1
|
Colomeu TC, de Figueiredo D, de Matos da Silva P, Fernandes LGR, Zollner RDL. Antiproliferative and Pro-Oxidant Effect of Polyphenols in Aqueous Leaf Extract of Passiflora alata Curtis on Activated T Lymphocytes from Non-Obese Diabetic (NOD SHILT/J) Mice. Antioxidants (Basel) 2022; 11:antiox11081503. [PMID: 36009222 PMCID: PMC9405454 DOI: 10.3390/antiox11081503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
The antioxidant, anti-inflammatory and antiproliferative properties of Passiflora alata Curtis are due to the presence of polyphenols in its composition. Our previous work showed that non-obese diabetic (NOD) mice undergoing treatment with aqueous leaf extract of P. alata present reduced insulitis in the pancreas, possibly due to its anti-inflammatory properties. However, depending on the concentration and their ability to interact with other molecules, these phenolic compounds may promote oxidation reactions in some cellular components, such as proteins and lipids, thus presenting a pro-oxidant effect. The present work aimed to evaluate the in vitro effects of aqueous leaf extract of P. alata and its polyphenols (vitexin, isoorientin, rutin and catechin) on lymphocyte proliferation and viability, the cell cycle and oxidative stress. Our results showed that T lymphocytes stimulated with concanavalin A mitogen (ConA) and in the presence of IC50 concentrations of P. alata extract and polyphenols undergo cell injury via inhibition of proliferation, with these effects being more pronounced concerning CD4+ T cells (P. alata, 3.54 ± 0.34%; isoorientin, 57.07 ± 6.4%; vitexin, 16.95 ± 1.11%; catechin, 37.9 ± 4.2% and rutin, 40.14 ± 4.5%), compared to the non-treated group (77.17 ± 6.29) (p < 0.0001 for all comparisons). This process includes late apoptosis/necrosis induction (P. alata, 77.5 ± 0.7%; vitexin, 83 ± 3.3%; isoorientin, 83.8 ± 1.4%; catechin, 83 ± 1.9% and rutin, 74.9 ± 3.2, while the control presented 53.6% ± 3.1 (p < 0.0001 for all comparisons)) and mitochondrial depolarization leading to cell-death induction. Furthermore, an in vitro model of a mixed culture of NOD mice T cells with a mouse pancreatic beta-cell line (MIN6) showed increased intracellular nitric oxide and lipid peroxidation in NOD T cells submitted to P. alata extract (46.41 ± 3.08) compared to the untreated control group (33.57 ± 1.99, p = 0.01315). These results suggest that aqueous leaf extract of P. alata and the polyphenols in these leaves represent a target for translational research showing the plant’s benefits for developing new drugs with immunomodulatory properties against inflammatory diseases such as diabetes mellitus.
Collapse
|
2
|
Alizadeh SR, Ebrahimzadeh MA. O-substituted quercetin derivatives: Structural classification, drug design, development, and biological activities, a review. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Biasutto L, Mattarei A, Paradisi C. Synthesis and Testing of Novel Isomeric Mitochondriotropic Derivatives of Resveratrol and Quercetin. Methods Mol Biol 2021; 2275:141-160. [PMID: 34118036 DOI: 10.1007/978-1-0716-1262-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Resveratrol and quercetin are among the most studied plant polyphenols, and have many health-promoting actions. Strategies to accumulate them into mitochondria may be of therapeutic relevance, since these compounds are redox active and are well known to impact mitochondria and mitochondrial proteins. We report here the procedures to synthesize mitochondria-targeted resveratrol and quercetin derivatives; the synthetic strategies reported are however expected to be adaptable to other polyphenols with similar reactivity at the phenolic hydroxyls. Mitochondrial targeting can be achieved by conjugation with triphenylphosphonium , a lipophilic cation; this was linked via a butyl spacer forming an ether bond with one of the phenolic oxygens. The first step toward the synthesis of all mitochondriotropic derivatives described in this work is the production of a regiospecific -(4-O-chlorobutyl) derivative. Triphenylphosphonium (P+Ph3I-) is then introduced through two consecutive nucleophilic substitution steps: -Cl → -I → -P+Ph3I-. Pure mono-substituted chlorobutyl regioisomers are obtained by purification from the reaction mixture in the case of resveratrol , while specific protection strategies are required for quercetin to favor alkylation of one specific hydroxyl.Functionalization of the remaining hydroxyls can be exploited to modulate the physicochemical properties of the derivatives (i.e., water solubility, affinity for cell membranes); we report here synthetic protocols to obtain acetylated and methylated analogs.A brief description of some methods to assess the accumulation of the derivatives in mitochondria is also given; the proposed techniques are the use of a TPP +-selective electrode (with isolated rat liver mitochondria ) and fluorescence microscopy (with cultured cells).
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Institute of Neurosciences, Padova, Italy. .,Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Cristina Paradisi
- Department of Chemical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Szabo I, Zoratti M, Biasutto L. Targeting mitochondrial ion channels for cancer therapy. Redox Biol 2021; 42:101846. [PMID: 33419703 PMCID: PMC8113036 DOI: 10.1016/j.redox.2020.101846] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Pharmacological targeting of mitochondrial ion channels is emerging as a promising approach to eliminate cancer cells; as most of these channels are differentially expressed and/or regulated in cancer cells in comparison to healthy ones, this strategy may selectively eliminate the former. Perturbation of ion fluxes across the outer and inner membranes is linked to alterations of redox state, membrane potential and bioenergetic efficiency. This leads to indirect modulation of oxidative phosphorylation, which is/may be fundamental for both cancer and cancer stem cell survival. Furthermore, given the crucial contribution of mitochondria to intrinsic apoptosis, modulation of their ion channels leading to cytochrome c release may be of great advantage in case of resistance to drugs triggering apoptotic events upstream of the mitochondrial phase. In the present review, we give an overview of the known mitochondrial ion channels and of their modulators capable of killing cancer cells. In addition, we discuss state-of-the-art strategies using mitochondriotropic drugs or peptide-based approaches allowing a more efficient and selective targeting of mitochondrial ion channel-linked events.
