1
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Dominiak K, Galganski L, Budzinska A, Jarmuszkiewicz W. Coenzyme Q deficiency in endothelial mitochondria caused by hypoxia; remodeling of the respiratory chain and sensitivity to anoxia/reoxygenation. Free Radic Biol Med 2024; 214:158-170. [PMID: 38364943 DOI: 10.1016/j.freeradbiomed.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
This study examined the effects of hypoxia on coenzyme Q (Q) levels and mitochondrial function in EA. hy926 endothelial cells, shedding light on their responses to changes in oxygen levels. Chronic hypoxia during endothelial cell culture reduced Q synthesis by reducing hydroxy-methylglutaryl-CoA reductase (HMGCR) levels via hypoxia-inducible factor 1α (HIF1α), leading to severe Q deficiency. In endothelial mitochondria, hypoxia led to reorganization of the respiratory chain through upregulation of supercomplexes (I+III2+IV), forming a complete mitochondrial Q (mQ)-mediated electron transfer pathway. Mitochondria of endothelial cells cultured under hypoxic conditions showed reduced respiratory rates and membrane potential, as well as increased production of mitochondrial reactive oxygen species (mROS) as a result of increased mQ reduction levels (mQH2/mQtot). Anoxia/reoxygenation (A/R) in vitro caused impairment of endothelial mitochondria, manifested by reduced maximal respiration, complex III activity, membrane potential, coupling parameters, and increased mQ reduction and mROS production. Weaker A/R-induced changes compared to control mitochondria indicated better tolerance of A/R stress by the mitochondria of hypoxic cells. Moreover, in endothelial mitochondria, hypoxia-induced increases in uncoupling protein 3 (UCP3) and mitochondrial large-conductance Ca2+-activated potassium channel (mitoBKCa) levels and activities appear to have alleviated reoxygenation injury after A/R. These results not only highlight hypoxia-induced changes in mQ redox homeostasis and related mitochondrial function, but also indicate that chronic hypoxia during endothelial cell culture leads to mitochondrial adaptations that help mitochondria better withstand subsequent oxygen fluctuations.
Collapse
Affiliation(s)
- Karolina Dominiak
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Lukasz Galganski
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Adrianna Budzinska
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Wieslawa Jarmuszkiewicz
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
3
|
Woyda-Ploszczyca AM. Direct and indirect targets of carboxyatractyloside, including overlooked toxicity toward nucleoside diphosphate kinase (NDPK) and mitochondrial H + leak. PHARMACEUTICAL BIOLOGY 2023; 61:372-390. [PMID: 36799406 PMCID: PMC9946330 DOI: 10.1080/13880209.2023.2168704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT The toxicity of atractyloside/carboxyatractyloside is generally well recognized and commonly ascribed to the inhibition of mitochondrial ADP/ATP carriers, which are pivotal for oxidative phosphorylation. However, these glycosides may 'paralyze' additional target proteins. OBJECTIVE This review presents many facts about atractyloside/carboxyatractyloside and their plant producers, such as Xanthium spp. (Asteraceae), named cockleburs. METHODS Published studies and other information were obtained from databases, such as 'CABI - Invasive Species Compendium', 'PubMed', and 'The World Checklist of Vascular Plants', from 1957 to December 2022. The following major keywords were used: 'carboxyatractyloside', 'cockleburs', 'hepatotoxicity', 'mitochondria', 'nephrotoxicity', and 'Xanthium'. RESULTS In the third decade of the twenty first century, public awareness of the severe toxicity of cockleburs is still limited. Such toxicity is often only perceived by specialists in Europe and other continents. Interestingly, cocklebur is among the most widely distributed invasive plants worldwide, and the recognition of new European stands of Xanthium spp. is provided here. The findings arising from field and laboratory research conducted by the author revealed that (i) some livestock populations may instinctively avoid eating cocklebur while grazing, (ii) carboxyatractyloside inhibits ADP/GDP metabolism, and (iii) the direct/indirect target proteins of carboxyatractyloside are ambiguous. CONCLUSIONS Many aspects of the Xanthium genus still require substantial investigation/revision in the future, such as the unification of the Latin nomenclature of currently distinguished species, bur morphology status, true fruit (achene) description and biogeography of cockleburs, and a detailed description of the physiological roles of atractyloside/carboxyatractyloside and the toxicity of these glycosides, mainly toward mammals. Therefore, a more careful interpretation of atractyloside/carboxyatractyloside data, including laboratory tests using Xanthium-derived extracts and purified toxins, is needed.
