1
|
Alarcon HV, Mohl JE, Chong GW, Betancourt A, Wang Y, Leng W, White JC, Xu J. Evidence for autotrophic growth of purple sulfur bacteria using pyrite as electron and sulfur source. Appl Environ Microbiol 2024; 90:e0086324. [PMID: 38899885 PMCID: PMC11267869 DOI: 10.1128/aem.00863-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Purple sulfur bacteria (PSB) are capable of anoxygenic photosynthesis via oxidizing reduced sulfur compounds and are considered key drivers of the sulfur cycle in a range of anoxic environments. In this study, we show that Allochromatium vinosum (a PSB species) is capable of autotrophic growth using pyrite as the electron and sulfur source. Comparative growth profile, substrate characterization, and transcriptomic sequencing data provided valuable insight into the molecular mechanisms underlying the bacterial utilization of pyrite and autotrophic growth. Specifically, the pyrite-supported cell cultures ("py"') demonstrated robust but much slower growth rates and distinct patterns from their sodium sulfide-amended positive controls. Up to ~200-fold upregulation of genes encoding various c- and b-type cytochromes was observed in "py," pointing to the high relevance of these molecules in scavenging and relaying electrons from pyrite to cytoplasmic metabolisms. Conversely, extensive downregulation of genes related to LH and RC complex components indicates that the electron source may have direct control over the bacterial cells' photosynthetic activity. In terms of sulfur metabolism, genes encoding periplasmic or membrane-bound proteins (e.g., FccAB and SoxYZ) were largely upregulated, whereas those encoding cytoplasmic proteins (e.g., Dsr and Apr groups) are extensively suppressed. Other notable differentially expressed genes are related to flagella/fimbriae/pilin(+), metal efflux(+), ferrienterochelin(-), and [NiFe] hydrogenases(+). Characterization of the biologically reacted pyrite indicates the presence of polymeric sulfur. These results have, for the first time, put the interplay of PSB and transition metal sulfide chemistry under the spotlight, with the potential to advance multiple fields, including metal and sulfur biogeochemistry, bacterial extracellular electron transfer, and artificial photosynthesis. IMPORTANCE Microbial utilization of solid-phase substrates constitutes a critical area of focus in environmental microbiology, offering valuable insights into microbial metabolic processes and adaptability. Recent advancements in this field have profoundly deepened our knowledge of microbial physiology pertinent to these scenarios and spurred innovations in biosynthesis and energy production. Furthermore, research into interactions between microbes and solid-phase substrates has directly linked microbial activities to the surrounding mineralogical environments, thereby enhancing our understanding of the relevant biogeochemical cycles. Our study represents a significant step forward in this field by demonstrating, for the first time, the autotrophic growth of purple sulfur bacteria using insoluble pyrite (FeS2) as both the electron and sulfur source. The presented comparative growth profiles, substrate characterizations, and transcriptomic sequencing data shed light on the relationships between electron donor types, photosynthetic reaction center activities, and potential extracellular electron transfer in these organisms capable of anoxygenic photosynthesis. Furthermore, the findings of our study may provide new insights into early-Earth biogeochemical evolutions, offering valuable constraints for understanding the environmental conditions and microbial processes that shaped our planet's history.
Collapse
Affiliation(s)
- Hugo V. Alarcon
- Environmental Science and Engineering Program, the University of Texas at El Paso, El Paso, Texas, USA
| | - Jonathon E. Mohl
- Department of Mathematical Sciences, the University of Texas at El Paso, El Paso, Texas, USA
- Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, USA
| | - Grace W. Chong
- Department of Earth, Environmental and Resource Sciences, the University of Texas at El Paso, El Paso, Texas, USA
| | - Ana Betancourt
- Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, USA
| | - Yi Wang
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Weinan Leng
- The National Center for Earth and Environmental Nanotechnology Infrastructure, Blacksburg, Virginia, USA
| | - Jason C. White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Jie Xu
- Environmental Science and Engineering Program, the University of Texas at El Paso, El Paso, Texas, USA
- Department of Earth, Environmental and Resource Sciences, the University of Texas at El Paso, El Paso, Texas, USA
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
2
|
Tani K, Kanno R, Harada A, Kobayashi Y, Minamino A, Takenaka S, Nakamura N, Ji XC, Purba ER, Hall M, Yu LJ, Madigan MT, Mizoguchi A, Iwasaki K, Humbel BM, Kimura Y, Wang-Otomo ZY. High-resolution structure and biochemical properties of the LH1-RC photocomplex from the model purple sulfur bacterium, Allochromatium vinosum. Commun Biol 2024; 7:176. [PMID: 38347078 PMCID: PMC10861460 DOI: 10.1038/s42003-024-05863-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
The mesophilic purple sulfur phototrophic bacterium Allochromatium (Alc.) vinosum (bacterial family Chromatiaceae) has been a favored model for studies of bacterial photosynthesis and sulfur metabolism, and its core light-harvesting (LH1) complex has been a focus of numerous studies of photosynthetic light reactions. However, despite intense efforts, no high-resolution structure and thorough biochemical analysis of the Alc. vinosum LH1 complex have been reported. Here we present cryo-EM structures of the Alc. vinosum LH1 complex associated with reaction center (RC) at 2.24 Å resolution. The overall structure of the Alc. vinosum LH1 resembles that of its moderately thermophilic relative Alc. tepidum in that it contains multiple pigment-binding α- and β-polypeptides. Unexpectedly, however, six Ca ions were identified in the Alc. vinosum LH1 bound to certain α1/β1- or α1/β3-polypeptides through a different Ca2+-binding motif from that seen in Alc. tepidum and other Chromatiaceae that contain Ca2+-bound LH1 complexes. Two water molecules were identified as additional Ca2+-coordinating ligands. Based on these results, we reexamined biochemical and spectroscopic properties of the Alc. vinosum LH1-RC. While modest but distinct effects of Ca2+ were detected in the absorption spectrum of the Alc. vinosum LH1 complex, a marked decrease in thermostability of its LH1-RC complex was observed upon removal of Ca2+. The presence of Ca2+ in the photocomplex of Alc. vinosum suggests that Ca2+-binding to LH1 complexes may be a common adaptation in species of Chromatiaceae for conferring spectral and thermal flexibility on this key component of their photosynthetic machinery.
Collapse
Affiliation(s)
- Kazutoshi Tani
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
- Graduate School of Medicine, Mie University, 1577 Kurimamachiyacho, Tsu, 514-8507, Japan.
| | - Ryo Kanno
- Quantum Wave Microscopy Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Ayaka Harada
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yuki Kobayashi
- Faculty of Science, Ibaraki University, Mito, 310-8512, Japan
| | - Akane Minamino
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Shinji Takenaka
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, 657-8501, Japan
| | | | - Xuan-Cheng Ji
- Faculty of Science, Ibaraki University, Mito, 310-8512, Japan
| | - Endang R Purba
- Scientific Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Malgorzata Hall
- Scientific Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Michael T Madigan
- School of Biological Sciences, Program in Microbiology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Akira Mizoguchi
- Graduate School of Medicine, Mie University, 1577 Kurimamachiyacho, Tsu, 514-8507, Japan
| | - Kenji Iwasaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Bruno M Humbel
- Provost Office, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
- Department of Cell Biology and Neuroscience, Juntendo University, Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, 657-8501, Japan.