Collapse
Affiliation(s)
- Ildiko Szabo
- Department of Biology, University of Padova, Italy; CNR Institute of Neurosciences, Padova, Italy.
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Padova, Italy; Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
5
|
Hoenke S, Serbian I, Deigner HP, Csuk R. Mitocanic Di- and Triterpenoid Rhodamine B Conjugates. Molecules 2020; 25:molecules25225443. [PMID: 33233650 PMCID: PMC7699795 DOI: 10.3390/molecules25225443] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
The combination of the “correct” triterpenoid, the “correct” spacer and rhodamine B (RhoB) seems to be decisive for the ability of the conjugate to accumulate in mitochondria. So far, several triterpenoid rhodamine B conjugates have been prepared and screened for their cytotoxic activity. To obtain cytotoxic compounds with EC50 values in a low nano-molar range combined with good tumor/non-tumor selectivity, the Rho B unit has to be attached via an amine spacer to the terpenoid skeleton. To avoid spirolactamization, secondary amines have to be used. First results indicate that a homopiperazinyl spacer is superior to a piperazinyl spacer. Hybrids derived from maslinic acid or tormentic acid are superior to those from oleanolic, ursolic, glycyrrhetinic or euscaphic acid. Thus, a tormentic acid-derived RhoB conjugate 32, holding a homopiperazinyl spacer can be regarded, at present, as the most promising candidate for further biological studies.
Collapse
Affiliation(s)
- Sophie Hoenke
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Street 2, D-06120 Halle, Germany; (S.H.); (I.S.)
| | - Immo Serbian
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Street 2, D-06120 Halle, Germany; (S.H.); (I.S.)
| | - Hans-Peter Deigner
- Medical and Life Science Faculty, Institute of Precision Medicine, Furtwangen University, Jakob–Kienzle–Street 17, D-78054 Villigen–Schwenningen, Germany;
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Street 2, D-06120 Halle, Germany; (S.H.); (I.S.)
- Correspondence: ; Tel.: +49-345-5525660
| |
Collapse
|
6
|
Biasutto L, Mattarei A, La Spina M, Azzolini M, Parrasia S, Szabò I, Zoratti M. Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds. Eur J Med Chem 2019; 181:111557. [PMID: 31374419 DOI: 10.1016/j.ejmech.2019.07.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Abstract
Many potential pharmacological targets are present in multiple subcellular compartments and have different pathophysiological roles depending on location. In these cases, selective targeting of a drug to the relevant subcellular domain(s) may help to sharpen its impact by providing topological specificity, thus limiting side effects, and to concentrate the compound where needed, thus increasing its effectiveness. We review here the state of the art in precision subcellular delivery. The major approaches confer "homing" properties to the active principle via permanent or reversible (in pro-drug fashion) modifications, or through the use of special-design nanoparticles or liposomes to ferry a drug(s) cargo to its desired destination. An assortment of peptides, substituents with delocalized positive charges, custom-blended lipid mixtures, pH- or enzyme-sensitive groups provide the main tools of the trade. Mitochondria, lysosomes and the cell membrane may be mentioned as the fronts on which the most significant advances have been made. Most of the examples presented here have to do with targeting natural compounds - in particular polyphenols, known as pleiotropic agents - to one or the other subcellular compartment.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.
| | - Andrea Mattarei
- Dept. Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Martina La Spina
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Michele Azzolini
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Sofia Parrasia
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biology, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| |
Collapse
|
7
|
Gu LQ, Cui PF, Xing L, He YJ, Chang X, Zhou TJ, Liu Y, Li L, Jiang HL. An energy-blocking nanoparticle decorated with anti-VEGF antibody to reverse chemotherapeutic drug resistance. RSC Adv 2019; 9:12110-12123. [PMID: 35548379 PMCID: PMC9087936 DOI: 10.1039/c9ra01356c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/03/2019] [Indexed: 11/21/2022] Open
Abstract
Multi-drug resistance (MDR) of tumor cells has greatly hindered the therapeutic efficacy of chemotherapeutic drugs, resulting in chemotherapy failure, while overexpression of ATP-binding cassette (ABC) transporters in cell membranes is the leading cause of MDR. In this study, we reported novel self-assembled triphenylphosphine-quercetin-polyethylene glycol-monoclonal antibody nanoparticles (TQ-PEG-mAb NPs) for overcoming MDR primarily through mitochondrial damage to block ATP supply to ABC transporters both in vitro and in vivo. The doxorubicin (DOX)-loaded NPs (TQ/DOX-PEG-mAb) were composed of two drugs (TQ and DOX) and an outer shielding shell of the PEG-mAb conjugate. Besides, the outer shell could be acid-responsively detached to expose the positive charge of TQ inside the NPs to enhance cellular uptake. TQ was proved to effectively induce mitochondrial damage with increased ROS levels and depolarization of mitochondrial membrane potential (MMP), leading to prominently reduced ATP supply to ABC transporters. Moreover, the involvement of the anti-vascular endothelial growth factor (VEGF) mAb was not only for efficient targeting but also for combined therapy. Consequently, TQ/DOX-PEG-mAb showed that the internalized amount of DOX was largely improved while the efflux amount was dramatically inhibited on MCF-7/ADR cells, indicating excellent reversal of DOX resistance. Importantly, the growth of DOX-resistant breast tumors was significantly inhibited with no evident systemic toxicity. Therefore, the employment of TQ-PEG-mAb is believed to be a new approach to improve the efficacy of chemotherapeutic drugs in MDR tumors.
