1
|
Fujisawa T, Tanaka N, Tamogami J, Unno M. Retinal Chromophore Configuration in the O Intermediate of Sensory Rhodopsin II from Natronomonas pharaonis. Biochemistry 2024; 63:2714-2717. [PMID: 39378268 DOI: 10.1021/acs.biochem.4c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Sensory rhodopsin II (SRII) is a prototype photosensor that binds the retinal Schiff base chromophore. Upon photoabsorption, SRII is transformed into the signaling state, where two long-lived photointermediates are known to contribute. One is the M intermediate containing the deprotonated 13-cis chromophore, and the other is the O intermediate that is believed to have the protonated all-trans chromophore. The chromophore in the O intermediate is also thought to have the atypical 15-syn (C═N cis) configuration about the Schiff base moiety. In this communication, we study SRII from Natronomonas pharaonis (NpSRII) using Raman spectroscopy and find that the retinal chromophore configuration in the O intermediate is the 13-cis, 15-anti (C═N trans), contrary to the conventional notion. This result points out the revision of the chromophore structural changes underlying the long-lived signaling state of SRII.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Nozomi Tanaka
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
2
|
Strauss J, Deng L, Gao S, Toseland A, Bachy C, Zhang C, Kirkham A, Hopes A, Utting R, Joest EF, Tagliabue A, Löw C, Worden AZ, Nagel G, Mock T. Plastid-localized xanthorhodopsin increases diatom biomass and ecosystem productivity in iron-limited surface oceans. Nat Microbiol 2023; 8:2050-2066. [PMID: 37845316 PMCID: PMC10627834 DOI: 10.1038/s41564-023-01498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Microbial rhodopsins are photoreceptor proteins that convert light into biological signals or energy. Proteins of the xanthorhodopsin family are common in eukaryotic photosynthetic plankton including diatoms. However, their biological role in these organisms remains elusive. Here we report on a xanthorhodopsin variant (FcR1) isolated from the polar diatom Fragilariopsis cylindrus. Applying a combination of biophysical, biochemical and reverse genetics approaches, we demonstrate that FcR1 is a plastid-localized proton pump which binds the chromophore retinal and is activated by green light. Enhanced growth of a Thalassiora pseudonana gain-of-function mutant expressing FcR1 under iron limitation shows that the xanthorhodopsin proton pump supports growth when chlorophyll-based photosynthesis is iron-limited. The abundance of xanthorhodopsin transcripts in natural diatom communities of the surface oceans is anticorrelated with the availability of dissolved iron. Thus, we propose that these proton pumps convey a fitness advantage in regions where phytoplankton growth is limited by the availability of dissolved iron.
Collapse
Affiliation(s)
- Jan Strauss
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany.
- German Maritime Centre, Hamburg, Germany.
| | - Longji Deng
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Shiqiang Gao
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Wuerzburg, Germany
| | - Andrew Toseland
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Charles Bachy
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Sorbonne Université, CNRS, FR2424, Station biologique de Roscoff, Roscoff, France
| | - Chong Zhang
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Wuerzburg, Germany
| | - Amy Kirkham
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Amanda Hopes
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Robert Utting
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Eike F Joest
- Department of Biology, Biocenter, University of Würzburg, Wuerzburg, Germany
| | | | - Christian Löw
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Alexandra Z Worden
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
- Marine Biological Laboratory, Woods Hole, MA, USA
| | - Georg Nagel
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Wuerzburg, Germany
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
3
|