| | | |
Collapse
|
3
|
Klenina IB, Makhneva ZK, Moskalenko AA, Proskuryakov II. Selective Excitation of Carotenoids of the Allochromatium vinosum Light-Harvesting LH2 Complexes Leads to Oxidation of Bacteriochlorophyll. BIOCHEMISTRY (MOSCOW) 2022; 87:1130-1137. [DOI: 10.1134/s0006297922100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Reinot T, Khmelnitskiy A, Kell A, Jassas M, Jankowiak R. Exciton Lifetime Distributions and Population Dynamics in the FMO Protein Complex from Prosthecochloris aestuarii. ACS OMEGA 2021; 6:5990-6008. [PMID: 33681637 PMCID: PMC7931385 DOI: 10.1021/acsomega.1c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Significant protein rearrangement upon excitation and energy transfer in Fenna-Matthews-Olson protein of Prosthecochloris aestuarii results in a modified energy landscape, which induces more changes in pigment site energies than predicted by the "standard" hole-burning theory. The energy changes are elucidated by simulations while investigating the effects of site-dependent disorder, both static (site-energy distribution widths) and dynamic (spectral density shapes). The resulting optimized site energies and their fluctuations are consistent with relative differences observed in inhomogeneous widths calculated by recent molecular dynamic simulations. Two sets of different spectral densities reveal how their shapes affect the population dynamics and distribution of exciton lifetimes. Calculations revealed the wavelength-dependent distributions of exciton lifetimes (T 1) in the femtosecond to picosecond time frame. We suggest that the calculated multimodal and asymmetric wavelength-dependent T 1 distributions offer more insight into the interpretation of resonant hole-burned (HB) spectra, kinetic traces in two-dimensional (2D) electronic spectroscopy experiments, and widely used global analyses in fitting data from transient absorption experiments.
Collapse
Affiliation(s)
- Tonu Reinot
- Department
of Chemistry, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Anton Khmelnitskiy
- Department
of Chemistry, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Adam Kell
- Department
of Chemistry, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Mahboobe Jassas
- Department
of Chemistry, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Ryszard Jankowiak
- Department
of Chemistry, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
5
|
Bolshakov MA, Ashikhmin AA, Makhneva ZK, Moskalenko AA. Assembly of the LH2 Light-Harvesting Complexes of Thiorhodospira sibirica with Different Carotenoid Levels. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720030042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
A photosynthetic antenna complex foregoes unity carotenoid-to-bacteriochlorophyll energy transfer efficiency to ensure photoprotection. Proc Natl Acad Sci U S A 2020; 117:6502-6508. [PMID: 32139606 DOI: 10.1073/pnas.1920923117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carotenoids play a number of important roles in photosynthesis, primarily providing light-harvesting and photoprotective energy dissipation functions within pigment-protein complexes. The carbon-carbon double bond (C=C) conjugation length of carotenoids (N), generally between 9 and 15, determines the carotenoid-to-(bacterio)chlorophyll [(B)Chl] energy transfer efficiency. Here we purified and spectroscopically characterized light-harvesting complex 2 (LH2) from Rhodobacter sphaeroides containing the N = 7 carotenoid zeta (ζ)-carotene, not previously incorporated within a natural antenna complex. Transient absorption and time-resolved fluorescence show that, relative to the lifetime of the S1 state of ζ-carotene in solvent, the lifetime decreases ∼250-fold when ζ-carotene is incorporated within LH2, due to transfer of excitation energy to the B800 and B850 BChls a These measurements show that energy transfer proceeds with an efficiency of ∼100%, primarily via the S1 → Qx route because the S1 → S0 fluorescence emission of ζ-carotene overlaps almost perfectly with the Qx absorption band of the BChls. However, transient absorption measurements performed on microsecond timescales reveal that, unlike the native N ≥ 9 carotenoids normally utilized in light-harvesting complexes, ζ-carotene does not quench excited triplet states of BChl a, likely due to elevation of the ζ-carotene triplet energy state above that of BChl a These findings provide insights into the coevolution of photosynthetic pigments and pigment-protein complexes. We propose that the N ≥ 9 carotenoids found in light-harvesting antenna complexes represent a vital compromise that retains an acceptable level of energy transfer from carotenoids to (B)Chls while allowing acquisition of a new, essential function, namely, photoprotective quenching of harmful (B)Chl triplets.
Collapse
|
7
|
Zhao X, Zhao C, Yang S, Luo J. The Growth-promoting Mechanism of Unusual Spectroscopic Form of LH2 (LH4) from Rhodopseudomonas palustris CGA009 in Low Light. Photochem Photobiol 2019; 95:1369-1375. [PMID: 31230349 DOI: 10.1111/php.13134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/12/2019] [Indexed: 11/29/2022]
Abstract
The experimental evidence for the growth-promoting mechanism and the efficiency of energy transfer (EET) of LH4 under low light are still not available. To elucidate the light adaption mechanism of LH4, we deleted the genes pucBAd involved in the synthesis of the α/β polypeptides of LH4 in Rhodopseudomonas palustris CGA009. Compared to wild strain, the growth rate of pucBAd mutant significantly decreased under low light, while there were no significant changes in the growth rate, the contents and compositions of photopigments, absorption spectra of cell lysates under high light. Moreover, the fluorescence quantum efficiency (FQE) was used to further compare the EET between LH2 and LH4. The FQE in LH4 increased up to 1.5-fold than did in LH2. Collectively, this study showed that LH4 could provide more and high energetic state photons for promoting bacterial phototrophic growth in response to low-light environment.
Collapse
Affiliation(s)
- Xiaolan Zhao
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China
| | - Chungui Zhao
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China
| | - Suping Yang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China
| | - Jiafu Luo
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China
| |
Collapse
|
8
|
Makhneva ZK, Ashikhmin AA, Bolshakov MA, Moskalenko AA. Quenchers Protect BChl850 from Action of Singlet Oxygen in the Membranes of a Sulfur Photosynthetic Bacterium Allochromatium vinosum Strain MSU. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719010119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Energy transfer dynamics in a red-shifted violaxanthin-chlorophyll a light-harvesting complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:111-120. [DOI: 10.1016/j.bbabio.2018.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 11/21/2022]
|
10
|
Kunsel T, Tiwari V, Matutes YA, Gardiner AT, Cogdell RJ, Ogilvie JP, Jansen TLC. Simulating Fluorescence-Detected Two-Dimensional Electronic Spectroscopy of Multichromophoric Systems. J Phys Chem B 2019; 123:394-406. [PMID: 30543283 PMCID: PMC6345114 DOI: 10.1021/acs.jpcb.8b10176] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Indexed: 11/28/2022]
Abstract
We present a theory for modeling fluorescence-detected two-dimensional electronic spectroscopy of multichromophoric systems. The theory is tested by comparison of the predicted spectra of the light-harvesting complex LH2 with experimental data. A qualitative explanation of the strong cross-peaks as compared to conventional two-dimensional electronic spectra is given. The strong cross-peaks are attributed to the clean ground-state signal that is revealed when the annihilation of exciton pairs created on the same LH2 complex cancels oppositely signed signals from the doubly excited state. This annihilation process occurs much faster than the nonradiative relaxation. Furthermore, the line shape difference is attributed to slow dynamics, exciton delocalization within the bands, and intraband exciton-exciton annihilation. This is in line with existing theories presented for model systems. We further propose the use of time-resolved fluorescence-detected two-dimensional spectroscopy to study state-resolved exciton-exciton annihilation.