Collapse
Affiliation(s)
- Liu-Qing Gu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Peng-Fei Cui
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University Nanjing 210009 China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University Nanjing 210009 China
| | - Yu-Jing He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Xin Chang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Yu Liu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University Nanjing 210009 China +86-25-83271019 +86-25-83271543
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, Southeast University Nanjing 210009 China +86-25-83272011 +86-25-83272012
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University Nanjing 210009 China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
8
|
Tuncay E, Bitirim CV, Olgar Y, Durak A, Rutter GA, Turan B. Zn2+-transporters ZIP7 and ZnT7 play important role in progression of cardiac dysfunction via affecting sarco(endo)plasmic reticulum-mitochondria coupling in hyperglycemic cardiomyocytes. Mitochondrion 2019; 44:41-52. [DOI: 10.1016/j.mito.2017.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/13/2017] [Accepted: 12/27/2017] [Indexed: 12/20/2022]
|
9
|
Stevens JF, Revel JS, Maier CS. Mitochondria-Centric Review of Polyphenol Bioactivity in Cancer Models. Antioxid Redox Signal 2018; 29:1589-1611. [PMID: 29084444 PMCID: PMC6207154 DOI: 10.1089/ars.2017.7404] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/28/2017] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Humans are exposed daily to polyphenols in milligram-to-gram amounts through dietary consumption of fruits and vegetables. Polyphenols are also available as components of dietary supplements for improving general health. Although polyphenols are often advertised as antioxidants to explain health benefits, experimental evidence shows that their beneficial cancer preventing and controlling properties are more likely due to stimulation of pro-oxidant and proapoptotic pathways. Recent Advances: The understanding of the biological differences between cancer and normal cell, and especially the role that mitochondria play in carcinogenesis, has greatly advanced in recent years. These advances have resulted in a wealth of new information on polyphenol bioactivity in cell culture and animal models of cancer. Polyphenols appear to target oxidative phosphorylation and regulation of the mitochondrial membrane potential (MMP), glycolysis, pro-oxidant pathways, and antioxidant (adaptive) stress responses with greater selectivity in tumorigenic cells. CRITICAL ISSUES The ability of polyphenols to dissipate the MMP (Δψm) by a protonophore mechanism has been known for more than 50 years. However, researchers focus primarily on the downstream molecular effects of Δψm dissipation and mitochondrial uncoupling. We argue that the physicochemical properties of polyphenols are responsible for their anticancer properties by virtue of their protonophoric and pro-oxidant properties rather than their specific effects on downstream molecular targets. FUTURE DIRECTIONS Polyphenol-induced dissipation of Δψm is a physicochemical process that cancer cells cannot develop resistance against by gene mutation. Therefore, polyphenols should receive more attention as agents for cotherapy with cancer drugs to gain synergistic activity. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Jan F. Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Johana S. Revel
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
- Department of Chemistry, Oregon State University, Corvallis, Oregon
| | - Claudia S. Maier
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
- Department of Chemistry, Oregon State University, Corvallis, Oregon
| |
Collapse
|
10
|
Brus M, Gradišnik L, Trapecar M, Škorjanc D, Frangež R. Beneficial effects of water-soluble chestnut (Castanea sativa Mill.) tannin extract on chicken small intestinal epithelial cell culture. Poult Sci 2018; 97:1271-1282. [PMID: 29444319 DOI: 10.3382/ps/pex424] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/04/2017] [Indexed: 11/20/2022] Open
Abstract
Feed and water supplementation with powdered hydrolyzable tannins from chestnut represents a valuable alternative strategy to antibiotics in animal nutrition. In this study, we evaluated the effects and safety of a water-soluble form of chestnut tannin (WST) in an in vitro model of chicken small intestinal epithelial cells (CSIEC). A chicken cell culture was established, and WST in concentrations of 0.025, 0.05, 0.1, and 0.2% were tested for cytotoxicity, cell proliferation, metabolic activity, production of reactive oxygen species, intracellular antioxidative potential, genotoxicity, and influence on the epithelia cell cycle. The tested concentrations showed a significant (P < 0.05) greater proliferative effect on CSIEC than the control medium (maximal proliferation at 0.1% WST as determined by optical density measurements). The 0.2% concentration of WST was cytotoxic, causing significantly higher (P < 0.05) nitric oxide and hydrogen peroxide production but with no short-term genotoxicity. Although increasing the concentration caused a decline in the metabolism of challenged cells (the lowest at 0.1% WST), metabolic activity remained higher than that in control cells. The antioxidant potential was 75% better and significantly (P < 0.05) higher in the 0.1% WST cultured cells compared to control. In conclusion, the cultured CSIEC are useful tools in basic and clinical research for the study of intestinal physiology, as they retain physiological and biochemical properties and epithelial morphology close to the original tissue and, in many ways, reflect the in vivo state. Our results indicate that WST exert a beneficial effect on intestinal epithelia, since they: i) stimulate proliferation of enterocytes; ii) increase antioxidative potential; iii) have no genotoxic effect; and iv) do not affect cellular metabolism. Our results reinforce the importance of WST as promising candidates for further evaluation and use in commercial broiler farm production.