Collapse
|
4
|
Antos-Krzeminska N, Kicinska A, Nowak W, Jarmuszkiewicz W. Acanthamoeba castellanii Uncoupling Protein: A Complete Sequence, Activity, and Role in Response to Oxidative Stress. Int J Mol Sci 2023; 24:12501. [PMID: 37569876 PMCID: PMC10419851 DOI: 10.3390/ijms241512501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Uncoupling proteins (UCPs) are mitochondrial inner membrane transporters that mediate free-fatty-acid-induced, purine-nucleotide-inhibited proton leak into the mitochondrial matrix, thereby uncoupling respiratory substrate oxidation from ATP synthesis. The aim of this study was to provide functional evidence that the putative Acucp gene of the free-living protozoan amoeba, A. castellanii, encodes the mitochondrial protein with uncoupling activity characteristic of UCPs and to investigate its role during oxidative stress. We report the sequencing and cloning of a complete Acucp coding sequence, its phylogenetic analysis, and the heterologous expression of AcUCP in the S. cerevisiae strain InvSc1. Measurements of mitochondrial respiratory activity and membrane potential indicate that the heterologous expression of AcUCP causes AcUCP-mediated uncoupling activity. In addition, in a model of oxidative stress with increased reactive oxygen species levels (superoxide dismutase 1 knockout yeasts), AcUCP expression strongly promotes cell survival and growth. The level of superoxide anion radicals is greatly reduced in the ΔSOD1 strain expressing AcUCP. These results suggest that AcUCP targeted to yeast mitochondria causes uncoupling and may act as an antioxidant system. Phylogenetic analysis shows that the A. castellanii UCP diverges very early from other UCPs, but clearly locates within the UCP subfamily rather than among other mitochondrial anion carrier proteins.
Collapse
Affiliation(s)
- Nina Antos-Krzeminska
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (A.K.); (W.J.)
| | - Anna Kicinska
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (A.K.); (W.J.)
| | - Witold Nowak
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland;
| | - Wieslawa Jarmuszkiewicz
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (A.K.); (W.J.)
| |
Collapse
|
5
|
Marcheggiani F, Cirilli I, Orlando P, Silvestri S, Vogelsang A, Knott A, Blatt T, Weise JM, Tiano L. Modulation of Coenzyme Q 10 content and oxidative status in human dermal fibroblasts using HMG-CoA reductase inhibitor over a broad range of concentrations. From mitohormesis to mitochondrial dysfunction and accelerated aging. Aging (Albany NY) 2020; 11:2565-2582. [PMID: 31076563 PMCID: PMC6535058 DOI: 10.18632/aging.101926] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 04/04/2019] [Indexed: 12/27/2022]
Abstract
Coenzyme Q10 (CoQ10) is an endogenous lipophilic quinone, ubiquitous in biological membranes and endowed with antioxidant and bioenergetic properties, both crucial to the aging process. In fact, coenzyme Q10 synthesis is known to decrease with age in different tissues including skin. Moreover, synthesis can be inhibited by 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors such as statins, that are widely used hypocholesterolemic drugs. They target a key enzymatic step along the mevalonate pathway, involved in the synthesis of both cholesterol and isoprenylated compounds including CoQ10.In the present study, we show that pharmacological CoQ10 deprivation at concentrations of statins > 10000 nM triggers intracellular oxidative stress, mitochondrial dysfunction and generates cell death in human dermal fibroblasts (HDF). On the contrary, at lower statin concentrations, cells and mainly mitochondria, are able to partially adapt and prevent oxidative imbalance and overt mitochondrial toxicity. Importantly, our data demonstrate that CoQ10 decrease promotes mitochondrial permeability transition and bioenergetic dysfunction leading to premature aging of human dermal fibroblasts in vitro.
Collapse
Affiliation(s)
- Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Ilenia Cirilli
- Department of Clinical and Dental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Anja Knott
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | - Thomas Blatt
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | - Julia M Weise
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
6
|
Broniarek I, Dominiak K, Galganski L, Jarmuszkiewicz W. The Influence of Statins on the Aerobic Metabolism of Endothelial Cells. Int J Mol Sci 2020; 21:ijms21041485. [PMID: 32098258 PMCID: PMC7073032 DOI: 10.3390/ijms21041485] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/23/2022] Open
Abstract
Endothelial mitochondrial dysfunction is considered to be the main cause of cardiovascular disease. The aim of this research was to elucidate the effects of cholesterol-lowering statins on the aerobic metabolism of endothelial cells at the cellular and mitochondrial levels. In human umbilical vein endothelial cells (EA.hy926), six days of exposure to 100 nM atorvastatin (ATOR) induced a general decrease in mitochondrial respiration. No changes in mitochondrial biogenesis, cell viability, or ATP levels were observed, whereas a decrease in Coenzyme Q10 (Q10) content was accompanied by an increase in intracellular reactive oxygen species (ROS) production, although mitochondrial ROS production remained unchanged. The changes caused by 100 nM pravastatin were smaller than those caused by ATOR. The ATOR-induced changes at the respiratory chain level promoted increased mitochondrial ROS production. In addition to the reduced level of mitochondrial Q10, the activity of Complex III was decreased, and the amount of Complex III in a supercomplex with Complex IV was diminished. These changes may cause the observed decrease in mitochondrial membrane potential and an increase in Q10 reduction level as a consequence, leading to elevated mitochondrial ROS formation. The above observations highlight the role of endothelial mitochondria in response to potential metabolic adaptations related to the chronic exposure of endothelial cells to statins.