Collapse
Affiliation(s)
- Tenzin Kunsel
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Vivek Tiwari
- Department
of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yassel Acosta Matutes
- Department
of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Richard J. Cogdell
- Institute
for Molecular Biology, University of Glasgow, Glasgow G12 8TA, U.K.
| | - Jennifer P. Ogilvie
- Department
of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
11
|
Tiwari V, Matutes YA, Gardiner AT, Jansen TLC, Cogdell RJ, Ogilvie JP. Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria. Nat Commun 2018; 9:4219. [PMID: 30310070 PMCID: PMC6181999 DOI: 10.1038/s41467-018-06619-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 09/17/2018] [Indexed: 11/09/2022] Open
Abstract
Conventional implementations of two-dimensional electronic spectroscopy typically spatially average over ~1010 chromophores spread over ~104 micron square area, limiting their ability to characterize spatially heterogeneous samples. Here we present a variation of two-dimensional electronic spectroscopy that is capable of mapping spatially varying differences in excitonic structure, with sensitivity orders of magnitude better than conventional spatially-averaged electronic spectroscopies. The approach performs fluorescence-detection-based fully collinear two-dimensional electronic spectroscopy in a microscope, combining femtosecond time-resolution, sub-micron spatial resolution, and the sensitivity of fluorescence detection. We demonstrate the approach on a mixture of photosynthetic bacteria that are known to exhibit variations in electronic structure with growth conditions. Spatial variations in the constitution of mixed bacterial colonies manifests as spatially varying peak intensities in the measured two-dimensional contour maps, which exhibit distinct diagonal and cross-peaks that reflect differences in the excitonic structure of the bacterial proteins. 2D electronic spectroscopy enables a spatially-averaged view of the electronic structure of a heterogeneous system. Here, the authors extend it to sub-micron resolution and ~106 times better sensitivity, to resolve spatially varying excitonic structure in a heterogeneous mixture of photosynthetic cells.
Collapse
Affiliation(s)
- Vivek Tiwari
- Department of Physics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | - Alastair T Gardiner
- Institute for Molecular Biology, University of Glasgow, Glasgow, G12 8TA, UK
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, 48105, The Netherlands
| | - Richard J Cogdell
- Institute for Molecular Biology, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
12
|
Kell A, Khmelnitskiy A, Jassas M, Jankowiak R. Dichotomous Disorder versus Excitonic Splitting of the B800 Band of Allochromatium vinosum. J Phys Chem Lett 2018; 9:4125-4129. [PMID: 29985632 DOI: 10.1021/acs.jpclett.8b01584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The LH2 antenna complex of the purple bacterium Allochromatium vinosum has a distinct double peak structure of the 800 nm band (B800). Several hypotheses were proposed to explain its origin. Recent 77 K two-dimensional electronic spectroscopy data suggested that excitonic coupling of dimerized bacteriochlorophylls (BChls) within the B800 ring is largely responsible for the B800 split [M. Schröter et al., J. Phys. Chem. Lett. 2018, 9, 1340]. Here we argue that the excitonic interactions between BChls in the B800 ring, though present, are weak and cannot explain the B800 band split. This conclusion is based on hole-burning data and modeling studies using an exciton model with dichotomous protein conformation disorder. Therefore, we uphold our earlier interpretation, first reported by Kell et al. [ J. Phys. Chem. B 2017, 121, 9999], that the two B800 sub-bands are due to different site-energies (most likely due to weakly and strongly hydrogen-bonded B800 BChls).
Collapse
|
13
|
Bol’shakov MA, Ashikhmin AA, Makhneva ZK, Moskalenko AA. Effect of Light with Different Spectral Composition on Cell Growth and Pigment Composition of the Membranes of Purple Sulfur Bacteria Allochromatium minutissimum and Allochromatium vinosum. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718020042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Schröter M, Alcocer MJP, Cogdell RJ, Kühn O, Zigmantas D. Origin of the Two Bands in the B800 Ring and Their Involvement in the Energy Transfer Network of Allochromatium vinosum. J Phys Chem Lett 2018; 9:1340-1345. [PMID: 29488385 DOI: 10.1021/acs.jpclett.8b00438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacterial photosynthesis features robust and adaptable energy-harvesting processes in which light-harvesting proteins play a crucial role. The peripheral light-harvesting complex of the purple bacterium Allochromatium vinosum is particularly distinct, featuring a double peak structure in its B800 absorption band. Two hypotheses-not necessarily mutually exclusive-concerning the origin of this splitting have been proposed; either two distinct B800 bacteriochlorophyll site energies are involved, or an excitonic dimerization of bacteriochlorophylls within the B800 ring takes place. Through the use of two-dimensional electronic spectroscopy, we present unambiguous evidence that excitonic interaction shapes the split band. We further identify and characterize all of the energy transfer pathways within this complex by using a global kinetic fitting procedure. Our approach demonstrates how the combination of two-dimensional spectral resolution and self-consistent fitting allows for extraction of information on light-harvesting processes, which would otherwise be inaccessible due to signal congestion.
Collapse
Affiliation(s)
- Marco Schröter
- Institute of Physics , University of Rostock , Albert-Einstein-Straße 23-24 , 18059 Rostock , Germany
- Chemical Physics , Lund University , Box 124, 22100 Lund , Sweden
| | | | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Oliver Kühn
- Institute of Physics , University of Rostock , Albert-Einstein-Straße 23-24 , 18059 Rostock , Germany
| | | |
Collapse
|
15
|
Thyrhaug E, Lincoln CN, Branchi F, Cerullo G, Perlík V, Šanda F, Lokstein H, Hauer J. Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum. PHOTOSYNTHESIS RESEARCH 2018; 135:45-54. [PMID: 28523607 PMCID: PMC5783993 DOI: 10.1007/s11120-017-0398-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
The peripheral light-harvesting antenna complex (LH2) of purple photosynthetic bacteria is an ideal testing ground for models of structure-function relationships due to its well-determined molecular structure and ultrafast energy deactivation. It has been the target for numerous studies in both theory and ultrafast spectroscopy; nevertheless, certain aspects of the convoluted relaxation network of LH2 lack a satisfactory explanation by conventional theories. For example, the initial carotenoid-to-bacteriochlorophyll energy transfer step necessary on visible light excitation was long considered to follow the Förster mechanism, even though transfer times as short as 40 femtoseconds (fs) have been observed. Such transfer times are hard to accommodate by Förster theory, as the moderate coupling strengths found in LH2 suggest much slower transfer within this framework. In this study, we investigate LH2 from Phaeospirillum (Ph.) molischianum in two types of transient absorption experiments-with narrowband pump and white-light probe resulting in 100 fs time resolution, and with degenerate broadband 10 fs pump and probe pulses. With regard to the split Qx band in this system, we show that vibronically mediated transfer explains both the ultrafast carotenoid-to-B850 transfer, and the almost complete lack of transfer to B800. These results are beyond Förster theory, which predicts an almost equal partition between the two channels.
Collapse
Affiliation(s)
- Erling Thyrhaug
- Photonics Institute, TU Wien, Gußhausstraße 27, 1040, Vienna, Austria
| | - Craig N Lincoln
- Photonics Institute, TU Wien, Gußhausstraße 27, 1040, Vienna, Austria
| | - Federico Branchi
- Dipartimento di Fisica, IFN-CNR, Politecnico di Milano, Piazza L. da Vinci, 32, 20133, Milan, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, IFN-CNR, Politecnico di Milano, Piazza L. da Vinci, 32, 20133, Milan, Italy
| | - Václav Perlík
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 12116, Prague, Czech Republic
| | - František Šanda
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 12116, Prague, Czech Republic
| | - Heiko Lokstein
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 12116, Praha 2, Czech Republic
| | - Jürgen Hauer
- Photonics Institute, TU Wien, Gußhausstraße 27, 1040, Vienna, Austria.
| |
Collapse
|
16
|
Löhner A, Cogdell R, Köhler J. Contribution of low-temperature single-molecule techniques to structural issues of pigment-protein complexes from photosynthetic purple bacteria. J R Soc Interface 2018; 15:rsif.2017.0680. [PMID: 29321265 DOI: 10.1098/rsif.2017.0680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/01/2017] [Indexed: 11/12/2022] Open
Abstract
As the electronic energies of the chromophores in a pigment-protein complex are imposed by the geometrical structure of the protein, this allows the spectral information obtained to be compared with predictions derived from structural models. Thereby, the single-molecule approach is particularly suited for the elucidation of specific, distinctive spectral features that are key for a particular model structure, and that would not be observable in ensemble-averaged spectra due to the heterogeneity of the biological objects. In this concise review, we illustrate with the example of the light-harvesting complexes from photosynthetic purple bacteria how results from low-temperature single-molecule spectroscopy can be used to discriminate between different structural models. Thereby the low-temperature approach provides two advantages: (i) owing to the negligible photobleaching, very long observation times become possible, and more importantly, (ii) at cryogenic temperatures, vibrational degrees of freedom are frozen out, leading to sharper spectral features and in turn to better resolved spectra.