Saliminasab M, Yamazaki Y, Palmateer A, Harris A, Schubert L, Langner P, Heberle J, Bondar AN, Brown LS. A Proteorhodopsin-Related Photosensor Expands the Repertoire of Structural Motifs Employed by Sensory Rhodopsins. J Phys Chem B 2023; 127:7872-7886. [PMID: 37694950 PMCID: PMC10519204 DOI: 10.1021/acs.jpcb.3c04032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2023] [Indexed: 09/12/2023]
Abstract
Microbial rhodopsins are light-activated retinal-binding membrane proteins that perform a variety of ion transport and photosensory functions. They display several cases of convergent evolution where the same function is present in unrelated or very distant protein groups. Here we report another possible case of such convergent evolution, describing the biophysical properties of a new group of sensory rhodopsins. The first representative of this group was identified in 2004 but none of the members had been expressed and characterized. The well-studied haloarchaeal sensory rhodopsins interacting with methyl-accepting Htr transducers are close relatives of the halobacterial proton pump bacteriorhodopsin. In contrast, the sensory rhodopsins we describe here are relatives of proteobacterial proton pumps, proteorhodopsins, but appear to interact with Htr-like transducers likewise, even though they do not conserve the residues important for the interaction of haloarchaeal sensory rhodopsins with their transducers. The new sensory rhodopsins display many unusual amino acid residues, including those around the retinal chromophore; most strikingly, a tyrosine in place of a carboxyl counterion of the retinal Schiff base on helix C. To characterize their unique sequence motifs, we augment the spectroscopy and biochemistry data by structural modeling of the wild-type and three mutants. Taken together, the experimental data, bioinformatics sequence analyses, and structural modeling suggest that the tyrosine/aspartate complex counterion contributes to a complex water-mediated hydrogen-bonding network that couples the protonated retinal Schiff base to an extracellular carboxylic dyad.
Collapse
Affiliation(s)
- Maryam Saliminasab
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Yoichi Yamazaki
- Division
of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Alyssa Palmateer
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Andrew Harris
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Luiz Schubert
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Pit Langner
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Joachim Heberle
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- University
of Bucharest, Faculty of Physics, Atomiştilor 405, Măgurele 077125, Romania
- Forschungszentrum
Jülich, Institute for Neuroscience and Medicine and Institute
for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, Wilhelm-Johnen Straße, 52428 Jülich, Germany
| | - Leonid S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
4
|
Chang CF, Konno M, Inoue K, Tahara T. Effects of the Unique Chromophore-Protein Interactions on the Primary Photoreaction of Schizorhodopsin. J Phys Chem Lett 2023; 14:7083-7091. [PMID: 37527812 PMCID: PMC10424672 DOI: 10.1021/acs.jpclett.3c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
Schizorhodopsin (SzR) is a newly discovered microbial rhodopsin subfamily, functioning as an unusual inward-proton (H+) pump upon absorbing light. Two major protein structural differences around the chromophore have been found, resulting in unique chromophore-protein interactions that may be responsible for its unusual function. Therefore, it is important to elucidate how such a difference affects the primary photoreaction dynamics. We study the primary dynamics of SzR and its C75S mutant by femtosecond time-resolved absorption (TA) spectroscopy. The obtained TA data revealed that the photoisomerization in SzR proceeds more slowly and less efficiently than typical outward H+-pumping rhodopsins and that it further slows in the C75S mutant. We performed impulsive stimulated Raman measurements to clarify the effect of the cysteine residue on the retinal chromophore and found that interactions with Cys75 flatten the retinal chromophore of wild-type SzR. We discuss the effect of the unique chromophore-cysteine interaction on the retinal isomerization dynamics and structure of SzR.
