if VA-induced cytoprotective mechanisms are mediated at the mitochondrial level. In recent years, considerable evidence points to direct effects of VA on mitochondrial channel/transporter protein functions and electron transport chain (ETC) complexes as potential targets in mediating cardioprotection. This review furnishes an integrated overview of targets that VA impart on mitochondrial channels/transporters and ETC proteins that could provide a basis for cation regulation and homeostasis, mitochondrial bioenergetics, and reactive oxygen species (ROS) emission in redox signaling for cardiac cell protection during IR injury.
Collapse
Affiliation(s)
- Bhawana Agarwal
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
| | - David F. Stowe
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA
- Cardiovascular Research Center, Medical College of WisconsinMilwaukee, WI, USA
- Zablocki VA Medical CenterMilwaukee, WI, USA
- Department of Biomedical Engineering, Marquette UniversityMilwaukee, WI, USA
| | - Ranjan K. Dash
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA
- Department of Biomedical Engineering, Marquette UniversityMilwaukee, WI, USA
- Biotechnology and Bioengineering Center, Medical College of WisconsinMilwaukee, WI, USA
| | - Zeljko J. Bosnjak
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA
- Cardiovascular Research Center, Medical College of WisconsinMilwaukee, WI, USA
| | - Amadou K. S. Camara
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
- Cardiovascular Research Center, Medical College of WisconsinMilwaukee, WI, USA
| |
Collapse
|
12
|
Abstract
BACKGROUND Diabetes alters mitochondrial bioenergetics and consequently disrupts cardioprotective signaling. The authors investigated whether mitochondrial DNA (mtDNA) modulates anesthetic preconditioning (APC) and cardiac susceptibility to ischemia-reperfusion injury by using two strains of rats, both sharing nuclear genome of type 2 diabetes mellitus (T2DN) rats and having distinct mitochondrial genomes of Wistar and fawn-hooded hypertensive (FHH) rat strains (T2DN(mtWistar) and T2DN(mtFHH), respectively). METHODS Myocardial infarct size was measured in Wistar, T2DN(mtWistar), and T2DN(mtFHH) rats with or without APC (1.4% isoflurane) in the presence or absence of antioxidant N-acetylcysteine. Flavoprotein fluorescence intensity, a marker of mitochondrial redox state, 5-(and-6)-chloromethyl-2',7'-dichlorofluorescein fluorescence intensity, a marker of reactive oxygen species generation, and mitochondrial permeability transition pore opening were assessed in isolated rat ventricular cardiomyocytes with or without isoflurane (0.5 mmol/l). RESULTS Myocardial infarct size was decreased by APC in Wistar and T2DN(mtWistar) rats (to 42 ± 6%, n = 8; and 44 ± 7%, n = 8; of risk area, respectively) compared with their respective controls (60 ± 3%, n = 6; and 59 ± 9%, n = 7), but not in T2DN(mtFHH) rats (60 ± 2%, n = 8). N-acetylcysteine applied during isoflurane treatment restored APC in T2DN(mtFHH) (39 ± 6%, n = 7; and 38 ± 5%, n = 7; 150 and 75 mg/kg N-acetylcysteine, respectively), but abolished protection in control rats (54 ± 8%, n = 6). Similar to the data on infarct size, APC delayed mitochondrial permeability transition pore opening in T2DN(mtWistar) but not in T2DN(mtFHH) cardiomyocytes. Isoflurane increased flavoprotein and 5-(and-6)-chloromethyl-2',7'-dichlorofluorescein fluorescence intensity in all rat strains, with the greatest effect in T2DN(mtFHH) cardiomyocytes. CONCLUSION Differences in the mitochondrial genome modulate isoflurane-induced generation of reactive oxygen species which translates into differential susceptibility to APC and ischemia-reperfusion injury in diabetic rats.