Collapse
Affiliation(s)
- M Brus
- Department of Animal Science, Faculty of Agriculture and Life Sciences, University of Maribor, Maribor, Slovenia
| | - L Gradišnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - M Trapecar
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - D Škorjanc
- Department of Animal Science, Faculty of Agriculture and Life Sciences, University of Maribor, Maribor, Slovenia
| | - R Frangež
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Soboleva T, Esquer HJ, Anderson SN, Berreau LM, Benninghoff AD. Mitochondrial-Localized Versus Cytosolic Intracellular CO-Releasing Organic PhotoCORMs: Evaluation of CO Effects Using Bioenergetics. ACS Chem Biol 2018; 13:2220-2228. [PMID: 29932318 PMCID: PMC6117112 DOI: 10.1021/acschembio.8b00387] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
While interactions between carbon monoxide (CO) and mitochondria have been previously studied, the methods used to deliver CO (gas or CO-releasing metal carbonyl compounds) lack subcellular targeting and/or controlled delivery. Thus, the effective concentration needed to produce changes in mitochondrial bioenergetics is yet to be fully defined. To evaluate the influence of mitochondrial-targeted versus intracellularly released CO on mitochondrial oxygen consumption rates, we developed and characterized flavonol-based CO donor compounds that differ at their site of release. These molecules are metal-free, visible light triggered CO donors (photoCORMs) that quantitatively release CO and are trackable in cells via confocal microscopy. Our studies indicate that at a concentration of 10 μM, the mitochondrial-localized and cytosolic CO-releasing compounds are similarly effective in terms of decreasing ATP production, maximal respiration, and the reserve capacity of A549 cells. This concentration is the lowest to impart changes in mitochondrial bioenergetics for any CO-releasing molecule (CORM) reported to date. The results reported herein demonstrate the feasibility of using a structurally tunable organic photoCORM framework for comparative intracellular studies of the biological effects of carbon monoxide.
Collapse
Affiliation(s)
- Tatiana Soboleva
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Hector J. Esquer
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84322-4815, United States
| | - Stacey N. Anderson
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Lisa M. Berreau
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Abby D. Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84322-4815, United States
| |
Collapse
|
12
|
Teixeira J, Oliveira C, Cagide F, Amorim R, Garrido J, Borges F, Oliveira PJ. Discovery of a new mitochondria permeability transition pore (mPTP) inhibitor based on gallic acid. J Enzyme Inhib Med Chem 2018. [PMID: 29513043 PMCID: PMC6010063 DOI: 10.1080/14756366.2018.1442831] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pharmacological interventions targeting mitochondria present several barriers for a complete efficacy. Therefore, a new mitochondriotropic antioxidant (AntiOxBEN3) based on the dietary antioxidant gallic acid was developed. AntiOxBEN3 accumulated several thousand-fold inside isolated rat liver mitochondria, without causing disruption of the oxidative phosphorylation apparatus, as seen by the unchanged respiratory control ratio, phosphorylation efficiency, and transmembrane electric potential. AntiOxBEN3 showed also limited toxicity on human hepatocarcinoma cells. Moreover, AntiOxBEN3 presented robust iron-chelation and antioxidant properties in both isolated liver mitochondria and cultured rat and human cell lines. Along with its low toxicity profile and high antioxidant activity, AntiOxBEN3 strongly inhibited the calcium-dependent mitochondrial permeability transition pore (mPTP) opening. From our data, AntiOxBEN3 can be considered as a lead compound for the development of a new class of mPTP inhibitors and be used as mPTP de-sensitiser for basic research or clinical applications or emerge as a therapeutic application in mitochondria dysfunction-related disorders.
Collapse
Affiliation(s)
- José Teixeira
- a CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal.,b Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech , Cantanhede , Portugal
| | - Catarina Oliveira
- a CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal
| | - Fernando Cagide
- a CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal
| | - Ricardo Amorim
- a CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal.,c PhD Programme in Experimental Biology and Biomedicine (PDBEB) , Center for Neuroscience and Cell Biology, University of Coimbra , Coimbra , Portugal.,d III-Institute for Interdisciplinary Research , University of Coimbra , Portugal
| | - Jorge Garrido
- e Department of Chemical Engineering, School of Engineering (ISEP) , Polytechnic Institute of Porto , Porto , Portugal
| | - Fernanda Borges
- a CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal
| | - Paulo J Oliveira
- b Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech , Cantanhede , Portugal
| |
Collapse
|
13
|
Mattarei A, Romio M, Managò A, Zoratti M, Paradisi C, Szabò I, Leanza L, Biasutto L. Novel Mitochondria-Targeted Furocoumarin Derivatives as Possible Anti-Cancer Agents. Front Oncol 2018; 8:122. [PMID: 29740538 PMCID: PMC5925966 DOI: 10.3389/fonc.2018.00122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/04/2018] [Indexed: 01/10/2023] Open
Abstract
Targeting small molecules to appropriate subcellular compartments is a way to increase their selectivity and effectiveness while minimizing side effects. This can be accomplished either by stably incorporating specific "homing" properties into the structure of the active principle, or by attaching to it a targeting moiety via a labile linker, i.e., by producing a "targeting pro-drug." Mitochondria are a recognized therapeutic target in oncology, and blocking the population of the potassium channel Kv1.3 residing in the inner mitochondrial membrane (mtKv1.3) has been shown to cause apoptosis of cancerous cells expressing it. These concepts have led us to devise novel, mitochondria-targeted, membrane-permeant drug candidates containing the furocoumarin (psoralenic) ring system and the triphenylphosphonium (TPP) lipophilic cation. The strategy has proven effective in various cancer models, including pancreatic ductal adenocarcinoma, melanoma, and glioblastoma, stimulating us to devise further novel molecules to extend and diversify the range of available drugs of this type. New compounds were synthesized and tested in vitro; one of them-a prodrug in which the coumarinic moiety and the TPP group are linked by a bridge comprising a labile carbonate bond system-proved quite effective in in vitro cytotoxicity assays. Selective death induction is attributed to inhibition of mtKv1.3. This results in oxidative stress, which is fatal for the already-stressed malignant cells. This compound may thus be a candidate drug for the mtKv1.3-targeting therapeutic approach.