Collapse
Affiliation(s)
- Alexander Löhner
- Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany
| | - Richard Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland
| | - Jürgen Köhler
- Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany .,Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
17
|
Kell A, Jassas M, Hacking K, Cogdell RJ, Jankowiak R. On Light-Induced Photoconversion of B800 Bacteriochlorophylls in the LH2 Antenna of the Purple Sulfur Bacterium Allochromatium vinosum. J Phys Chem B 2017; 121:9999-10006. [DOI: 10.1021/acs.jpcb.7b06185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Kirsty Hacking
- Institute
of Molecular, Cell and Systems Biology, College of Medical, Veterinary
and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland
| | - Richard J. Cogdell
- Institute
of Molecular, Cell and Systems Biology, College of Medical, Veterinary
and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland
| | | |
Collapse
|
18
|
Bol’shakov MA, Ashikhmin AA, Makhneva ZK, Moskalenko AA. Spirilloxanthin incorporation into the LH2 and LH1-RC pigment-protein complexes from a purple sulfur bacterium Allochromatium minutissimum. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717050058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Niedzwiedzki DM, Swainsbury DJK, Martin EC, Hunter CN, Blankenship RE. Origin of the S* Excited State Feature of Carotenoids in Light-Harvesting Complex 1 from Purple Photosynthetic Bacteria. J Phys Chem B 2017; 121:7571-7585. [PMID: 28719215 DOI: 10.1021/acs.jpcb.7b04251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This spectroscopic study investigates the origin of the transient feature of the S* excited state of carotenoids bound in LH1 complexes from purple bacteria. The studies were performed on two RC-LH1 complexes from Rba. sphaeroides strains that bound carotenoids with different carbon-carbon double bond conjugation N, neurosporene (N = 9) and spirilloxanthin (N = 13). The S* transient spectral feature, originally associated with an elusive and optically silent excited state of spirilloxanthin in the LH1 complex, may be successfully explained and mimicked without involving any unknown electronic state. The spectral and temporal characteristics of the S* feature suggest that it is associated with triplet-triplet annihilation of carotenoid triplets formed after direct excitation of the molecule via a singlet fission mechanism. Depending on pigment homogeneity and carotenoid assembly in the LH1 complex, the spectro-temporal component associated with triplet-triplet annihilation may simply resolve a pure T-S spectrum of a carotenoid. In some cases (like spirilloxanthin), the T-S feature will also be accompanied by a carotenoid Stark spectrum and/or residual transient absorption of minor carotenoid species bound into LH1 antenna complex.
Collapse
Affiliation(s)
| | - David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
20
|
Kell A, Jassas M, Acharya K, Hacking K, Cogdell RJ, Jankowiak R. Conformational Complexity in the LH2 Antenna of the Purple Sulfur Bacterium Allochromatium vinosum Revealed by Hole-Burning Spectroscopy. J Phys Chem A 2017; 121:4435-4446. [PMID: 28531352 DOI: 10.1021/acs.jpca.7b03188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work discusses the protein conformational complexity of the B800-850 LH2 complexes from the purple sulfur bacterium Allochromatium vinosum, focusing on the spectral characteristics of the B850 chromophores. Low-temperature B850 absorption and the split B800 band shift blue and red, respectively, at elevated temperatures, revealing isosbestic points. The latter indicates the presence of two (unresolved) conformations of B850 bacteriochlorophylls (BChls), referred to as conformations 1 and 2, and two conformations of B800 BChls, denoted as B800R and B800B. The energy differences between average site energies of conformations 1 and 2, and B800R and B800B are similar (∼200 cm-1), suggesting weak and strong hydrogen bonds linking two major subpopulations of BChls and the protein scaffolding. Although conformations 1 and 2 of the B850 chromophores, and B800R and B800B, exist in the ground state, selective excitation leads to 1 → 2 and B800R → B800B phototransformations. Different static inhomogeneous broadening is revealed for the lowest energy exciton states of B850 (fwhm ∼195 cm-1) and B800R (fwhm ∼140 cm-1). To describe the 5 K absorption spectrum and the above-mentioned conformations, we employ an exciton model with dichotomous protein conformation disorder. We show that both experimental data and the modeling study support a two-site model with strongly and weakly hydrogen-bonded B850 and B800 BChls, which under illumination undergo conformational changes, most likely caused by proton dynamics.
Collapse
Affiliation(s)
| | | | | | - Kirsty Hacking
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8TA, Scotland
| | - Richard J Cogdell
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8TA, Scotland
| | | |
Collapse
|
21
|
Ashikhmin A, Makhneva Z, Bolshakov M, Moskalenko A. Incorporation of spheroidene and spheroidenone into light-harvesting complexes from purple sulfur bacteria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:99-107. [DOI: 10.1016/j.jphotobiol.2017.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/08/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
|
22
|
Magdaong NCM, Saer RG, Niedzwiedzki DM, Blankenship RE. Ultrafast Spectroscopic Investigation of Energy Transfer in Site-Directed Mutants of the Fenna-Matthews-Olson (FMO) Antenna Complex from Chlorobaculum tepidum. J Phys Chem B 2017; 121:4700-4712. [PMID: 28422512 DOI: 10.1021/acs.jpcb.7b01270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ultrafast transient absorption (TA) and time-resolved fluorescence (TRF) spectroscopic studies were performed on several mutants of the bacteriochlorophyll (BChl) a-containing Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Chlorobaculum tepidum. These mutants were generated to perturb a particular BChl a site and determine its effects on the optical spectroscopic properties of the pigment-protein complex. Measurements conducted at 77 K under both oxidizing and reducing conditions revealed changes in the dynamics of the various spectral components as compared to the data set from wild-type FMO. TRF results show that under reducing conditions all FMO samples decay with a similar lifetime in the ∼2 ns range. The oxidized samples revealed varying fluorescence lifetimes of the terminal BChl a emitter, considerably shorter than those recorded for the reduced samples, indicating that the quenching mechanism in wild-type FMO is still present in the mutants. Global fitting of TA data yielded similar overall results, and in addition, the lifetimes of early decaying components were determined. Target analyses of TA data for select FMO samples generated kinetic models that better simulate the TA data. A comparison of the lifetime of excitonic components for all samples reveals that the mutations affect mainly the early kinetic components, but not that of the lowest energy exciton, which reflects the flexibility of energy transfer in FMO.