Collapse
|
13
|
Agarwal B, Dash RK, Stowe DF, Bosnjak ZJ, Camara AKS. Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:354-65. [PMID: 24355434 DOI: 10.1016/j.bbabio.2013.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/28/2013] [Accepted: 11/13/2013] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction contributes to cardiac ischemia-reperfusion (IR) injury but volatile anesthetics (VA) may alter mitochondrial function to trigger cardioprotection. We hypothesized that the VA isoflurane (ISO) mediates cardioprotection in part by altering the function of several respiratory and transport proteins involved in oxidative phosphorylation (OxPhos). To test this we used fluorescence spectrophotometry to measure the effects of ISO (0, 0.5, 1, 2mM) on the time-course of interlinked mitochondrial bioenergetic variables during states 2, 3 and 4 respiration in the presence of either complex I substrate K(+)-pyruvate/malate (PM) or complex II substrate K(+)-succinate (SUC) at physiological levels of extra-matrix free Ca(2+) (~200nM) and Na(+) (10mM). To mimic ISO effects on mitochondrial functions and to clearly delineate the possible ISO targets, the observed actions of ISO were interpreted by comparing effects of ISO to those elicited by low concentrations of inhibitors that act at each respiratory complex, e.g. rotenone (ROT) at complex I or antimycin A (AA) at complex III. Our conclusions are based primarily on the similar responses of ISO and titrated concentrations of ETC. inhibitors during state 3. We found that with the substrate PM, ISO and ROT similarly decreased the magnitude of state 3 NADH oxidation and increased the duration of state 3 NADH oxidation, ΔΨm depolarization, and respiration in a concentration-dependent manner, whereas with substrate SUC, ISO and ROT decreased the duration of state 3 NADH oxidation, ΔΨm depolarization and respiration. Unlike AA, ISO reduced the magnitude of state 3 NADH oxidation with PM or SUC as substrate. With substrate SUC, after complete block of complex I with ROT, ISO and AA similarly increased the duration of state 3 ΔΨm depolarization and respiration. This study provides a mechanistic understanding in how ISO alters mitochondrial function in a way that may lead to cardioprotection.
Collapse
Affiliation(s)
- Bhawana Agarwal
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ranjan K Dash
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Research Service, Zablocki VA Medical Center, Milwaukee, WI, USA; Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA
| | - Zeljko J Bosnjak
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
14
|
Cyclosporine A at reperfusion fails to reduce infarct size in the in vivo rat heart. Basic Res Cardiol 2013; 108:379. [DOI: 10.1007/s00395-013-0379-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 07/04/2013] [Accepted: 08/06/2013] [Indexed: 01/25/2023]
|
15
|
Muravyeva M, Sedlic F, Dolan N, Bosnjak ZJ, Stadnicka A. Preconditioning by isoflurane elicits mitochondrial protective mechanisms independent of sarcolemmal KATP channel in mouse cardiomyocytes. J Cardiovasc Pharmacol 2013; 61:369-77. [PMID: 23318991 PMCID: PMC3648596 DOI: 10.1097/fjc.0b013e318285f55b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cardiac mitochondria and the sarcolemmal (sarc)KATP channels contribute to cardioprotective signaling of anesthetic-induced preconditioning. Changes in mitochondrial bioenergetics influence the sarcolemmal ATP-sensitive K (sarcKATP) channel function, but whether this channel has impacts on mitochondria is uncertain. We used the mouse model with deleted pore-forming Kir6.2 subunit of sarcKATP channel (Kir6.2 KO) to investigate whether the functional sarcKATP channels are necessary for isoflurane activation of mitochondrial protective mechanisms. Ventricular cardiomyocytes were isolated from C57Bl6 wild-type (WT) and Kir6.2 KO mouse hearts. Flavoprotein autofluorescence, mitochondrial reactive oxygen species production, and mitochondrial membrane potential were monitored by laser-scanning confocal microscopy in intact cardiomyocytes. Cell survival was assessed using H2O2-induced stress. Isoflurane (0.5 mM) increased flavoprotein fluorescence to 180% ± 14% and 190% ± 15% and reactive oxygen species production to 118% ± 2% and 124% ± 6% of baseline in WT and Kir6.2 KO myocytes, respectively. Tetramethylrhodamine ethyl ester fluorescence decreased to 84% ± 6% in WT and to 86% ± 4% in Kir6.2 KO myocytes. This effect was abolished by 5HD. Pretreatment with isoflurane decreased the stress-induced cell death from 31% ± 1% to 21% ± 1% in WT and from 44% ± 2% to 35% ± 2% in Kir6.2 KO myocytes. In conclusion, Kir6.2 deletion increases the sensitivity of intact cardiomyocytes to oxidative stress, but does not alter the isoflurane-elicited protective mitochondrial mechanisms, suggesting independent roles for cardiac mitochondria and sarcKATP channels in anesthetic-induced preconditioning by isoflurane.