Collapse
|
7
|
Dominiak K, Koziel A, Jarmuszkiewicz W. The interplay between mitochondrial reactive oxygen species formation and the coenzyme Q reduction level. Redox Biol 2018; 18:256-265. [PMID: 30059902 PMCID: PMC6078054 DOI: 10.1016/j.redox.2018.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/27/2022] Open
Abstract
Our aim was to elucidate the relationship between the rate of mitochondrial reactive oxygen species (mROS) formation and the reduction level of the mitochondrial coenzyme Q (mQ) pool under various levels of engagement of the mQ-reducing pathway (succinate dehydrogenase, complex II) and mQH2-oxidizing pathways (the cytochrome pathway and alternative oxidase pathway, (AOX)) in mitochondria isolated from the amoeba Acanthamoeba castellanii. The mQ pool was shifted to a more reduced state by inhibition of mQH2-oxidizing pathways (complex III and complex IV of the cytochrome pathway, and AOX) and the oxidative phosphorylation system. The mQ reduction level was lowered by decreasing the electron supply from succinate dehydrogenase and by stimulating the activity of the cytochrome or AOX pathways. The results indicate a direct dependence of mROS formation on the reduction level of the mQ pool for both mQH2-oxidizing pathways. A higher mQ reduction level leads to a higher mROS formation. For the cytochrome pathway, mROS generation depends nonlinearly upon the mQ reduction level, with a stronger dependency observed at values higher than the mQ reduction level of the phosphorylating state (~ 35%). AOX becomes more engaged at higher mQ pool reduction levels (above 40%), when mROS production via the cytochrome pathway increases. We propose that the mQ pool reduction level (endogenous mQ redox state) could be a useful endogenous reporter that allows indirect assessment of overall mROS production in mitochondria. mROS generation depends on the reduction level of the endogenous mQ pool. A stronger dependency is observed above mQ reduction level of phosphorylating state. The mQ reduction level can be an endogenous reporter of overall mROS production.
Collapse
Affiliation(s)
- Karolina Dominiak
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Agnieszka Koziel
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Wieslawa Jarmuszkiewicz
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
8
|
Being right on Q: shaping eukaryotic evolution. Biochem J 2017; 473:4103-4127. [PMID: 27834740 PMCID: PMC5103874 DOI: 10.1042/bcj20160647] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/18/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) formation by mitochondria is an incompletely understood eukaryotic process. I proposed a kinetic model [BioEssays (2011) 33, 88–94] in which the ratio between electrons entering the respiratory chain via FADH2 or NADH (the F/N ratio) is a crucial determinant of ROS formation. During glucose breakdown, the ratio is low, while during fatty acid breakdown, the ratio is high (the longer the fatty acid, the higher is the ratio), leading to higher ROS levels. Thus, breakdown of (very-long-chain) fatty acids should occur without generating extra FADH2 in mitochondria. This explains peroxisome evolution. A potential ROS increase could also explain the absence of fatty acid oxidation in long-lived cells (neurons) as well as other eukaryotic adaptations, such as dynamic supercomplex formation. Effective combinations of metabolic pathways from the host and the endosymbiont (mitochondrion) allowed larger varieties of substrates (with different F/N ratios) to be oxidized, but high F/N ratios increase ROS formation. This might have led to carnitine shuttles, uncoupling proteins, and multiple antioxidant mechanisms, especially linked to fatty acid oxidation [BioEssays (2014) 36, 634–643]. Recent data regarding peroxisome evolution and their relationships with mitochondria, ROS formation by Complex I during ischaemia/reperfusion injury, and supercomplex formation adjustment to F/N ratios strongly support the model. I will further discuss the model in the light of experimental findings regarding mitochondrial ROS formation.