Collapse
Affiliation(s)
- Andrea Mattarei
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Matteo Romio
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | | | - Mario Zoratti
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Cristina Paradisi
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | - Lucia Biasutto
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
14
|
Teixeira J, Deus CM, Borges F, Oliveira PJ. Mitochondria: Targeting mitochondrial reactive oxygen species with mitochondriotropic polyphenolic-based antioxidants. Int J Biochem Cell Biol 2018; 97:98-103. [PMID: 29454114 DOI: 10.1016/j.biocel.2018.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/29/2018] [Accepted: 02/09/2018] [Indexed: 12/14/2022]
Abstract
Mitochondrial function and regulation of redox balance is fundamental in controlling cellular life and death pathways. Antioxidants have been used to counteract disruption of redox networks, normally associated with progressive loss of cell homeostasis and disease pathophysiology, although therapeutic success is limited mainly due to pharmacokinetic drawbacks. Attempts to improve mitochondrial function in a range of diseases spurred active drug discovery efforts. Currently, the most effective strategy to deliver drugs to mitochondria is the covalent link of lipophilic cations to the bioactive compound. Although targeting mitochondrial oxidative stress with antioxidants has been demonstrated, clinical use has been hampered by several challenges, with no FDA-approved drug so far. Development of new mitochondriotropic antioxidant agents based on dietary polyphenols has recently gained momentum. Due to their nature, mitochondria-targeted multi-functional antioxidants can trigger stress responses and contribute to tissue protection through hormesis mechanisms, inhibiting excessive mitochondrial ROS production and associated diseases.
Collapse
Affiliation(s)
- José Teixeira
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra,UC-Biotech Building, Biocant Park, Cantanhede 3060-197, Portugal.
| | - Cláudia M Deus
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra,UC-Biotech Building, Biocant Park, Cantanhede 3060-197, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra,UC-Biotech Building, Biocant Park, Cantanhede 3060-197, Portugal
| |
Collapse
|
15
|
Sassi N, Mattarei A, Espina V, Liotta L, Zoratti M, Paradisi C, Biasutto L. Potential anti-cancer activity of 7-O-pentyl quercetin: Efficient, membrane-targeted kinase inhibition and pro-oxidant effect. Pharmacol Res 2017; 124:9-19. [PMID: 28728925 DOI: 10.1016/j.phrs.2017.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/04/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022]
Abstract
Quercetin is a redox-active plant-derived flavonoid with potential anticancer effects, stemming largely from its interaction with a number of proteins, and in particular from inhibition of pro-life kinases. To improve efficacy, we reasoned that a local increase in concentration of the compound at the level of cell membranes would result in a more efficient interaction with membrane-associated signaling kinases. We report here the synthesis of all five isomeric quercetin derivatives in which an n-pentyl group was linked via an ether bond to each hydroxyl of the flavonoid kernel. This strategy proved effective in directing quercetin to cellular membranes, and revealed a remarkable dependence of the derivatives' bioactivity on the specific site of functionalization. The isomer bearing the pentyl group in position 7, Q-7P, turned out to be the most effective and promising derivative, selectively inducing apoptosis in tumoral and fast-growing cells, while sparing slow-growing, non-tumoral ones. Cytotoxicity for tumoral cells was strongly enhanced compared to quercetin itself. Q-7P induced massive ROS production, which however accounted only partially for cell death. Alterations in the levels of various signaling phospho-proteins were observed in a proteomics screen. An important contribution seems to come from inhibition of the PI3K/Akt pathway. This work opens new perspectives in developing membrane-associating, polyphenol-based anticancer agents.
Collapse
Affiliation(s)
- Nicola Sassi
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Dept. Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Andrea Mattarei
- University of Padova, Dept. Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Virginia Espina
- George Mason University, Center for Applied Proteomics and Molecular Medicine, 10900 University Blvd, Manassas, VA 20110, USA
| | - Lance Liotta
- George Mason University, Center for Applied Proteomics and Molecular Medicine, 10900 University Blvd, Manassas, VA 20110, USA
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Dept. Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Cristina Paradisi
- University of Padova, Dept. Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Dept. Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
16
|
Ghosh S, Sarkar S, Choudhury ST, Ghosh T, Das N. Triphenyl phosphonium coated nano-quercetin for oral delivery: Neuroprotective effects in attenuating age related global moderate cerebral ischemia reperfusion injury in rats. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2439-2450. [PMID: 28822845 DOI: 10.1016/j.nano.2017.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/28/2017] [Accepted: 08/04/2017] [Indexed: 01/04/2023]
Abstract
Cerebral ischemia-reperfusion is a classic example of reactive oxygen species (ROS) mediated acute damage to brain. Post-ischemic reperfusion induced oxygen free radicals production causes damage to brain cell mitochondria. Antioxidants like quercetin (Qc) have potentials to manage oxidative stress related pathophysiology. However low oral bioavailability and poor cell membrane permeability restrict its therapeutic efficacy. To overcome these hurdles mitochondria specific delivery of Qc nanocapsules was designed to efficiently counteract cerebral ischemia-reperfusion induced cell death and neurodegeneration in young and aged rats. The orally deliverable quercetin loaded polymeric nanocapsules (N1QC) were made mitochondria specific by using triphenylphosphonium cation as one of the matrix components. N1QC demonstrated higher brain uptake and remarkable mitochondrial localization post cerebral ischemia-reperfusion. This unique controlled mitochondrial delivery of quercetin ameliorated histopathological severity by preserving mitochondrial structural and functional integrity through sequestering ROS thus modulating mitochondrial ROS mediated apoptotic cell death in young and aged rats.