Collapse
Affiliation(s)
- Maria Muravyeva
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
16
|
Chung IS, Kim JA, Kim JA, Choi HS, Lee JJ, Yang M, Ahn HJ, Lee SM. Reactive oxygen species by isoflurane mediates inhibition of nuclear factor κB activation in lipopolysaccharide-induced acute inflammation of the lung. Anesth Analg 2013; 116:327-35. [PMID: 23302986 DOI: 10.1213/ane.0b013e31827aec06] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although anesthetic-induced inhibition of lipopolysaccharide (LPS)-induced lung injury has been recognized, the underlying mechanism is obscure. Some studies suggest that reactive oxygen species (ROS) by isoflurane play a crucial role for anesthetic-induced protective effects on the brain or the heart; however, it still remains controversial. In this study, we examined the role of isoflurane-derived ROS in isoflurane-induced inhibition of lung injury and nuclear factor κB (NFκB) activation in LPS-challenged rat lungs. METHODS Male Sprague-Dawley rats were subjected to inhalation of 1.0 minimum alveolar concentration of isoflurane for 60 minutes, and intratracheal LPS 0.1 mg was administered 60 minutes later. In some cases, ROS scavenger, 2-mercaptopropinyl glycine or N-acetylcysteine was given 30 minutes before isoflurane. ROS generation was measured by fluorometer before LPS challenge and 4 hours after. Isoflurane's preconditioning effect was assessed by histologic examination, protein content, neutrophil recruitment, and determination of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels in bronchoalveolar lavage fluid and lung tissue. Western blotting measured phosphorylation of inhibitory κB α (ser 32/36), NFκB p65, and inducible nitric oxide synthase (iNOS). TNF-α and IL-6 mRNA expression and immunofluorescence staining for iNOS were also assessed. RESULTS Isoflurane preconditioning reduced inflammatory lung injury and TNF-α, IL-1β, and IL-6 release in the lung. Isoflurane upregulated ROS generation before LPS but inhibited a ROS burst after LPS challenge. ROS scavenger administration before isoflurane abolished the isoflurane preconditioning effect as well as isoflurane-induced inhibition of phosphorylation of inhibitory κBα, NFκB p65, iNOS activation, and mRNA expression of TNF-α and IL-6 in acute LPS-challenged lungs. CONCLUSIONS This study suggests a crucial role of upregulated ROS generation by isoflurane for modification of inflammatory pathways by isoflurane preconditioning in acute inflammation of the lung.
Collapse
Affiliation(s)
- In Sun Chung
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Complex I and ATP synthase mediate membrane depolarization and matrix acidification by isoflurane in mitochondria. Eur J Pharmacol 2012; 690:149-57. [PMID: 22796646 DOI: 10.1016/j.ejphar.2012.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 06/21/2012] [Accepted: 07/02/2012] [Indexed: 11/22/2022]
Abstract
Short application of the volatile anesthetic isoflurane at reperfusion after ischemia exerts strong protection of the heart against injury. Mild depolarization and acidification of the mitochondrial matrix are involved in the protective mechanisms of isoflurane, but the molecular basis for these changes is not clear. In this study, mitochondrial respiration, membrane potential, matrix pH, matrix swelling, ATP synthesis and -hydrolysis, and H(2)O(2) release were assessed in isolated mitochondria. We hypothesized that isoflurane induces mitochondrial depolarization and matrix acidification through direct action on both complex I and ATP synthase. With complex I-linked substrates, isoflurane (0.5mM) inhibited mitochondrial respiration by 28 ± 10%, and slightly, but significantly depolarized membrane potential and decreased matrix pH. With complex II- and complex IV-linked substrates, respiration was not changed, but isoflurane still decreased matrix pH and depolarized mitochondrial membrane potential. Depolarization and matrix acidification were attenuated by inhibition of ATP synthase with oligomycin, but not by inhibition of mitochondrial ATP- and Ca(2+)-sensitive K(+) channels or uncoupling proteins. Isoflurane did not induce matrix swelling and did not affect ATP synthesis and hydrolysis, but decreased H(2)O(2) release in the presence of succinate in an oligomycin- and matrix pH-sensitive manner. Isoflurane modulated H(+) flux through ATP synthase in an oligomycin-sensitive manner. Our results indicate that isoflurane-induced mitochondrial depolarization and acidification occur due to inhibition of the electron transport chain at the site of complex I and increased proton flux through ATP synthase. K(+) channels and uncoupling proteins appear not to be involved in the direct effects of isoflurane on mitochondria.