Collapse
Affiliation(s)
- Chun-Fu Chang
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Masae Konno
- The
Institute for Solid State Physics, The University
of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
- PRESTO, Japan
Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Keiichi Inoue
- The
Institute for Solid State Physics, The University
of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
5
|
Nakasone Y, Kawasaki Y, Konno M, Inoue K, Terazima M. Time-resolved detection of light-induced conformational changes of heliorhodopsin. Phys Chem Chem Phys 2023; 25:12833-12840. [PMID: 37165904 DOI: 10.1039/d3cp00711a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Heliorhodopsins (HeRs) are a new category of rhodopsins. They exist as a dimer and exhibit a characteristic inverted topology. HeRs bind all-trans-retinal as a chromophore in the dark, and its isomerization to the 13-cis form by light illumination leads to a photocyclic reaction involving several photo-intermediates: K, L, M, and O. In this study, the kinetics of conformational changes of HeR from Thermoplasmatales archaeon SG8-52-1 (TaHeR) were studied by the transient grating (TG) and circular dichroism (CD) methods. The TG method reveals that the diffusion coefficient (D) does not change until the O formation suggesting no significant conformation change at the surface of the protein during the early steps of the reaction. Subsequently, D decreases upon the O formation. Although two time constants (202 μs and 2.6 ms) are observed for the conversion from the M to O by the absorption detection, D decreases only at the first step (202 μs). Light-induced unfolding of helical structure is detected by the CD method. To examine the contribution of a characteristic helix in the intracellular loop 1 (ICL1 helix), Tyr93 on the ICL1 helix was replaced by Gly (Y93G), and the reaction of this mutant was also investigated. It was found that this replacement partially suppresses the D-change, although the CD-change is almost the same as that of the wild type. These results are interpreted in terms of different sensitivities of TG and CD methods, that is, D is sensitive to the structure of the solvent-exposed surface and selectively observes the conformational change in the ICL1 region. It is suggested that the structure of hydrophilic residues in the ICL1 helix is changed during this process.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.
| | - Yuma Kawasaki
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Masae Konno
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
6
|
Arikawa S, Sugimoto T, Okitsu T, Wada A, Katayama K, Kandori H, Kawamura I. Solid-state NMR for the characterization of retinal chromophore and Schiff base in TAT rhodopsin embedded in membranes under weakly acidic conditions. Biophys Physicobiol 2023; 20:e201017. [PMID: 38362323 PMCID: PMC10865839 DOI: 10.2142/biophysico.bppb-v20.s017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023] Open
Abstract
TAT rhodopsin extracted from the marine bacterium SAR11 HIMB114 has a characteristic Thr-Ala-Thr motif and contains both protonated and deprotonated states of Schiff base at physiological pH conditions due to the low pKa. Here, using solid-state NMR spectroscopy, we investigated the 13C and 15N NMR signals of retinal in only the protonated state of TAT in the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho (1'-rac-glycerol) (POPE/POPG) membrane at weakly acidic conditions. In the 13C NMR spectrum of 13C retinal-labeled TAT rhodopsin, the isolated 14-13C signals of 13-trans/15-anti and 13-cis/15-syn isomers were observed at a ratio of 7:3. 15N retinal protonated Schiff base (RPSB) had a significantly higher magnetic field resonance at 160 ppm. In 15N RPSB/λmax analysis, the plot of TAT largely deviated from the trend based on the retinylidene-halide model compounds and microbial rhodopsins. Our findings indicate that the RPSB of TAT forms a very weak interaction with the counterion.
Collapse
Affiliation(s)
- Sui Arikawa
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Teppei Sugimoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Takashi Okitsu
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| |
Collapse
|
7
|
Marín MDC, Jaffe AL, West PT, Konno M, Banfield JF, Inoue K. Biophysical characterization of microbial rhodopsins with DSE motif. Biophys Physicobiol 2023; 20:e201023. [PMID: 38362324 PMCID: PMC10865882 DOI: 10.2142/biophysico.bppb-v20.s023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023] Open
Abstract
Microbial rhodopsins are photoreceptive transmembrane proteins that transport ions or regulate other intracellular biological processes. Recent genomic and metagenomic analyses found many microbial rhodopsins with unique sequences distinct from known ones. Functional characterization of these new types of microbial rhodopsins is expected to expand our understanding of their physiological roles. Here, we found microbial rhodopsins having a DSE motif in the third transmembrane helix from members of the Actinobacteria. Although the expressed proteins exhibited blue-green light absorption, either no or extremely small outward H+ pump activity was observed. The turnover rate of the photocycle reaction of the purified proteins was extremely slow compared to typical H+ pumps, suggesting these rhodopsins would work as photosensors or H+ pumps whose activities are enhanced by an unknown regulatory system in the hosts. The discovery of this rhodopsin group with the unique motif and functionality expands our understanding of the biological role of microbial rhodopsins.