Collapse
Affiliation(s)
- Swarupa Ghosh
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
| | - Sibani Sarkar
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Somsubhra T Choudhury
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Tirtha Ghosh
- SRSV (Govt. Polytechnic), P.O. Suri, Dist-, Birbhum, West Bengal, India
| | - Nirmalendu Das
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
17
|
Zielonka J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017; 117:10043-10120. [PMID: 28654243 PMCID: PMC5611849 DOI: 10.1021/acs.chemrev.7b00042] [Citation(s) in RCA: 986] [Impact Index Per Article: 123.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Carrera 5a No. 6-33, Floridablanca, Santander, Colombia, 681003
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Calle 4B No. 36-00, Cali, Colombia, 760032
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
18
|
Biasutto L, Mattarei A, Azzolini M, La Spina M, Sassi N, Romio M, Paradisi C, Zoratti M. Resveratrol derivatives as a pharmacological tool. Ann N Y Acad Sci 2017; 1403:27-37. [PMID: 28675763 DOI: 10.1111/nyas.13401] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022]
Abstract
Prodrugs of resveratrol are under development. Among the long-term goals, still largely elusive, are (1) modulating physical properties (e.g., water-soluble derivatives bearing polyethylene glycol chains), (2) changing distribution in the body (e.g., galactosyl derivatives restricted to the intestinal lumen), (3) increasing absorption from the gastrointestinal tract (e.g., derivatives imitating the natural substrates of endogenous transporters), and (4) hindering phase II metabolism (e.g., temporarily blocking the hydroxyls), all contributing to (5) increasing bioavailability. The chemical bonds that have been tested for functionalization include carboxyester, acetal, and carbamate groups. A second approach, which can be combined with the first, seeks to reinforce or modify the biochemical activities of resveratrol by concentrating the compound at specific subcellular sites. An example is provided by mitochondria-targeted derivatives. These proved to be pro-oxidant and cytotoxic in vitro, selectively killing fast-growing and tumor cells when supplied in the low micromolar range. This suggests the possibility of anticancer applications.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Mattarei
- Department of Chemical Sciences, University of Padova, Padova, Italy.,Department of Pharmaceutical & Pharmacological Sciences, University of Padova, Padova, Italy
| | - Michele Azzolini
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Martina La Spina
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nicola Sassi
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Matteo Romio
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Cristina Paradisi
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
19
|
Leanza L, Romio M, Becker KA, Azzolini M, Trentin L, Managò A, Venturini E, Zaccagnino A, Mattarei A, Carraretto L, Urbani A, Kadow S, Biasutto L, Martini V, Severin F, Peruzzo R, Trimarco V, Egberts JH, Hauser C, Visentin A, Semenzato G, Kalthoff H, Zoratti M, Gulbins E, Paradisi C, Szabo I. Direct Pharmacological Targeting of a Mitochondrial Ion Channel Selectively Kills Tumor Cells In Vivo. Cancer Cell 2017; 31:516-531.e10. [PMID: 28399409 DOI: 10.1016/j.ccell.2017.03.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 02/03/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Abstract
The potassium channel Kv1.3 is highly expressed in the mitochondria of various cancerous cells. Here we show that direct inhibition of Kv1.3 using two mitochondria-targeted inhibitors alters mitochondrial function and leads to reactive oxygen species (ROS)-mediated death of even chemoresistant cells independently of p53 status. These inhibitors killed 98% of ex vivo primary chronic B-lymphocytic leukemia tumor cells while sparing healthy B cells. In orthotopic mouse models of melanoma and pancreatic ductal adenocarcinoma, the compounds reduced tumor size by more than 90% and 60%, respectively, while sparing immune and cardiac functions. Our work provides direct evidence that specific pharmacological targeting of a mitochondrial potassium channel can lead to ROS-mediated selective apoptosis of cancer cells in vivo, without causing significant side effects.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova, viale G. Colombo 3, 35121 Padova, Italy
| | - Matteo Romio
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35121 Padova, Italy
| | - Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Michele Azzolini
- Department of Biomedical Sciences, University of Padova, viale G. Colombo 3, 35121 Padova, Italy; CNR Institute of Neuroscience, viale G. Colombo 3, 35121 Padova, Italy
| | - Livio Trentin
- Department of Medicine, Hematology and Immunological Branch, University of Padova, and Venetian Institute for Molecular Medicine (VIMM), via G. Orus 2, 35129 Padova, Italy
| | - Antonella Managò
- Department of Biology, University of Padova, viale G. Colombo 3, 35121 Padova, Italy
| | - Elisa Venturini
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Angela Zaccagnino
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, and Department of Surgery, UKSH, Campus Kiel, Arnold-Heller-Strasse 3 (Haus 17), 24105 Kiel, Germany
| | - Andrea Mattarei
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35121 Padova, Italy
| | - Luca Carraretto
- Department of Biology, University of Padova, viale G. Colombo 3, 35121 Padova, Italy
| | - Andrea Urbani
- Department of Biology, University of Padova, viale G. Colombo 3, 35121 Padova, Italy
| | - Stephanie Kadow
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Lucia Biasutto
- Department of Biomedical Sciences, University of Padova, viale G. Colombo 3, 35121 Padova, Italy; CNR Institute of Neuroscience, viale G. Colombo 3, 35121 Padova, Italy
| | - Veronica Martini
- Department of Medicine, Hematology and Immunological Branch, University of Padova, and Venetian Institute for Molecular Medicine (VIMM), via G. Orus 2, 35129 Padova, Italy
| | - Filippo Severin
- Department of Medicine, Hematology and Immunological Branch, University of Padova, and Venetian Institute for Molecular Medicine (VIMM), via G. Orus 2, 35129 Padova, Italy
| | - Roberta Peruzzo
- Department of Biology, University of Padova, viale G. Colombo 3, 35121 Padova, Italy
| | - Valentina Trimarco
- Department of Medicine, Hematology and Immunological Branch, University of Padova, and Venetian Institute for Molecular Medicine (VIMM), via G. Orus 2, 35129 Padova, Italy
| | - Jan-Hendrik Egberts
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, and Department of Surgery, UKSH, Campus Kiel, Arnold-Heller-Strasse 3 (Haus 17), 24105 Kiel, Germany
| | - Charlotte Hauser
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, and Department of Surgery, UKSH, Campus Kiel, Arnold-Heller-Strasse 3 (Haus 17), 24105 Kiel, Germany
| | - Andrea Visentin
- Department of Medicine, Hematology and Immunological Branch, University of Padova, and Venetian Institute for Molecular Medicine (VIMM), via G. Orus 2, 35129 Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Immunological Branch, University of Padova, and Venetian Institute for Molecular Medicine (VIMM), via G. Orus 2, 35129 Padova, Italy
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, and Department of Surgery, UKSH, Campus Kiel, Arnold-Heller-Strasse 3 (Haus 17), 24105 Kiel, Germany
| | - Mario Zoratti
- Department of Biomedical Sciences, University of Padova, viale G. Colombo 3, 35121 Padova, Italy; CNR Institute of Neuroscience, viale G. Colombo 3, 35121 Padova, Italy
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany; Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0558, USA.