Collapse
|
18
|
Agarwal B, Camara AKS, Stowe DF, Bosnjak ZJ, Dash RK. Enhanced charge-independent mitochondrial free Ca(2+) and attenuated ADP-induced NADH oxidation by isoflurane: Implications for cardioprotection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:453-65. [PMID: 22155157 DOI: 10.1016/j.bbabio.2011.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 11/16/2011] [Accepted: 11/19/2011] [Indexed: 12/21/2022]
Abstract
Modulation of mitochondrial free Ca(2+) ([Ca(2+)](m)) is implicated as one of the possible upstream factors that initiates anesthetic-mediated cardioprotection against ischemia-reperfusion (IR) injury. To unravel possible mechanisms by which volatile anesthetics modulate [Ca(2+)](m) and mitochondrial bioenergetics, with implications for cardioprotection, experiments were conducted to spectrofluorometrically measure concentration-dependent effects of isoflurane (0.5, 1, 1.5, 2mM) on the magnitudes and time-courses of [Ca(2+)](m) and mitochondrial redox state (NADH), membrane potential (ΔΨ(m)), respiration, and matrix volume. Isolated mitochondria from rat hearts were energized with 10mM Na(+)- or K(+)-pyruvate/malate (NaPM or KPM) or Na(+)-succinate (NaSuc) followed by additions of isoflurane, 0.5mM CaCl(2) (≈200nM free Ca(2+) with 1mM EGTA buffer), and 250μM ADP. Isoflurane stepwise: (a) increased [Ca(2+)](m) in state 2 with NaPM, but not with KPM substrate, despite an isoflurane-induced slight fall in ΔΨ(m) and a mild matrix expansion, and (b) decreased NADH oxidation, respiration, ΔΨ(m), and matrix volume in state 3, while prolonging the duration of state 3 NADH oxidation, respiration, ΔΨ(m), and matrix contraction with PM substrates. These findings suggest that isoflurane's effects are mediated in part at the mitochondrial level: (1) to enhance the net rate of state 2 Ca(2+) uptake by inhibiting the Na(+)/Ca(2+) exchanger (NCE), independent of changes in ΔΨ(m) and matrix volume, and (2) to decrease the rates of state 3 electron transfer and ADP phosphorylation by inhibiting complex I. These direct effects of isoflurane to increase [Ca(2+)](m), while depressing NCE activity and oxidative phosphorylation, could underlie the mechanisms by which isoflurane provides cardioprotection against IR injury at the mitochondrial level.
Collapse
Affiliation(s)
- Bhawana Agarwal
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Permeabilized rat cardiomyocyte response demonstrates intracellular origin of diffusion obstacles. Biophys J 2011; 101:2112-21. [PMID: 22067148 DOI: 10.1016/j.bpj.2011.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/24/2011] [Accepted: 09/20/2011] [Indexed: 11/24/2022] Open
Abstract
Intracellular diffusion restrictions for ADP and other molecules have been predicted earlier based on experiments on permeabilized fibers or cardiomyocytes. However, it is possible that the effective diffusion distance is larger than the cell dimensions due to clumping of cells and incomplete separation of cells in fiber preparations. The aim of this work was to check whether diffusion restrictions exist inside rat cardiomyocytes or are caused by large effective diffusion distance. For that, we determined the response of oxidative phosphorylation (OxPhos) to exogenous ADP and ATP stimulation in permeabilized rat cardiomyocytes using fluorescence microscopy. The state of OxPhos was monitored via NADH and flavoprotein autofluorescence. By varying the ADP or ATP concentration in flow chamber, we determined that OxPhos has a low affinity in cardiomyocytes. The experiments were repeated in a fluorometer on cardiomyocyte suspensions leading to similar autofluorescence changes induced by ADP as recorded under the microscope. ATP stimulated OxPhos more in a fluorometer than under the microscope, which was attributed to accumulation of ADP in fluorometer chamber. By calculating the flow profile around the cell in the microscope chamber and comparing model solutions to measured data, we demonstrate that intracellular structures impose significant diffusion obstacles in rat cardiomyocytes.