Collapse
Affiliation(s)
- Nikki Cecil M Magdaong
- Department of Biology, ‡Department of Chemistry, and §Photosynthetic Antenna Research Center, Washington University in Saint Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Rafael G Saer
- Department of Biology, ‡Department of Chemistry, and §Photosynthetic Antenna Research Center, Washington University in Saint Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Dariusz M Niedzwiedzki
- Department of Biology, ‡Department of Chemistry, and §Photosynthetic Antenna Research Center, Washington University in Saint Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Robert E Blankenship
- Department of Biology, ‡Department of Chemistry, and §Photosynthetic Antenna Research Center, Washington University in Saint Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
23
|
Niedzwiedzki DM, Dilbeck PL, Tang Q, Martin EC, Bocian DF, Hunter CN, Holten D. New insights into the photochemistry of carotenoid spheroidenone in light-harvesting complex 2 from the purple bacterium Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2017; 131:291-304. [PMID: 27854005 PMCID: PMC5313593 DOI: 10.1007/s11120-016-0322-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Light-harvesting complex 2 (LH2) from the semi-aerobically grown purple phototrophic bacterium Rhodobacter sphaeroides was studied using optical (static and time-resolved) and resonance Raman spectroscopies. This antenna complex comprises bacteriochlorophyll (BChl) a and the carotenoid spheroidenone, a ketolated derivative of spheroidene. The results indicate that the spheroidenone-LH2 complex contains two spectral forms of the carotenoid: (1) a minor, "blue" form with an S2 (11B u+ ) spectral origin band at 522 nm, shifted from the position in organic media simply by the high polarizability of the binding site, and (2) the major, "red" form with the origin band at 562 nm that is associated with a pool of pigments that more strongly interact with protein residues, most likely via hydrogen bonding. Application of targeted modeling of excited-state decay pathways after carotenoid excitation suggests that the high (92%) carotenoid-to-BChl energy transfer efficiency in this LH2 system, relative to LH2 complexes binding carotenoids with comparable double-bond conjugation lengths, derives mainly from resonance energy transfer from spheroidenone S2 (11B u+ ) state to BChl a via the Qx state of the latter, accounting for 60% of the total transfer. The elevated S2 (11B u+ ) → Qx transfer efficiency is apparently associated with substantially decreased energy gap (increased spectral overlap) between the virtual S2 (11B u+ ) → S0 (11A g- ) carotenoid emission and Qx absorption of BChl a. This reduced energetic gap is the ultimate consequence of strong carotenoid-protein interactions, including the inferred hydrogen bonding.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Photosynthetic Antenna Research Center, Washington University in St. Louis, Campus Box 1138, St. Louis, MO, 63130, USA.
| | - Preston L Dilbeck
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Qun Tang
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - David F Bocian
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Dewey Holten
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
24
|
Niedzwiedzki DM, Hunter CN, Blankenship RE. Evaluating the Nature of So-Called S*-State Feature in Transient Absorption of Carotenoids in Light-Harvesting Complex 2 (LH2) from Purple Photosynthetic Bacteria. J Phys Chem B 2016; 120:11123-11131. [PMID: 27726397 PMCID: PMC5098231 DOI: 10.1021/acs.jpcb.6b08639] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Carotenoids
are a class of natural pigments present in all phototrophic
organisms, mainly in their light-harvesting proteins in which they
play roles of accessory light absorbers and photoprotectors. Extensive
time-resolved spectroscopic studies of these pigments have revealed
unexpectedly complex photophysical properties, particularly for carotenoids
in light-harvesting LH2 complexes from purple bacteria. An ambiguous,
optically forbidden electronic excited state designated as S* has
been postulated to be involved in carotenoid excitation relaxation
and in an alternative carotenoid-to-bacteriochlorophyll energy transfer
pathway, as well as being a precursor of the carotenoid triplet state.
However, no definitive and satisfactory origin of the carotenoid S*
state in these complexes has been established, despite a wide-ranging
series of studies. Here, we resolve the ambiguous origin of the carotenoid
S* state in LH2 complex from Rba. sphaeroides by
showing that the S* feature can be seen as a combination of ground
state absorption bleaching of the carotenoid pool converted to cations
and the Stark spectrum of neighbor neutral carotenoids, induced by
temporal electric field brought by the carotenoid cation–bacteriochlorophyll
anion pair. These findings remove the need to assign an S* state,
and thereby significantly simplify the photochemistry of carotenoids
in these photosynthetic antenna complexes.
Collapse
Affiliation(s)
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
25
|
Bol’shakov MA, Ashikhmin AA, Makhneva ZK, Moskalenko AA. Effect of illumination intensity and inhibition of carotenoid biosynthesis on assembly of peripheral light-harvesting complexes in purple sulfur bacteria Allochromatium vinosum ATCC 17899. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716040020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Dilbeck PL, Tang Q, Mothersole DJ, Martin EC, Hunter CN, Bocian DF, Holten D, Niedzwiedzki DM. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway. J Phys Chem B 2016; 120:5429-43. [PMID: 27285777 PMCID: PMC4921951 DOI: 10.1021/acs.jpcb.6b03305] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Six light-harvesting-2 complexes
(LH2) from genetically modified
strains of the purple photosynthetic bacterium Rhodobacter
(Rb.) sphaeroides were studied using static and ultrafast
optical methods and resonance Raman spectroscopy. These strains were
engineered to incorporate carotenoids for which the number of conjugated
groups (N = NC=C + NC=O) varies from 9 to 15.
The Rb. sphaeroides strains incorporate their native
carotenoids spheroidene (N = 10) and spheroidenone
(N = 11), as well as longer-chain analogues including
spirilloxanthin (N = 13) and diketospirilloxantion
(N = 15) normally found in Rhodospirillum
rubrum. Measurements of the properties of the carotenoid
first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to
those in LH2 complexes from various other bacterial species and thus
are not significantly impacted by differences in polypeptide composition.
Instead, variations in carotenoid-to-BChl a energy
transfer are primarily regulated by the N-determined
energy of the carotenoid S1 excited state, which for long-chain
(N ≥ 13) carotenoids is not involved in energy
transfer. Furthermore, the role of the long-chain carotenoids switches
from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial
(∼2-fold) reduction of the B850* lifetime and the B850* fluorescence
quantum yield for LH2 housing the longest carotenoids.
Collapse
Affiliation(s)
| | - Qun Tang
- Department of Chemistry, University of California Riverside , Riverside, California 92521, United States
| | - David J Mothersole
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - David F Bocian
- Department of Chemistry, University of California Riverside , Riverside, California 92521, United States
| | | | | |
Collapse
|
27
|
Magdaong NCM, Niedzwiedzki DM, Goodson C, Blankenship RE. Carotenoid-to-Bacteriochlorophyll Energy Transfer in the LH1–RC Core Complex of a Bacteriochlorophyll b Containing Purple Photosynthetic Bacterium Blastochloris viridis. J Phys Chem B 2016; 120:5159-71. [DOI: 10.1021/acs.jpcb.6b04307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nikki Cecil M. Magdaong
- Department
of Biology, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130 United States
- Department of Chemistry, Washington University in Saint Louis, One Brookings Drive, St.
Louis, Missouri 63130 United States
- Photosynthetic
Antenna Research Center, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130 United States
| | - Dariusz M. Niedzwiedzki
- Photosynthetic
Antenna Research Center, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130 United States
| | - Carrie Goodson
- Department
of Biology, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130 United States
| | - Robert E. Blankenship
- Department
of Biology, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130 United States
- Department of Chemistry, Washington University in Saint Louis, One Brookings Drive, St.