| | - Cristina Paradisi
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35121 Padova, Italy.
| | - Ildiko Szabo
- Department of Biology, University of Padova, viale G. Colombo 3, 35121 Padova, Italy; CNR Institute of Neuroscience, viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
20
|
de Oliveira MR, Nabavi SM, Braidy N, Setzer WN, Ahmed T, Nabavi SF. Quercetin and the mitochondria: A mechanistic view. Biotechnol Adv 2015; 34:532-549. [PMID: 26740171 DOI: 10.1016/j.biotechadv.2015.12.014] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/24/2015] [Accepted: 12/26/2015] [Indexed: 12/24/2022]
Abstract
Quercetin is an important flavonoid that is ubiquitously present in the diet in a variety of fruits and vegetables. It has been traditionally viewed as a potent antioxidant and anti-inflammatory molecule. However, recent studies have suggested that quercetin may exert its beneficial effects independent of its free radical-scavenging properties. Attention has been placed on the effect of quercetin on an array of mitochondrial processes. Quercetin is now recognized as a phytochemical that can modulate pathways associated with mitochondrial biogenesis, mitochondrial membrane potential, oxidative respiration and ATP anabolism, intra-mitochondrial redox status, and subsequently, mitochondria-induced apoptosis. The present review evaluates recent evidence on the ability of quercetin to interact with the abovementioned pathways, and critically analyses how, such interactions can exert protection against mitochondrial damage in response to toxicity induced by several exogenously and endogenously-produced cellular stressors, and oxidative stress in particular.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry, ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900, Cuiabá, MT, Brazil.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Touqeer Ahmed
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Biasutto L, Mattarei A, Paradisi C. Synthesis and testing of novel isomeric mitochondriotropic derivatives of resveratrol and quercetin. Methods Mol Biol 2015; 1265:161-179. [PMID: 25634275 DOI: 10.1007/978-1-4939-2288-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report here the synthetic procedures to obtain mitochondria-targeted resveratrol and quercetin derivatives. These two compounds were selected among plant polyphenols because both are well studied and have many health-promoting actions. The synthetic strategies reported here are however expected to be adaptable to other polyphenols with similar reactivity at the phenolic hydroxyls.Mitochondrial targeting can be achieved by incorporating in the molecule an "electrophoretic" membrane-permeant, triphenylphosphonium cation. We have generally chosen to link it via a butyl spacer forming an ether bond with one of the phenolic oxygens. The first step toward the synthesis of all mitochondriotropic derivatives described in this work is the production of a regiospecific -(4-O-chlorobutyl) derivative. Triphenylphosphonium (P(+)Ph3I(-)) is then introduced through two consecutive nucleophilic substitution steps: -Cl→-I→-P(+)Ph3I(-). Pure mono-substituted chlorobutyl regioisomers are obtained by purification from the reaction mixture in the case of resveratrol, while specific protection strategies are required for quercetin to favor alkylation of one specific hydroxyl.Physicochemical properties of the derivatives (i.e., water solubility, affinity for cell membranes) can be furthermore modulated by functionalization of the remaining hydroxyls; we report here synthetic protocols to obtain acetylated and methylated analogs.We also briefly describe how to assess mitochondrial accumulation of the derivatives; the proposed techniques are the use of a TPP(+)-selective electrode (with isolated rat liver mitochondria) and fluorescence microscopy (with cultured cells).