Collapse
Affiliation(s)
- María del Carmen Marín
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Alexander L. Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
- Department of Earth System Science, Stanford University, Stanford, CA 94305-4216, USA
| | - Patrick T. West
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Masae Konno
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Jillian F. Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA 94720-2151, USA
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720-4767, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720-3114, USA
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
8
|
Kojima K, Sudo Y. Convergent evolution of animal and microbial rhodopsins. RSC Adv 2023; 13:5367-5381. [PMID: 36793294 PMCID: PMC9923458 DOI: 10.1039/d2ra07073a] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/05/2023] [Indexed: 02/15/2023] Open
Abstract
Rhodopsins, a family of photoreceptive membrane proteins, contain retinal as a chromophore and were firstly identified as reddish pigments from frog retina in 1876. Since then, rhodopsin-like proteins have been identified mainly from animal eyes. In 1971, a rhodopsin-like pigment was discovered from the archaeon Halobacterium salinarum and named bacteriorhodopsin. While it was believed that rhodopsin- and bacteriorhodopsin-like proteins were expressed only in animal eyes and archaea, respectively, before the 1990s, a variety of rhodopsin-like proteins (called animal rhodopsins or opsins) and bacteriorhodopsin-like proteins (called microbial rhodopsins) have been progressively identified from various tissues of animals and microorganisms, respectively. Here, we comprehensively introduce the research conducted on animal and microbial rhodopsins. Recent analysis has revealed that the two rhodopsin families have common molecular properties, such as the protein structure (i.e., 7-transmembrane structure), retinal structure (i.e., binding ability to cis- and trans-retinal), color sensitivity (i.e., UV- and visible-light sensitivities), and photoreaction (i.e., triggering structural changes by light and heat), more than what was expected at the early stages of rhodopsin research. Contrastingly, their molecular functions are distinctively different (e.g., G protein-coupled receptors and photoisomerases for animal rhodopsins and ion transporters and phototaxis sensors for microbial rhodopsins). Therefore, based on their similarities and dissimilarities, we propose that animal and microbial rhodopsins have convergently evolved from their distinctive origins as multi-colored retinal-binding membrane proteins whose activities are regulated by light and heat but independently evolved for different molecular and physiological functions in the cognate organism.
Collapse
Affiliation(s)
- Keiichi Kojima
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Japan
| | - Yuki Sudo
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Japan
| |
Collapse
|
9
|
Shim J, Choun K, Kang K, Kim J, Cho S, Jung K. The binding of secondary chromophore for thermally stable rhodopsin makes more stable with temperature. Protein Sci 2022. [DOI: 10.1002/pro.4386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jin‐gon Shim
- Department of Life Science and Institute of Biological Interfaces Sogang University Seoul South Korea
| | - Kimleng Choun
- Department of Life Science and Institute of Biological Interfaces Sogang University Seoul South Korea
| | - Kun‐Wook Kang
- Department of Life Science and Institute of Biological Interfaces Sogang University Seoul South Korea
| | - Ji‐Hyun Kim
- Department of Life Science and Institute of Biological Interfaces Sogang University Seoul South Korea
| | - Shin‐Gyu Cho
- Department of Life Science and Institute of Biological Interfaces Sogang University Seoul South Korea
| | - Kwang‐Hwan Jung
- Department of Life Science and Institute of Biological Interfaces Sogang University Seoul South Korea
| |
Collapse
|
10
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
11
|