Louis, Missouri 63130 United States
- Photosynthetic
Antenna Research Center, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130 United States
| |
Collapse
|
28
|
Niedzwiedzki DM, Tronina T, Liu H, Staleva H, Komenda J, Sobotka R, Blankenship RE, Polívka T. Carotenoid-induced non-photochemical quenching in the cyanobacterial chlorophyll synthase-HliC/D complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1430-1439. [PMID: 27133505 DOI: 10.1016/j.bbabio.2016.04.280] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/31/2016] [Accepted: 04/27/2016] [Indexed: 11/18/2022]
Abstract
Chl synthase (ChlG) is an important enzyme of the Chl biosynthetic pathway catalyzing attachment of phytol/geranylgeraniol tail to the chlorophyllide molecule. Here we have investigated the Flag-tagged ChlG (f.ChlG) in a complex with two different high-light inducible proteins (Hlips) HliD and HliC. The f.ChlG-Hlips complex binds a Chl a and three different carotenoids, β-carotene, zeaxanthin and myxoxanthophyll. Application of ultrafast time-resolved absorption spectroscopy performed at room and cryogenic temperatures revealed excited-state dynamics of complex-bound pigments. After excitation of Chl a in the complex, excited Chl a is efficiently quenched by a nearby carotenoid molecule via energy transfer from the Chl a Qy state to the carotenoid S1 state. The kinetic analysis of the spectroscopic data revealed that quenching occurs with a time constant of ~2ps and its efficiency is temperature independent. Even though due to its long conjugation myxoxanthophyll appears to be energetically best suited for role of Chl a quencher, based on comparative analysis and spectroscopic data we propose that β-carotene bound to Hlips acts as the quencher rather than myxoxanthophyll and zeaxanthin, which are bound at the f.ChlG and Hlips interface. The S1 state lifetime of the quencher has been determined to be 13ps at room temperature and 21ps at 77K. These results demonstrate that Hlips act as a conserved functional module that prevents photodamage of protein complexes during photosystem assembly or Chl biosynthesis.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Photosynthetic Antenna Research Center, Washington University in Saint Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Tomasz Tronina
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Haijun Liu
- Photosynthetic Antenna Research Center, Washington University in Saint Louis, 1 Brookings Drive, St. Louis, MO 63130, USA; Department of Biology, Washington University in St. Louis, 1 Brookings, Drive. St. Louis, MO 63130, USA
| | - Hristina Staleva
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Josef Komenda
- Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic
| | - Roman Sobotka
- Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic
| | - Robert E Blankenship
- Photosynthetic Antenna Research Center, Washington University in Saint Louis, 1 Brookings Drive, St. Louis, MO 63130, USA; Department of Biology, Washington University in St. Louis, 1 Brookings, Drive. St. Louis, MO 63130, USA; Department of Chemistry, Washington University in St. Louis, 1 Brookings, Drive. St. Louis, MO 63130, USA
| | - Tomáš Polívka
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| |
Collapse
|
29
|
Magdaong NM, LaFountain AM, Hacking K, Niedzwiedzki DM, Gibson GN, Cogdell RJ, Frank HA. Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum. PHOTOSYNTHESIS RESEARCH 2016; 127:171-187. [PMID: 26048106 DOI: 10.1007/s11120-015-0165-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
Photosynthetic organisms produce a vast array of spectral forms of antenna pigment-protein complexes to harvest solar energy and also to adapt to growth under the variable environmental conditions of light intensity, temperature, and nutrient availability. This behavior is exemplified by Allochromatium (Alc.) vinosum, a photosynthetic purple sulfur bacterium that produces different types of LH2 light-harvesting complexes in response to variations in growth conditions. In the present work, three different spectral forms of LH2 from Alc. vinosum, B800-820, B800-840, and B800-850, were isolated, purified, and examined using steady-state absorption and fluorescence spectroscopy, and ultrafast time-resolved absorption spectroscopy. The pigment composition of the LH2 complexes was analyzed by high-performance liquid chromatography, and all were found to contain five carotenoids: lycopene, anhydrorhodovibrin, spirilloxanthin, rhodopin, and rhodovibrin. Spectral reconstructions of the absorption and fluorescence excitation spectra based on the pigment composition revealed significantly more spectral heterogeneity in these systems compared to LH2 complexes isolated from other species of purple bacteria. The data also revealed the individual carotenoid-to-bacteriochlorophyll energy transfer efficiencies which were correlated with the kinetic data from the ultrafast transient absorption spectroscopic experiments. This series of LH2 complexes allows a systematic exploration of the factors that determine the spectral properties of the bound pigments and control the rate and efficiency of carotenoid-to-bacteriochlorophyll energy transfer.
Collapse
Affiliation(s)
- Nikki M Magdaong
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT, 06269-3060, USA
| | - Amy M LaFountain
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT, 06269-3060, USA
| | - Kirsty Hacking
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, UK
| | - Dariusz M Niedzwiedzki
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - George N Gibson
- Department of Physics, University of Connecticut, 2152 Hillside Road, Storrs, CT, 06269-3046, USA
| | - Richard J Cogdell
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, UK
| | - Harry A Frank
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT, 06269-3060, USA.
| |
Collapse
|
30
|
Lüer L, Carey AM, Henry S, Maiuri M, Hacking K, Polli D, Cerullo G, Cogdell RJ. Elementary Energy Transfer Pathways in Allochromatium vinosum Photosynthetic Membranes. Biophys J 2015; 109:1885-98. [PMID: 26536265 DOI: 10.1016/j.bpj.2015.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/16/2015] [Accepted: 09/08/2015] [Indexed: 11/24/2022] Open
Abstract
Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for all relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum.
Collapse
Affiliation(s)
- Larry Lüer
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, Madrid, Spain.
| | - Anne-Marie Carey
- Glasgow Biomedical Research Centre, IBLS, University of Glasgow, Glasgow, Scotland; Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Sarah Henry
- Glasgow Biomedical Research Centre, IBLS, University of Glasgow, Glasgow, Scotland; Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Margherita Maiuri
- CNR-IFN, Dipartimento di Fisica, Politecnico di Milano, Milano, Italy; Department of Chemistry, Princeton University, Princeton, New Jersey
| | - Kirsty Hacking
- Glasgow Biomedical Research Centre, IBLS, University of Glasgow, Glasgow, Scotland
| | - Dario Polli
- CNR-IFN, Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Giulio Cerullo
- CNR-IFN, Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Richard J Cogdell
- Glasgow Biomedical Research Centre, IBLS, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
31
|
He G, Niedzwiedzki DM, Orf GS, Zhang H, Blankenship RE. Dynamics of Energy and Electron Transfer in the FMO-Reaction Center Core Complex from the Phototrophic Green Sulfur Bacterium Chlorobaculum tepidum. J Phys Chem B 2015; 119:8321-9. [PMID: 26061391 DOI: 10.1021/acs.jpcb.5b04170] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The reaction center core (RCC) complex and the RCC with associated Fenna-Matthews-Olson protein (FMO-RCC) complex from the green sulfur bacterium Chlorobaculum tepidum were studied comparatively by steady-state and time-resolved fluorescence (TRF) and femtosecond time-resolved transient absorption (TA) spectroscopies. The energy transfer efficiency from the FMO to the RCC complex was calculated to be ∼40% based on the steady-state fluorescence. TRF showed that most of the FMO complexes (66%), regardless of the fact that they were physically attached to the RCC, were not able to transfer excitation energy to the reaction center. The TA spectra of the RCC complex showed a 30-38 ps lifetime component regardless of the excitation wavelengths, which is attributed to charge separation. Excitonic equilibration was shown in TA spectra of the RCC complex when excited into the BChl a Qx band at 590 nm and the Chl a Qy band at 670 nm, while excitation at 840 nm directly populated the low-energy excited state and equilibration within the excitonic BChl a manifold was not observed. The TA spectra for the FMO-RCC complex excited into the BChl a Qx band could be interpreted by a combination of the excited FMO protein and RCC complex. The FMO-RCC complex showed an additional fast kinetic component compared with the FMO protein and the RCC complex, which may be due to FMO-to-RCC energy transfer.