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Institute of Neurosciences, Viale G. Colombo 3, 35121, Padova, Italy,
| | | | | |
Collapse
|
22
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
23
|
Sandoval-Acuña C, Ferreira J, Speisky H. Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Arch Biochem Biophys 2014; 559:75-90. [PMID: 24875147 DOI: 10.1016/j.abb.2014.05.017] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/17/2014] [Accepted: 05/17/2014] [Indexed: 01/08/2023]
Abstract
Polyphenols, ubiquitously present in fruits and vegetables, have been traditionally viewed as antioxidant molecules. Such contention emerged, mainly from their well established in vitro ability to scavenge free radicals and other reactive oxygen species (ROS). During the last decade, however, increasing evidence has emerged supporting the ability of certain polyphenols to also exert numerous ROS-scavenging independent actions. Although the latter can comprise the whole cell, particular attention has been placed on the ability of polyphenols to act, whether favorably or not, on a myriad of mitochondrial processes. Thus, some particular polyphenols are now recognized as molecules capable of modulating pathways that define mitochondrial biogenesis (i.e., inducing sirtuins), mitochondrial membrane potential (i.e., mitochondrial permeability transition pore opening and uncoupling effects), mitochondrial electron transport chain and ATP synthesis (i.e., modulating complexes I to V activity), intra-mitochondrial oxidative status (i.e., inhibiting/inducing ROS formation/removal enzymes), and ultimately mitochondrially-triggered cell death (i.e., modulating intrinsic-apoptosis). The present review describes recent evidence on the ability of some polyphenols to modulate each of the formerly mentioned pathways, and discusses on how, by acting on such mitochondrial processes, polyphenols may afford protection against those mitochondrial damaging events that appear to be key in the cellular toxicity induced by various xenobiotics as well as that seen during the development of several ROS-related diseases.
Collapse
Affiliation(s)
- Cristian Sandoval-Acuña
- Nutrition and Food Technology Institute, University of Chile, Santiago, Chile; Clinical and Molecular Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jorge Ferreira
- Clinical and Molecular Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Hernán Speisky
- Nutrition and Food Technology Institute, University of Chile, Santiago, Chile; Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile.
| |
Collapse
|
24
|
Quercetin as a fluorescent probe for the ryanodine receptor activity in Jurkat cells. Pflugers Arch 2013; 465:1101-19. [DOI: 10.1007/s00424-013-1235-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 02/07/2023]
|
25
|
Clofazimine, Psora-4 and PAP-1, inhibitors of the potassium channel Kv1.3, as a new and selective therapeutic strategy in chronic lymphocytic leukemia. Leukemia 2013; 27:1782-5. [DOI: 10.1038/leu.2013.56] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Alberghina L, Gaglio D, Gelfi C, Moresco RM, Mauri G, Bertolazzi P, Messa C, Gilardi MC, Chiaradonna F, Vanoni M. Cancer cell growth and survival as a system-level property sustained by enhanced glycolysis and mitochondrial metabolic remodeling. Front Physiol 2012; 3:362. [PMID: 22988443 PMCID: PMC3440026 DOI: 10.3389/fphys.2012.00362] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/23/2012] [Indexed: 12/14/2022] Open
Abstract
Systems Biology holds that complex cellular functions are generated as system-level properties endowed with robustness, each involving large networks of molecular determinants, generally identified by “omics” analyses. In this paper we describe four basic cancer cell properties that can easily be investigated in vitro: enhanced proliferation, evasion from apoptosis, genomic instability, and inability to undergo oncogene-induced senescence. Focusing our analysis on a K-ras dependent transformation system, we show that enhanced proliferation and evasion from apoptosis are closely linked, and present findings that indicate how a large metabolic remodeling sustains the enhanced growth ability. Network analysis of transcriptional profiling gives the first indication on this remodeling, further supported by biochemical investigations and metabolic flux analysis (MFA). Enhanced glycolysis, down-regulation of TCA cycle, decoupling of glucose and glutamine utilization, with increased reductive carboxylation of glutamine, so to yield a sustained production of growth building blocks and glutathione, are the hallmarks of enhanced proliferation. Low glucose availability specifically induces cell death in K-ras transformed cells, while PKA activation reverts this effect, possibly through at least two mitochondrial targets. The central role of mitochondria in determining the two investigated cancer cell properties is finally discussed. Taken together the findings reported herein indicate that a system-level property is sustained by a cascade of interconnected biochemical pathways that behave differently in normal and in transformed cells.
Collapse
Affiliation(s)
- Lilia Alberghina
- SysBio Centre for Systems Biology Milano and Rome, Italy ; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Neuzil J, Dong LF, Rohlena J, Truksa J, Ralph SJ. Classification of mitocans, anti-cancer drugs acting on mitochondria. Mitochondrion 2012; 13:199-208. [PMID: 22846431 DOI: 10.1016/j.mito.2012.07.112] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/15/2012] [Accepted: 07/22/2012] [Indexed: 12/13/2022]
Abstract
Mitochondria have emerged as an intriguing target for anti-cancer drugs, inherent to vast majority if not all types of tumours. Drugs that target mitochondria and exert anti-cancer activity have become a focus of recent research due to their great clinical potential (which has not been harnessed thus far). The exceptional potential of mitochondria as a target for anti-cancer agents has been reinforced by the discouraging finding that even tumours of the same type from individual patients differ in a number of mutations. This is consistent with the idea of personalised therapy, an elusive goal at this stage, in line with the notion that tumours are unlikely to be treated by agents that target only a single gene or a single pathway. This endows mitochondria, an invariant target present in all tumours, with an exceptional momentum. This train of thoughts inspired us to define a class of anti-cancer drugs acting by way of mitochondrial 'destabilisation', termed 'mitocans'. In this communication, we define mitocans (many of which have been known for a long time) and classify them into several classes based on their molecular mode of action. We chose the targets that are of major importance from the point of view of their role in mitochondrial destabilisation by small compounds, some of which are now trialled as anti-cancer agents. The classification starts with targets at the surface of mitochondria and ending up with those in the mitochondrial matrix. The purpose of this review is to present in a concise manner the classification of compounds that hold a considerable promise as potential anti-cancer drugs.
Collapse
Affiliation(s)
- Jiri Neuzil
- School of Medical Science, Griffith University, Southport, Qld, Australia.
| | | | | | | | | |
Collapse
|