Chiriac MC, Bulzu PA, Andrei AS, Okazaki Y, Nakano SI, Haber M, Kavagutti VS, Layoun P, Ghai R, Salcher MM. Ecogenomics sheds light on diverse lifestyle strategies in freshwater CPR. MICROBIOME 2022; 10:84. [PMID: 35659305 PMCID: PMC9166423 DOI: 10.1186/s40168-022-01274-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND The increased use of metagenomics and single-cell genomics led to the discovery of organisms from phyla with no cultivated representatives and proposed new microbial lineages such as the candidate phyla radiation (CPR or Patescibacteria). These bacteria have peculiar ribosomal structures, reduced metabolic capacities, small genome, and cell sizes, and a general host-associated lifestyle was proposed for the radiation. So far, most CPR genomes were obtained from groundwaters; however, their diversity, abundance, and role in surface freshwaters is largely unexplored. Here, we attempt to close these knowledge gaps by deep metagenomic sequencing of 119 samples of 17 different freshwater lakes located in Europe and Asia. Moreover, we applied Fluorescence in situ Hybridization followed by Catalyzed Reporter Deposition (CARD-FISH) for a first visualization of distinct CPR lineages in freshwater samples. RESULTS A total of 174 dereplicated metagenome-assembled genomes (MAGs) of diverse CPR lineages were recovered from the investigated lakes, with a higher prevalence from hypolimnion samples (162 MAGs). They have reduced genomes (median size 1 Mbp) and were generally found in low abundances (0.02-14.36 coverage/Gb) and with estimated slow replication rates. The analysis of genomic traits and CARD-FISH results showed that the radiation is an eclectic group in terms of metabolic capabilities and potential lifestyles, ranging from what appear to be free-living lineages to host- or particle-associated groups. Although some complexes of the electron transport chain were present in the CPR MAGs, together with ion-pumping rhodopsins and heliorhodopsins, we believe that they most probably adopt a fermentative metabolism. Terminal oxidases might function in O2 scavenging, while heliorhodopsins could be involved in mitigation against oxidative stress. CONCLUSIONS A high diversity of CPR MAGs was recovered, and distinct CPR lineages did not seem to be limited to lakes with specific trophic states. Their reduced metabolic capacities resemble the ones described for genomes in groundwater and animal-associated samples, apart from Gracilibacteria that possesses more complete metabolic pathways. Even though this radiation is mostly host-associated, we also observed organisms from different clades (ABY1, Paceibacteria, Saccharimonadia) that appear to be unattached to any other organisms or were associated with 'lake snow' particles (ABY1, Gracilibacteria), suggesting a broad range of potential life-strategies in this phylum. Video Abstract.
Collapse
Affiliation(s)
- Maria-Cecilia Chiriac
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Adrian-Stefan Andrei
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Yusuke Okazaki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Shin-ichi Nakano
- Center of Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga Japan
| | - Markus Haber
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Vinicius Silva Kavagutti
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Paul Layoun
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Michaela M. Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
12
|
Light dependent synthesis of a nucleotide second messenger controls the motility of a spirochete bacterium. Sci Rep 2022; 12:6825. [PMID: 35474318 PMCID: PMC9043183 DOI: 10.1038/s41598-022-10556-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/11/2022] [Indexed: 11/24/2022] Open
Abstract
Nucleotide second messengers are universally crucial factors for the signal transduction of various organisms. In prokaryotes, cyclic nucleotide messengers are involved in the bacterial life cycle and in functions such as virulence and biofilm formation, mainly via gene regulation. Here, we show that the swimming motility of the soil bacterium Leptospira kobayashii is rapidly modulated by light stimulation. Analysis of a loss-of-photoresponsivity mutant obtained by transposon random mutagenesis identified the novel sensory gene, and its expression in Escherichia coli through codon optimization elucidated the light-dependent synthesis of cyclic adenosine monophosphate (cAMP). GFP labeling showed the localization of the photoresponsive enzyme at the cell poles where flagellar motors reside. These findings suggest a new role for cAMP in rapidly controlling the flagella-dependent motility of Leptospira and highlight the global distribution of the newly discovered photoactivated cyclase among diverse microbial species.