Collapse
|
21
|
Hirata N, Shim YH, Pravdic D, Lohr NL, Pratt PF, Weihrauch D, Kersten JR, Warltier DC, Bosnjak ZJ, Bienengraeber M. Isoflurane differentially modulates mitochondrial reactive oxygen species production via forward versus reverse electron transport flow: implications for preconditioning. Anesthesiology 2011; 115:531-40. [PMID: 21862887 PMCID: PMC3337729 DOI: 10.1097/aln.0b013e31822a2316] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Reactive oxygen species (ROS) mediate the effects of anesthetic precondition to protect against ischemia and reperfusion injury, but the mechanisms of ROS generation remain unclear. In this study, the authors investigated if mitochondria-targeted antioxidant (mitotempol) abolishes the cardioprotective effects of anesthetic preconditioning. Further, the authors investigated the mechanism by which isoflurane alters ROS generation in isolated mitochondria and submitochondrial particles. METHODS Rats were pretreated with 0.9% saline, 3.0 mg/kg mitotempol in the absence or presence of 30 min exposure to isoflurane. Myocardial infarction was induced by left anterior descending artery occlusion for 30 min followed by reperfusion for 2 h and infarct size measurements. Mitochondrial ROS production was determined spectrofluorometrically. The effect of isoflurane on enzymatic activity of mitochondrial respiratory complexes was also determined. RESULTS Isoflurane reduced myocardial infarct size (40 ± 9% = mean ± SD) compared with control experiments (60 ± 4%). Mitotempol abolished the cardioprotective effects of anesthetic preconditioning (60 ± 9%). Isoflurane enhanced ROS generation in submitochondrial particles with nicotinamide adenine dinucleotide (reduced form), but not with succinate, as substrate. In intact mitochondria, isoflurane enhanced ROS production in the presence of rotenone, antimycin A, or ubiquinone when pyruvate and malate were substrates, but isoflurane attenuated ROS production when succinate was substrate. Mitochondrial respiratory experiments and electron transport chain complex assays revealed that isoflurane inhibited only complex I activity. CONCLUSIONS The results demonstrated that isoflurane produces ROS at complex I and III of the respiratory chain via the attenuation of complex I activity. The action on complex I decreases unfavorable reverse electron flow and ROS release in myocardium during reperfusion.
Collapse
Affiliation(s)
- Naoyuki Hirata
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Camara AKS, Bienengraeber M, Stowe DF. Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury. Front Physiol 2011; 2:13. [PMID: 21559063 PMCID: PMC3082167 DOI: 10.3389/fphys.2011.00013] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 03/24/2011] [Indexed: 12/18/2022] Open
Abstract
The mitochondrion is a vital component in cellular energy metabolism and intracellular signaling processes. Mitochondria are involved in a myriad of complex signaling cascades regulating cell death vs. survival. Importantly, mitochondrial dysfunction and the resulting oxidative and nitrosative stress are central in the pathogenesis of numerous human maladies including cardiovascular diseases, neurodegenerative diseases, diabetes, and retinal diseases, many of which are related. This review will examine the emerging understanding of the role of mitochondria in the etiology and progression of cardiovascular diseases and will explore potential therapeutic benefits of targeting the organelle in attenuating the disease process. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate or manipulate mitochondrial function, to the use of light therapy directed to the mitochondrial function, and to modification of the mitochondrial genome for potential therapeutic benefit. The approach to rationally treat mitochondrial dysfunction could lead to more effective interventions in cardiovascular diseases that to date have remained elusive. The central premise of this review is that if mitochondrial abnormalities contribute to the etiology of cardiovascular diseases (e.g., ischemic heart disease), alleviating the mitochondrial dysfunction will contribute to mitigating the severity or progression of the disease. To this end, this review will provide an overview of our current understanding of mitochondria function in cardiovascular diseases as well as the potential role for targeting mitochondria with potential drugs or other interventions that lead to protection against cell injury.
Collapse
Affiliation(s)
- Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin Milwaukee, WI, USA
| | | | | |
Collapse
|