Collapse
|
9
|
Murai M, Okuda A, Yamamoto T, Shinohara Y, Miyoshi H. Synthetic Ubiquinones Specifically Bind to Mitochondrial Voltage-Dependent Anion Channel 1 (VDAC1) in Saccharomyces cerevisiae Mitochondria. Biochemistry 2017; 56:570-581. [DOI: 10.1021/acs.biochem.6b01011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Masatoshi Murai
- Division
of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ayaka Okuda
- Division
of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takenori Yamamoto
- Institute
for Genome Research, University of Tokushima, Kuramotocho-3, Tokushima 770-8503, Japan
| | - Yasuo Shinohara
- Institute
for Genome Research, University of Tokushima, Kuramotocho-3, Tokushima 770-8503, Japan
| | - Hideto Miyoshi
- Division
of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
10
|
The conserved regulation of mitochondrial uncoupling proteins: From unicellular eukaryotes to mammals. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:21-33. [PMID: 27751905 DOI: 10.1016/j.bbabio.2016.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/29/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022]
Abstract
Uncoupling proteins (UCPs) belong to the mitochondrial anion carrier protein family and mediate regulated proton leak across the inner mitochondrial membrane. Free fatty acids, aldehydes such as hydroxynonenal, and retinoids activate UCPs. However, there are some controversies about the effective action of retinoids and aldehydes alone; thus, only free fatty acids are commonly accepted positive effectors of UCPs. Purine nucleotides such as GTP inhibit UCP-mediated mitochondrial proton leak. In turn, membranous coenzyme Q may play a role as a redox state-dependent metabolic sensor that modulates the complete activation/inhibition of UCPs. Such regulation has been observed for UCPs in microorganisms, plant and animal UCP1 homologues, and UCP1 in mammalian brown adipose tissue. The origin of UCPs is still under debate, but UCP homologues have been identified in all systematic groups of eukaryotes. Despite the differing levels of amino acid/DNA sequence similarities, functional studies in unicellular and multicellular organisms, from amoebae to mammals, suggest that the mechanistic regulation of UCP activity is evolutionarily well conserved. This review focuses on the regulatory feedback loops of UCPs involving free fatty acids, aldehydes, retinoids, purine nucleotides, and coenzyme Q (particularly its reduction level), which may derive from the early stages of evolution as UCP first emerged.
Collapse
|
11
|
Endurance training increases the efficiency of rat skeletal muscle mitochondria. Pflugers Arch 2016; 468:1709-24. [PMID: 27568192 PMCID: PMC5026720 DOI: 10.1007/s00424-016-1867-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 11/18/2022]
Abstract
Endurance training enhances mitochondrial oxidative capacity, but its effect on mitochondria functioning is poorly understood. In the present study, the influence of an 8-week endurance training on the bioenergetic functioning of rat skeletal muscle mitochondria under different assay temperatures (25, 35, and 42 °C) was investigated. The study was performed on 24 adult 4-month-old male Wistar rats, which were randomly assigned to either a treadmill training group (n = 12) or a sedentary control group (n = 12). In skeletal muscles, endurance training stimulated mitochondrial biogenesis and oxidative capacity. In isolated mitochondria, endurance training increased the phosphorylation rate and elevated levels of coenzyme Q. Moreover, a decrease in mitochondrial uncoupling, including uncoupling protein-mediated proton leak, was observed after training, which could explain the increased reactive oxygen species production (in nonphosphorylating mitochondria) and enhanced oxidative phosphorylation efficiency. At all studied temperatures, endurance training significantly augmented H2O2 production (and coenzyme Q reduction level) in nonphosphorylating mitochondria and decreased H2O2 production (and coenzyme Q reduction level) in phosphorylating mitochondria. Endurance training magnified the hyperthermia-induced increase in oxidative capacity and attenuated the hyperthermia-induced decline in oxidative phosphorylation efficiency and reactive oxygen species formation of nonphosphorylating mitochondria via proton leak enhancement. Thus, endurance training induces both quantitative and qualitative changes in muscle mitochondria that are important for cell signaling as well as for maintaining muscle energy homeostasis, especially at high temperatures.