Collapse
|
13
|
La Greca M, Chen JL, Schubert L, Kozuch J, Berneiser T, Terpitz U, Heberle J, Schlesinger R. The Photoreaction of the Proton-Pumping Rhodopsin 1 From the Maize Pathogenic Basidiomycete Ustilago maydis. Front Mol Biosci 2022; 9:826990. [PMID: 35281268 PMCID: PMC8913941 DOI: 10.3389/fmolb.2022.826990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/25/2022] [Indexed: 01/25/2023] Open
Abstract
Microbial rhodopsins have recently been discovered in pathogenic fungi and have been postulated to be involved in signaling during the course of an infection. Here, we report on the spectroscopic characterization of a light-driven proton pump rhodopsin (UmRh1) from the smut pathogen Ustilago maydis, the causative agent of tumors in maize plants. Electrophysiology, time-resolved UV/Vis and vibrational spectroscopy indicate a pH-dependent photocycle. We also characterized the impact of the auxin hormone indole-3-acetic acid that was shown to influence the pump activity of UmRh1 on individual photocycle intermediates. A facile pumping activity test was established of UmRh1 expressed in Pichia pastoris cells, for probing proton pumping out of the living yeast cells during illumination. We show similarities and distinct differences to the well-known bacteriorhodopsin from archaea and discuss the putative role of UmRh1 in pathogenesis.
Collapse
Affiliation(s)
- Mariafrancesca La Greca
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Jheng-Liang Chen
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Luiz Schubert
- Institute of Experimental Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Jacek Kozuch
- Institute of Experimental Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Tim Berneiser
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Joachim Heberle
- Institute of Experimental Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ramona Schlesinger
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Ramona Schlesinger,
| |
Collapse
|
14
|
Abstract
Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically-encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology"), and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
Collapse
Affiliation(s)
- Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| |
Collapse
|
15
|
Pro219 is an electrostatic color determinant in the light-driven sodium pump KR2. Commun Biol 2021; 4:1185. [PMID: 34645937 PMCID: PMC8514524 DOI: 10.1038/s42003-021-02684-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 09/19/2021] [Indexed: 11/13/2022] Open
Abstract
Color tuning in animal and microbial rhodopsins has attracted the interest of many researchers, as the color of their common retinal chromophores is modulated by the amino acid residues forming the chromophore cavity. Critical cavity amino acid residues are often called “color switches”, as the rhodopsin color is effectively tuned through their substitution. Well-known color switches are the L/Q and A/TS switches located in the C and G helices of the microbial rhodopsin structure respectively. Recently, we reported on a third G/P switch located in the F helix of the light-driven sodium pumps of KR2 and JsNaR causing substantial spectral red-shifts in the latter with respect to the former. In order to investigate the molecular-level mechanism driving such switching function, here we present an exhaustive mutation, spectroscopic and computational investigation of the P219X mutant set of KR2. To do so, we study the changes in the absorption band of the 19 possible mutants and construct, semi-automatically, the corresponding hybrid quantum mechanics/molecular mechanics models. We found that the P219X feature a red-shifted light absorption with the only exception of P219R. The analysis of the corresponding models indicate that the G/P switch induces red-shifting variations via electrostatic interactions, while replacement-induced chromophore geometrical (steric) distortions play a minor role. However, the same analysis indicates that the P219R blue-shifted variant has a more complex origin involving both electrostatic and steric changes accompanied by protonation state and hydrogen bond networks modifications. These results make it difficult to extract simple rules or formulate theories for predicting how a switch operates without considering the atomistic details and environmental consequences of the side chain replacement. Nakajima, Pedraza-González et al. provide a comprehensive investigation of amino acid mutations at position 219 of the sodium pump rhodopsin, KR2, and their role in the color tuning of the retinal chromophore. They prepared P219X (X= A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y) mutants of KR2, and find that all mutants are red-shifted, except for P219R, highlighting its role as a color determinant in the light-driven pump KR2.