Collapse
Affiliation(s)
- Guannan He
- †Departments of Chemistry and Biology and ‡Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St Louis, Missouri 63130, United States
| | - Dariusz M Niedzwiedzki
- †Departments of Chemistry and Biology and ‡Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St Louis, Missouri 63130, United States
| | - Gregory S Orf
- †Departments of Chemistry and Biology and ‡Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St Louis, Missouri 63130, United States
| | - Hao Zhang
- †Departments of Chemistry and Biology and ‡Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St Louis, Missouri 63130, United States
| | - Robert E Blankenship
- †Departments of Chemistry and Biology and ‡Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St Louis, Missouri 63130, United States
| |
Collapse
|
32
|
Niedzwiedzki DM, Dilbeck PL, Tang Q, Mothersole DJ, Martin EC, Bocian DF, Holten D, Hunter CN. Functional characteristics of spirilloxanthin and keto-bearing Analogues in light-harvesting LH2 complexes from Rhodobacter sphaeroides with a genetically modified carotenoid synthesis pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1847:640-55. [PMID: 25871644 DOI: 10.1016/j.bbabio.2015.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 11/24/2022]
Abstract
Light-harvesting 2 (LH2) complexes from a genetically modified strain of the purple photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. Carotenoid synthesis in the Rba. sphaeroides strain was engineered to redirect carotenoid production away from spheroidene into the spirilloxanthin synthesis pathway. The strain assembles LH2 antennas with substantial amounts of spirilloxanthin (total double-bond conjugation length N=13) if grown anaerobically and of keto-bearing long-chain analogs [2-ketoanhydrorhodovibrin (N=13), 2-ketospirilloxanthin (N=14) and 2,2'-diketospirilloxanthin (N=15)] if grown semi-aerobically (with ratios that depend on growth conditions). We present the photophysical, electronic, and vibrational properties of these carotenoids, both isolated in organic media and assembled within LH2 complexes. Measurements of excited-state energy transfer to the array of excitonically coupled bacteriochlorophyll a molecules (B850) show that the mean lifetime of the first singlet excited state (S1) of the long-chain (N≥13) carotenoids does not change appreciably between organic media and the protein environment. In each case, the S1 state appears to lie lower in energy than that of B850. The energy-transfer yield is ~0.4 in LH2 (from the strain grown aerobically or semi-aerobically), which is less than half that achieved for LH2 that contains short-chain (N≤11) analogues. Collectively, the results suggest that the S1 excited state of the long-chain (N≥13) carotenoids participates little if at all in carotenoid-to-BChl a energy transfer, which occurs predominantly via the carotenoid S2 excited state in these antennas.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Photosynthetic Antenna Research Center, Washington University, St. Louis, MO 63130, USA.
| | - Preston L Dilbeck
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Qun Tang
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
| | - David J Mothersole
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - David F Bocian
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
33
|
Oren A, Mana L, Jehlička J. Probing single cells of purple sulfur bacteria with Raman spectroscopy: carotenoids and elemental sulfur. FEMS Microbiol Lett 2015; 362:fnv021. [PMID: 25682325 DOI: 10.1093/femsle/fnv021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We explored the use of Raman spectroscopy to simultaneously monitor the presence of different biomarkers (carotenoids, elemental sulfur) within single cells of the purple sulfur photosynthetic bacteria Allochromatium vinosum and A. warmingii. Raman microspectrometry using excitation at 532 nm allowed the detection of different carotenoids. Raman signals of elemental sulfur appeared soon after feeding starved cells with sulfide. Raman spectroscopy is thus a convenient and sensitive technique to qualitatively and semiquantitatively assess the presence of different compounds of interest within single bacterial cells.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat Ram, Jerusalem 91904, Israel
| | - Lily Mana
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat Ram, Jerusalem 91904, Israel
| | - Jan Jehlička
- Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University in Prague, 12843 Prague, Czech Republic
| |
Collapse
|
34
|
Brotosudarmo THP, Limantara L, Heriyanto, Prihastyanti MNU. Adaptation of the Photosynthetic Unit of Purple Bacteria to Changes of Light Illumination Intensities. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proche.2015.03.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Löhner A, Carey AM, Hacking K, Picken N, Kelly S, Cogdell R, Köhler J. The origin of the split B800 absorption peak in the LH2 complexes from Allochromatium vinosum. PHOTOSYNTHESIS RESEARCH 2015; 123:23-31. [PMID: 25150556 DOI: 10.1007/s11120-014-0036-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/12/2014] [Indexed: 06/03/2023]
Abstract
The absorption spectrum of the high-light peripheral light-harvesting (LH) complex from the photosynthetic purple bacterium Allochromatium vinosum features two strong absorptions around 800 and 850 nm. For the LH2 complexes from the species Rhodopseudomonas acidophila and Rhodospirillum molischianum, where high-resolution X-ray structures are available, similar bands have been observed and were assigned to two pigment pools of BChl a molecules that are arranged in two concentric rings (B800 and B850) with nine (acidophila) or eight (molischianum) repeat units, respectively. However, for the high-light peripheral LH complex from Alc. vinosum, the intruiging feature is that the B800 band is split into two components. We have studied this pigment-protein complex by ensemble CD spectroscopy and polarisation-resolved single-molecule spectroscopy. Assuming that the high-light peripheral LH complex in Alc. vinosum is constructed on the same modular principle as described for LH2 from Rps. acidophila and Rsp. molischianum, we used those repeat units as a starting point for simulating the spectra. We find the best agreement between simulation and experiment for a ring-like oligomer of 12 repeat units, where the mutual arrangement of the B800 and B850 rings resembles those from Rsp. molischianum. The splitting of the B800 band can be reproduced if both an excitonic coupling between dimers of B800 molecules and their interaction with the B850 manifold are taken into account. Such dimers predict an interesting apoprotein organisation as discussed below.
Collapse
Affiliation(s)
- Alexander Löhner
- Experimental Physics IV and Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth, Bayreuth, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Niedzwiedzki DM, Cranston L. Excited state lifetimes and energies of okenone and chlorobactene, exemplary keto and non-keto aryl carotenoids. Phys Chem Chem Phys 2015; 17:13245-56. [DOI: 10.1039/c5cp00836k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photophysical properties of two typical aryl carotenoids, okenone and chlorobactene, were studied with application of femtosecond and microsecond time-resolved absorption spectroscopies.
Collapse
Affiliation(s)
- Dariusz M. Niedzwiedzki
- Photosynthetic Antenna Research Center and Department of Chemistry
- Washington University in St Louis
- USA
| | - Laura Cranston
- Institute of Molecular Cell and Systems Biology
- College of Medical
- Veterinary and Life Sciences
- University of Glasgow
- Glasgow Biomedical Research Centre
| |
Collapse
|
37
|
Li K, Zhao C, Yue H, Yang S. A unique low light adaptation mechanism inRhodobacter azotoformans. J Basic Microbiol 2014; 54:1350-7. [DOI: 10.1002/jobm.201400422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/11/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Kai Li
- Department of Bioengineering and Biotechnology; Huaqiao University; Xiamen China
| | - Chungui Zhao
- Department of Bioengineering and Biotechnology; Huaqiao University; Xiamen China
| | - Huiying Yue
- Department of Bioengineering and Biotechnology; Huaqiao University; Xiamen China
| | - Suping Yang
- Department of Bioengineering and Biotechnology; Huaqiao University; Xiamen China
| |
Collapse
|
38
|
Carey AM, Hacking K, Picken N, Honkanen S, Kelly S, Niedzwiedzki DM, Blankenship RE, Shimizu Y, Wang-Otomo ZY, Cogdell RJ. Characterisation of the LH2 spectral variants produced by the photosynthetic purple sulphur bacterium Allochromatium vinosum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1849-1860. [PMID: 25111749 DOI: 10.1016/j.bbabio.2014.07.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
Abstract
This study systematically investigated the different types of LH2 produced by Allochromatium (Alc.) vinosum, a photosynthetic purple sulphur bacterium, in response to variations in growth conditions. Three different spectral forms of LH2 were isolated and purified, the B800-820, B800-840 and B800-850 LH2 types, all of which exhibit an unusual split 800 peak in their low temperature absorption spectra. However, it is likely that more forms are also present. Relatively more B800-820 and B800-840 are produced under low light conditions, while relatively more B800-850 is produced under high light conditions. Polypeptide compositions of the three different LH2 types were determined by a combination of HPLC and TOF/MS. The B800-820, B800-840 and B800-850 LH2 types all have a heterogeneous polypeptide composition, containing multiple types of both α and β polypeptides, and differ in their precise polypeptide composition. They all have a mixed carotenoid composition, containing carotenoids of the spirilloxanthin series. In all cases the most abundant carotenoid is rhodopin; however, there is a shift towards carotenoids with a higher conjugation number in LH2 complexes produced under low light conditions. CD spectroscopy, together with the polypeptide analysis, demonstrates that these Alc. vinosum LH2 complexes are more closely related to the LH2 complex from Phs. molischianum than they are to the LH2 complexes from Rps. acidophila.