Collapse
|
12
|
Broniarek I, Koziel A, Jarmuszkiewicz W. The effect of chronic exposure to high palmitic acid concentrations on the aerobic metabolism of human endothelial EA.hy926 cells. Pflugers Arch 2016; 468:1541-54. [PMID: 27417103 PMCID: PMC4981632 DOI: 10.1007/s00424-016-1856-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 12/22/2022]
Abstract
A chronic elevation of circulating free fatty acids (FFAs) is associated with diseases like obesity or diabetes and can lead to lipotoxicity. The goals of this study were to assess the influence of chronic exposure to high palmitic acid (PAL) levels on mitochondrial respiratory functions in endothelial cells and isolated mitochondria. Human umbilical vein endothelial cells (EA.hy926 line) were grown for 6 days in a medium containing either 100 or 150 μM PAL. Growth at high PAL concentrations induced a considerable increase in fatty acid-supplied respiration and a reduction of mitochondrial respiration during carbohydrate and glutamine oxidation. High PAL levels elevated intracellular and mitochondrial superoxide generation; increased inflammation marker, acyl-coenzyme A (CoA) dehydrogenase, uncoupling protein 2 (UCP2), and superoxide dismutase 2 expression; and decreased hexokinase I and pyruvate dehydrogenase expression. No change in aerobic respiration capacity was observed, while fermentation was decreased. In mitochondria isolated from high PAL-treated cells, an increase in the oxidation of palmitoylcarnitine, a decrease in the oxidation of pyruvate, and an increase in UCP2 activity were observed. Our results demonstrate that exposure to high PAL levels induces a shift in endothelial aerobic metabolism toward the oxidation of fatty acids. Increased levels of PAL caused impairment and uncoupling of the mitochondrial oxidative phosphorylation system. Our data indicate that FFAs significantly affect endothelial oxidative metabolism, reactive oxygen species (ROS) formation, and cell viability and, thus, might contribute to endothelial and vascular dysfunction.
Collapse
Affiliation(s)
- Izabela Broniarek
- Department of Bioenergetics, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
| | - Agnieszka Koziel
- Department of Bioenergetics, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
| | - Wieslawa Jarmuszkiewicz
- Department of Bioenergetics, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| |
Collapse
|
13
|
Jarmuszkiewicz W, Woyda-Ploszczyca A, Koziel A, Majerczak J, Zoladz JA. Temperature controls oxidative phosphorylation and reactive oxygen species production through uncoupling in rat skeletal muscle mitochondria. Free Radic Biol Med 2015; 83:12-20. [PMID: 25701433 DOI: 10.1016/j.freeradbiomed.2015.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/05/2015] [Accepted: 02/08/2015] [Indexed: 01/31/2023]
Abstract
Mitochondrial respiratory and phosphorylation activities, mitochondrial uncoupling, and hydrogen peroxide formation were studied in isolated rat skeletal muscle mitochondria during experimentally induced hypothermia (25 °C) and hyperthermia (42 °C) compared to the physiological temperature of resting muscle (35 °C). For nonphosphorylating mitochondria, increasing the temperature from 25 to 42 °C led to a decrease in membrane potential, hydrogen peroxide production, and quinone reduction levels. For phosphorylating mitochondria, no temperature-dependent changes in these mitochondrial functions were observed. However, the efficiency of oxidative phosphorylation decreased, whereas the oxidation and phosphorylation rates and oxidative capacities of the mitochondria increased, with increasing assay temperature. An increase in proton leak, including uncoupling protein-mediated proton leak, was observed with increasing assay temperature, which could explain the reduced oxidative phosphorylation efficiency and reactive oxygen species production.
Collapse
Affiliation(s)
- Wieslawa Jarmuszkiewicz
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland.
| | - Andrzej Woyda-Ploszczyca
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Agnieszka Koziel
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Joanna Majerczak
- Department of Muscle Physiology, Chair of Physiology and Biochemistry, Faculty of Rehabilitation, University School of Physical Education, Krakow, Poland
| | - Jerzy A Zoladz
- Department of Muscle Physiology, Chair of Physiology and Biochemistry, Faculty of Rehabilitation, University School of Physical Education, Krakow, Poland
| |
Collapse
|
14
|
Sarewicz M, Osyczka A. Electronic connection between the quinone and cytochrome C redox pools and its role in regulation of mitochondrial electron transport and redox signaling. Physiol Rev 2015; 95:219-43. [PMID: 25540143 PMCID: PMC4281590 DOI: 10.1152/physrev.00006.2014] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
15
|
Hroudová J, Fišar Z. Control mechanisms in mitochondrial oxidative phosphorylation. Neural Regen Res 2014; 8:363-75. [PMID: 25206677 PMCID: PMC4107533 DOI: 10.3969/j.issn.1673-5374.2013.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/20/2013] [Indexed: 01/30/2023] Open
Abstract
Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5’- triphosphate production is regulated by many control mechanism–firstly by oxygen, substrate level, adenosine-5’-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by “second control mechanisms,” such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5’-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production.