Collapse
|
16
|
Fujisawa T, Nishikawa K, Tamogami J, Unno M. Conformational Analysis of a Retinal Schiff Base Chromophore in Proteorhodopsin by Raman Optical Activity. J Phys Chem Lett 2021; 12:9564-9568. [PMID: 34581580 DOI: 10.1021/acs.jpclett.1c02552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Raman optical activity (ROA) spectroscopy was used to study the conformation of the retinal Schiff base chromophore in green-light-absorbing proteorhodopsin, which is a globally distributed light-driven proton pump of aquatic bacteria. The ROA spectrum consisted mostly of the negative vibrational bands of the chromophore, while the hydrogen out-of-plane mode (at 960 cm-1) appeared as the sole positive band. This distinct spectral feature was not explained by the twisted structure of the retinal Schiff base but was reproduced by the structural model in which the polyene chain on the β-ionone ring side was bent out-of-plane. The bent chromophore structure potentially couples with proton pumping through the motion of the sixth helix in contact with the β-ionone ring.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Kouhei Nishikawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
17
|
Nakao S, Kojima K, Sudo Y. Microbial Rhodopsins as Multi-functional Photoreactive Membrane Proteins for Optogenetics. Biol Pharm Bull 2021; 44:1357-1363. [PMID: 34602542 DOI: 10.1248/bpb.b21-00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In life science research, methods to control biological activities with stimuli such as light, heat, pressure and chemicals have been widely utilized to understand their molecular mechanisms. The knowledge obtained by those methods has built a basis for the development of medicinal products. Among those various stimuli, light has the advantage of a high spatiotemporal resolution that allows for the precise control of biological activities. Photoactive membrane protein rhodopsins from microorganisms (called microbial rhodopsins) absorb visible light and that light absorption triggers the trans-cis photoisomerization of the chromophore retinal, leading to various functions such as ion pumps, ion channels, transcriptional regulators and enzymes. In addition to their biological significance, microbial rhodopsins are widely utilized as fundamental molecular tools for optogenetics, a method to control biological activities by light. In this review, we briefly introduce the molecular basis of representative rhodopsin molecules and their applications for optogenetics. Based on those examples, we discuss the high potential of rhodopsin-based optogenetics tools for basic and clinical research in pharmaceutical sciences.
Collapse
Affiliation(s)
- Shin Nakao
- Division of Pharmaceutical Sciences, Okayama University
| | - Keiichi Kojima
- Division of Pharmaceutical Sciences, Okayama University.,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Yuki Sudo
- Division of Pharmaceutical Sciences, Okayama University.,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
18
|
Kawamura I, Seki H, Tajima S, Makino Y, Shigeta A, Okitsu T, Wada A, Naito A, Sudo Y. Structure of a retinal chromophore of dark-adapted middle rhodopsin as studied by solid-state nuclear magnetic resonance spectroscopy. Biophys Physicobiol 2021; 18:177-185. [PMID: 34434690 PMCID: PMC8354847 DOI: 10.2142/biophysico.bppb-v18.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022] Open
Abstract
Middle rhodopsin (MR) found from the archaeon Haloquadratum walsbyi is evolutionarily located between two different types of rhodopsins, bacteriorhodopsin (BR) and sensory rhodopsin II (SRII). Some isomers of the chromophore retinal and the photochemical reaction of MR are markedly different from those of BR and SRII. In this study, to obtain the structural information regarding its active center (i.e., retinal), we subjected MR embedded in lipid bilayers to solid-state magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy. The analysis of the isotropic 13C chemical shifts of the retinal chromophore revealed the presence of three types of retinal configurations of dark-adapted MR: (13-trans, 15-anti (all-trans)), (13-cis, 15-syn), and 11-cis isomers. The higher field resonance of the 20-C methyl carbon in the all-trans retinal suggested that Trp182 in MR has an orientation that is different from that in other microbial rhodopsins, owing to the changes in steric hindrance associated with the 20-C methyl group in retinal. 13Cζ signals of Tyr185 in MR for all-trans and 13-cis, 15-syn isomers were discretely observed, representing the difference in the hydrogen bond strength of Tyr185. Further, 15N NMR analysis of the protonated Schiff base corresponding to the all-trans and 13-cis, 15-syn isomers in MR showed a strong electrostatic interaction with the counter ion. Therefore, the resulting structural information exhibited the property of stable retinal conformations of dark-adapted MR.