Collapse
Affiliation(s)
- Anne-Marie Carey
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK.
| | - Kirsty Hacking
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Nichola Picken
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Suvi Honkanen
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Sharon Kelly
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | | | - Robert E Blankenship
- Photosynthetic Antenna Research Center, Washington University, St. Louis, MO 63130, USA; Department of Biology, Washington University, St. Louis, MO 63130, USA; Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Yuuki Shimizu
- Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Japan
| | | | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| |
Collapse
|
39
|
Bína D, Gardian Z, Herbstová M, Kotabová E, Koník P, Litvín R, Prášil O, Tichý J, Vácha F. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia: II. Biochemistry and spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:802-10. [PMID: 24486443 DOI: 10.1016/j.bbabio.2014.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/13/2014] [Accepted: 01/21/2014] [Indexed: 11/16/2022]
Abstract
A novel chlorophyll a containing pigment-protein complex expressed by cells of Chromera velia adapted to growth under red/far-red illumination [1]. Purification of the complex was achieved by means of anion-exchange chromatography and gel-filtration. The antenna is shown to be an aggregate of ~20kDa proteins of the light-harvesting complex (LHC) family, unstable in the isolated form. The complex possesses an absorption maximum at 705nm at room temperature in addition to the main chlorophyll a maximum at 677nm producing the major emission band at 714nm at room temperature. The far-red absorption is shown to be the property of the isolated aggregate in the intact form and lost upon dissociation. The purified complex was further characterized by circular dichroism spectroscopy and fluorescence spectroscopy. This work thus identified the third different class of antenna complex in C. velia after the recently described FCP-like and LHCr-like antennas. Possible candidates for red antennas are identified in other taxonomic groups, such as eustigmatophytes and the relevance of the present results to other known examples of red-shifted antenna from other organisms is discussed. This work appears to be the first successful isolation of a chlorophyll a-based far-red antenna complex absorbing above 700nm unrelated to LHCI.
Collapse
Affiliation(s)
- David Bína
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Zdenko Gardian
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Miroslava Herbstová
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Eva Kotabová
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Peter Koník
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Radek Litvín
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Ondřej Prášil
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Josef Tichý
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - František Vácha
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
40
|
Taniguchi M, Du H, Lindsey JS. Enumeration of virtual libraries of combinatorial modular macrocyclic (bracelet, necklace) architectures and their linear counterparts. J Chem Inf Model 2013; 53:2203-16. [PMID: 23944229 DOI: 10.1021/ci400175f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A wide variety of cyclic molecular architectures are built of modular subunits and can be formed combinatorially. The mathematics for enumeration of such objects is well-developed yet lacks key features of importance in chemistry, such as specifying (i) the structures of individual members among a set of isomers, (ii) the distribution (i.e., relative amounts) of products, and (iii) the effect of nonequal ratios of reacting monomers on the product distribution. Here, a software program (Cyclaplex) has been developed to determine the number, identity (including isomers), and relative amounts of linear and cyclic architectures from a given number and ratio of reacting monomers. The program includes both mathematical formulas and generative algorithms for enumeration; the latter go beyond the former to provide desired molecular-relevant information and data-mining features. The program is equipped to enumerate four types of architectures: (i) linear architectures with directionality (macroscopic equivalent = electrical extension cords), (ii) linear architectures without directionality (batons), (iii) cyclic architectures with directionality (necklaces), and (iv) cyclic architectures without directionality (bracelets). The program can be applied to cyclic peptides, cycloveratrylenes, cyclens, calixarenes, cyclodextrins, crown ethers, cucurbiturils, annulenes, expanded meso-substituted porphyrin(ogen)s, and diverse supramolecular (e.g., protein) assemblies. The size of accessible architectures encompasses up to 12 modular subunits derived from 12 reacting monomers or larger architectures (e.g. 13-17 subunits) from fewer types of monomers (e.g. 2-4). A particular application concerns understanding the possible heterogeneity of (natural or biohybrid) photosynthetic light-harvesting oligomers (cyclic, linear) formed from distinct peptide subunits.
Collapse
Affiliation(s)
- Masahiko Taniguchi
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | |
Collapse
|
41
|
Solov’ev AA, Erokhin YE. Role of bacteriochlorophyll in stabilization of the structure of the core and peripheral light-harvesting complexes from purple photosynthetic bacteria. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713050123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
42
|
Solov’ev AA, Erokhin YE. Effect of acid pH on the core and peripheral light-harvesting complexes of purple bacteria. DOKL BIOCHEM BIOPHYS 2013; 449:75-9. [DOI: 10.1134/s1607672913020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Indexed: 11/23/2022]
|
43
|
Johnson N, Zhao G, Caycedo F, Manrique P, Qi H, Rodriguez F, Quiroga L. Extreme alien light allows survival of terrestrial bacteria. Sci Rep 2013; 3:2198. [PMID: 23852157 PMCID: PMC3711049 DOI: 10.1038/srep02198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/24/2013] [Indexed: 11/23/2022] Open
Abstract
Photosynthetic organisms provide a crucial coupling between the Sun's energy and metabolic processes supporting life on Earth. Searches for extraterrestrial life focus on seeking planets with similar incident light intensities and environments. However the impact of abnormal photon arrival times has not been considered. Here we present the counterintuitive result that broad classes of extreme alien light could support terrestrial bacterial life whereas sources more similar to our Sun might not. Our detailed microscopic model uses state-of-the-art empirical inputs including Atomic Force Microscopy (AFM) images. It predicts a highly nonlinear survivability for the basic lifeform Rsp. Photometricum whereby toxic photon feeds get converted into a benign metabolic energy supply by an interplay between the membrane's spatial structure and temporal excitation processes. More generally, our work suggests a new handle for manipulating terrestrial photosynthesis using currently-available extreme value statistics photon sources.
Collapse
Affiliation(s)
- Neil Johnson
- Physics Department, University of Miami, Florida FL 33126, U.S.A.
| | - Guannan Zhao
- Physics Department, University of Miami, Florida FL 33126, U.S.A.
| | | | - Pedro Manrique
- Physics Department, University of Miami, Florida FL 33126, U.S.A.
| | - Hong Qi
- Physics Department, University of Miami, Florida FL 33126, U.S.A.
| | - Ferney Rodriguez
- Departamento de Fisica, Universidad de Los Andes, Bogota, Colombia
| | - Luis Quiroga
- Departamento de Fisica, Universidad de Los Andes, Bogota, Colombia
| |
Collapse
|