Collapse
Affiliation(s)
- Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
16
|
External NAD(P)H dehydrogenases in Acanthamoeba castellanii mitochondria. Protist 2014; 165:580-93. [PMID: 25113830 DOI: 10.1016/j.protis.2014.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/23/2014] [Accepted: 07/05/2014] [Indexed: 12/30/2022]
Abstract
The mitochondrial respiratory chain of plants and some fungi contains multiple rotenone-insensitive NAD(P)H dehydrogenases, of which at least two are located on the outer surface of the inner membrane (i.e., external NADH and external NADPH dehydrogenases). Annotated sequences of the putative alternative NAD(P)H dehydrogenases of the protozoan Acanthamoeba castellanii demonstrated similarity to plant and fungal sequences. We also studied activity of these dehydrogenases in isolated A. castellanii mitochondria. External NADPH oxidation was observed for the first time in protist mitochondria. The coupling parameters were similar for external NADH oxidation and external NADPH oxidation, indicating similar efficiencies of ATP synthesis. Both external NADH oxidation and external NADPH oxidation had an optimal pH of 6.8 independent of relevant ubiquinol-oxidizing pathways, the cytochrome pathway or a GMP-stimulated alternative oxidase. The maximal oxidizing activity with external NADH was almost double that with external NADPH. However, a lower Michaelis constant (K(M)) value for external NADPH oxidation was observed compared to that for external NADH oxidation. Stimulation by Ca(2+) was approximately 10 times higher for external NADPH oxidation, while NADH dehydrogenase(s) appeared to be slightly dependent on Ca(2+). Our results indicate that external NAD(P)H dehydrogenases similar to those in plant and fungal mitochondria function in mitochondria of A. castellanii.
Collapse
|
17
|
Different effects of guanine nucleotides (GDP and GTP) on protein-mediated mitochondrial proton leak. PLoS One 2014; 9:e98969. [PMID: 24904988 PMCID: PMC4056835 DOI: 10.1371/journal.pone.0098969] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
Abstract
In this study, we compared the influence of GDP and GTP on isolated mitochondria respiring under conditions favoring oxidative phosphorylation (OXPHOS) and under conditions excluding this process, i.e., in the presence of carboxyatractyloside, an adenine nucleotide translocase inhibitor, and/or oligomycin, an FOF1-ATP synthase inhibitor. Using mitochondria isolated from rat kidney and human endothelial cells, we found that the action of GDP and GTP can differ diametrically depending on the conditions. Namely, under conditions favoring OXPHOS, both in the absence and presence of linoleic acid, an activator of uncoupling proteins (UCPs), the addition of 1 mM GDP resulted in the state 4 (non-phosphorylating respiration)-state 3 (phosphorylating respiration) transition, which is characteristic of ADP oxidative phosphorylation. In contrast, the addition of 1 mM GTP resulted in a decrease in the respiratory rate and an increase in the membrane potential, which is characteristic of UCP inhibition. The stimulatory effect of GDP, but not GTP, was also observed in inside-out submitochondrial particles prepared from rat kidney mitochondria. However, the effects of GDP and GTP were more similar in the presence of OXPHOS inhibitors. The importance of these observations in connection with the action of UCPs, adenine nucleotide translocase (or other carboxyatractyloside-sensitive carriers), carboxyatractyloside- and purine nucleotide-insensitive carriers, as well as nucleoside-diphosphate kinase (NDPK) are considered. Because the measurements favoring oxidative phosphorylation better reflect in vivo conditions, our study strongly supports the idea that GDP cannot be considered a significant physiological inhibitor of UCP. Moreover, it appears that, under native conditions, GTP functions as a more efficient UCP inhibitor than GDP and ATP.
Collapse
|
18
|
Woyda-Ploszczyca AM, Jarmuszkiewicz W. Sensitivity of the aldehyde-induced and free fatty acid-induced activities of plant uncoupling protein to GTP is regulated by the ubiquinone reduction level. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 79:109-116. [PMID: 24705332 DOI: 10.1016/j.plaphy.2014.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/13/2014] [Indexed: 06/03/2023]
Abstract
Using isolated potato tuber mitochondria possessing uncoupling protein (StUCP), we found that, under non-phosphorylating conditions, the sensitivity of aldehyde (all trans-retinal or 4-hydroxy-2-nonenal)-induced and fatty acid (linoleic acid)-induced StUCP-mediated proton leaks to GTP is controlled by the endogenous ubiquinone (Q) reduction level. The action of StUCP activators was abolished by GTP only when Q was sufficiently oxidized, but no inhibitory effect was observed when Q was highly reduced. Thus, the Q reduction level-dependent regulation of StUCP inhibition functions independently of the type of UCP activation and could be an important physiological factor affecting the efficiency of UCP-catalyzed uncoupling in plant mitochondria.
Collapse
Affiliation(s)
| | - Wieslawa Jarmuszkiewicz
- Laboratory of Bioenergetics, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland.
| |
Collapse
|
19
|
Speijer D. How the mitochondrion was shaped by radical differences in substrates: what carnitine shuttles and uncoupling tell us about mitochondrial evolution in response to ROS. Bioessays 2014; 36:634-43. [PMID: 24848875 DOI: 10.1002/bies.201400033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As free-living organisms, alpha-proteobacteria produce reactive oxygen species (ROS) that diffuse into the surroundings; once constrained inside the archaeal ancestor of eukaryotes, however, ROS production presented evolutionary pressures - especially because the alpha-proteobacterial symbiont made more ROS, from a variety of substrates. I previously proposed that ratios of electrons coming from FADH2 and NADH (F/N ratios) correlate with ROS production levels during respiration, glucose breakdown having a much lower F/N ratio than longer fatty acid (FA) breakdown. Evidently, higher endogenous ROS formation did not hinder eukaryotic evolution, so how were its disadvantages mitigated? I propose that the resulting selection pressures favoured the evolution of a variety of eukaryotic 'innovations': peroxisomes for FA breakdown, carnitine shuttles, the linkage of beta-oxidation to antioxidant properties, uncoupling proteins (UCPs) and using mitochondrial uncoupling during beta-oxidation to reduce ROS. Recently observed relationships between peroxisomes and mitochondria further support the model.
Collapse
Affiliation(s)
- Dave Speijer
- Academic Medical Centre (AMC), University of Amsterdam, Department of Medical Biochemistry, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Donadelli M, Dando I, Fiorini C, Palmieri M. UCP2, a mitochondrial protein regulated at multiple levels. Cell Mol Life Sci 2014; 71:1171-90. [PMID: 23807210 PMCID: PMC11114077 DOI: 10.1007/s00018-013-1407-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/16/2013] [Accepted: 06/10/2013] [Indexed: 12/11/2022]
Abstract
An ever-increasing number of studies highlight the role of uncoupling protein 2 (UCP2) in a broad range of physiological and pathological processes. The knowledge of the molecular mechanisms of UCP2 regulation is becoming fundamental in both the comprehension of UCP2-related physiological events and the identification of novel therapeutic strategies based on UCP2 modulation. The study of UCP2 regulation is a fast-moving field. Recently, several research groups have made a great effort to thoroughly understand the various molecular mechanisms at the basis of UCP2 regulation. In this review, we describe novel findings concerning events that can occur in a concerted manner at various levels: Ucp2 gene mutation (single nucleotide polymorphisms), UCP2 mRNA and protein expression (transcriptional, translational, and protein turn-over regulation), UCP2 proton conductance (ligands and post-transcriptional modifications), and nutritional and pharmacological regulation of UCP2.
Collapse
Affiliation(s)
- Massimo Donadelli
- Section of Biochemistry, Deparment of Life and Reproduction Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy,
| | | | | | | |
Collapse
|
21
|
Koziel A, Woyda-Ploszczyca A, Kicinska A, Jarmuszkiewicz W. The influence of high glucose on the aerobic metabolism of endothelial EA.hy926 cells. Pflugers Arch 2012; 464:657-69. [PMID: 23053476 PMCID: PMC3513600 DOI: 10.1007/s00424-012-1156-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/02/2012] [Accepted: 09/05/2012] [Indexed: 12/22/2022]
Abstract
The endothelium is considered to be relatively independent of the mitochondrial energy supply. The goals of this study were to examine mitochondrial respiratory functions in endothelial cells and isolated mitochondria and to assess the influence of chronic high glucose exposure on the aerobic metabolism of these cells. A procedure to isolate of bioenergetically active endothelial mitochondria was elaborated. Human umbilical vein endothelial cells (EA.hy926 line) were grown in medium containing either 5.5 or 25 mM glucose. The respiratory response to elevated glucose was observed in cells grown in 25 mM glucose for at least 6 days or longer. In EA.hy926 cells, growth in high glucose induced considerably lower mitochondrial respiration with glycolytic fuels, less pronounced with glutamine, and higher respiration with palmitate. The Crabtree effect was observed in both types of cells. High glucose conditions produced elevated levels of cellular Q10, increased ROS generation, increased hexokinase I, lactate dehydrogenase, acyl-CoA dehydrogenase, uncoupling protein 2 (UCP2), and superoxide dismutase 2 expression, and decreased E3-binding protein of pyruvate dehydrogenase expression. In isolated mitochondria, hyperglycaemia induced an increase in the oxidation of palmitoylcarnitine and glycerol-3-phosphate (lipid-derived fuels) and a decrease in the oxidation of pyruvate (a mitochondrial fuel); in addition, increased UCP2 activity was observed. Our results demonstrate that primarily glycolytic endothelial cells possess highly active mitochondria with a functioning energy-dissipating pathway (UCP2). High-glucose exposure induces a shift of the endothelial aerobic metabolism towards the oxidation of lipids and amino acids.
Collapse
Affiliation(s)
- Agnieszka Koziel
- Department of Bioenergetics, Adam Mickiewicz University, Umultowska 89, Poznan, Poland
| | | | | | | |
Collapse
|
22
|
Woyda-Ploszczyca AM, Jarmuszkiewicz W. Hydroxynonenal, a lipid peroxidation end product, stimulates uncoupling protein activity in Acanthamoeba castellanii mitochondria; the sensitivity of the inducible activity to purine nucleotides depends on the membranous ubiquinone redox state. J Bioenerg Biomembr 2012; 44:525-38. [PMID: 22798183 DOI: 10.1007/s10863-012-9456-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/19/2012] [Indexed: 01/06/2023]
Abstract
We studied the influence of exogenously generated superoxide and exogenous 4-hydroxy-2-nonenal (HNE), a lipid peroxidation end product, on the activity of the Acanthamoeba castellanii uncoupling protein (AcUCP). The superoxide-generating xanthine/xanthine oxidase system was insufficient to induce mitochondrial uncoupling. In contrast, exogenously added HNE induced GTP-sensitive AcUCP-mediated mitochondrial uncoupling. In non-phosphorylating mitochondria, AcUCP activation by HNE was demonstrated by increased oxygen consumption accompanied by a decreased membrane potential and ubiquinone (Q) reduction level. The HNE-induced GTP-sensitive proton conductance was similar to that observed with linoleic acid. In phosphorylating mitochondria, the HNE-induced AcUCP-mediated uncoupling decreased the yield of oxidative phosphorylation. We demonstrated that the efficiency of GTP to inhibit HNE-induced AcUCP-mediated uncoupling was regulated by the endogenous Q redox state. A high Q reduction level activated AcUCP by relieving the inhibition caused by GTP while a low Q reduction level favoured the inhibition. We propose that the regulation of UCP activity involves a rapid response through the endogenous Q redox state that modulates the inhibition of UCP by purine nucleotides, followed by a late response through lipid peroxidation products resulting from an increase in the formation of reactive oxygen species that modulate the UCP activation.
Collapse
|
23
|
Luévano-Martínez LA. Uncoupling proteins (UCP) in unicellular eukaryotes: true UCPs or UCP1-like acting proteins? FEBS Lett 2012; 586:1073-8. [PMID: 22569266 DOI: 10.1016/j.febslet.2012.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 02/24/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
Uncoupling proteins belong to the superfamily of mitochondrial anion carriers. They are apparently present throughout the Eukarya domain in which only some members have an established physiological function, i.e. UCP1 from brown adipose tissue is involved in non-shivering thermogenesis. However, the proteins responsible for the phenotype observed in unicellular organisms have not been characterized. In this report we analyzed functional evidence concerning unicellular UCPs and found that true UCPs are restricted to some taxonomical groups while proteins conferring a UCP1-like phenotype to fungi and most protists are the result of a promiscuous activity exerted by other mitochondrial anion carriers. We describe a possible evolutionary route followed by these proteins by which they acquire this promiscuous mechanism.
Collapse
Affiliation(s)
- Luis Alberto Luévano-Martínez
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Cidade Universitária, Av Prof Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
24
|
Genova ML, Lenaz G. New developments on the functions of coenzyme Q in mitochondria. Biofactors 2011; 37:330-54. [PMID: 21989973 DOI: 10.1002/biof.168] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 12/12/2022]
Abstract
The notion of a mobile pool of coenzyme Q (CoQ) in the lipid bilayer has changed with the discovery of respiratory supramolecular units, in particular the supercomplex comprising complexes I and III; in this model, the electron transfer is thought to be mediated by tunneling or microdiffusion, with a clear kinetic advantage on the transfer based on random collisions. The CoQ pool, however, has a fundamental function in establishing a dissociation equilibrium with bound quinone, besides being required for electron transfer from other dehydrogenases to complex III. The mechanism of CoQ reduction by complex I is analyzed regarding recent developments on the crystallographic structure of the enzyme, also in relation to the capacity of complex I to generate superoxide. Although the mechanism of the Q-cycle is well established for complex III, involvement of CoQ in proton translocation by complex I is still debated. Some additional roles of CoQ are also examined, such as the antioxidant effect of its reduced form and the capacity to bind the permeability transition pore and the mitochondrial uncoupling proteins. Finally, a working hypothesis is advanced on the establishment of a vicious circle of oxidative stress and supercomplex disorganization in pathological states, as in neurodegeneration and cancer.
Collapse
|
25
|
Impact of oxidative stress on Acanthamoeba castellanii mitochondrial bioenergetics depends on cell growth stage. J Bioenerg Biomembr 2011; 43:217-25. [DOI: 10.1007/s10863-011-9351-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/18/2011] [Indexed: 10/18/2022]
|