Collapse
Affiliation(s)
- Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan.,Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Hayato Seki
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Seiya Tajima
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Yoshiteru Makino
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan.,Present address: Graduate School of Medicine, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Arisu Shigeta
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Takashi Okitsu
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Akira Naito
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
19
|
Abstract
Microbial rhodopsins are diverse photoreceptive proteins containing a retinal chromophore and are found in all domains of cellular life and are even encoded in genomes of viruses. These rhodopsins make up two families: type 1 rhodopsins and the recently discovered heliorhodopsins. These families have seven transmembrane helices with similar structures but opposing membrane orientation. Microbial rhodopsins participate in a portfolio of light-driven energy and sensory transduction processes. In this review we present data collected over the last two decades about these rhodopsins and describe their diversity, functions, and biological and ecological roles. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; ,
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan;
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Japan;
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; ,
| |
Collapse
|
20
|
Abstract
Optobiochemical control of protein activities allows the investigation of protein functions in living cells with high spatiotemporal resolution. Over the last two decades, numerous natural photosensory domains have been characterized and synthetic domains engineered and assembled into photoregulatory systems to control protein function with light. Here, we review the field of optobiochemistry, categorizing photosensory domains by chromophore, describing photoregulatory systems by mechanism of action, and discussing protein classes frequently investigated using optical methods. We also present examples of how spatial or temporal control of proteins in living cells has provided new insights not possible with traditional biochemical or cell biological techniques.
Collapse
Affiliation(s)
- Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea;
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA;
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
21
|
How does the skin sense sun light? An integrative view of light sensing molecules. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100403] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Nakamizo Y, Fujisawa T, Kikukawa T, Okamura A, Baba H, Unno M. Low-temperature Raman spectroscopy of sodium-pump rhodopsin from Indibacter alkaliphilus: insight of Na + binding for active Na + transport. Phys Chem Chem Phys 2021; 23:2072-2079. [PMID: 33433533 DOI: 10.1039/d0cp05652a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We carried out the low-temperature Raman measurement of a sodium pump rhodopsin from Indibacter alkaliphilus (IaNaR) and examined the primary structural change for the light-driven Na+ pump. We observed that photoexcitation of IaNaR produced the distorted 13-cis retinal chromophore in the presence of Na+, while the structural distortion was significantly relaxed in the absence of Na+. This structural difference of the chromophore with/without Na+ was attributed to the Na+ binding to the protein, which alters the active site. Using the spectral sensitivity to the ion binding, we found that IaNaR had a second Na+ binding site in addition to the one already specified on the extracellular surface. To date, the Na+ binding has not been considered as a prerequisite for Na+ transport. However, this study provides insight that the protein structural change induced by the ion binding involved the formation of an R108-D250 salt bridge, which has critical importance in the active transport of Na+.
Collapse
Affiliation(s)
- Yushi Nakamizo
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Tedesco P, Palma Esposito F, Masino A, Vitale GA, Tortorella E, Poli A, Nicolaus B, van Zyl LJ, Trindade M, de Pascale D. Isolation and Characterization of Strain Exiguobacterium sp. KRL4, a Producer of Bioactive Secondary Metabolites from a Tibetan Glacier. Microorganisms 2021; 9:microorganisms9050890. [PMID: 33919419 PMCID: PMC8143284 DOI: 10.3390/microorganisms9050890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Extremophilic microorganisms represent a unique source of novel natural products. Among them, cold adapted bacteria and particularly alpine microorganisms are still underexplored. Here, we describe the isolation and characterization of a novel Gram-positive, aerobic rod-shaped alpine bacterium (KRL4), isolated from sediments from the Karuola glacier in Tibet, China. Complete phenotypic analysis was performed revealing the great adaptability of the strain to a wide range of temperatures (5-40 °C), pHs (5.5-8.5), and salinities (0-15% w/v NaCl). Genome sequencing identified KRL4 as a member of the placeholder genus Exiguobacterium_A and annotation revealed that only half of the protein-encoding genes (1522 of 3079) could be assigned a putative function. An analysis of the secondary metabolite clusters revealed the presence of two uncharacterized phytoene synthase containing pathways and a novel siderophore pathway. Biological assays confirmed that the strain produces molecules with antioxidant and siderophore activities. Furthermore, intracellular extracts showed nematocidal activity towards C. elegans, suggesting that strain KRL4 is a source of anthelmintic compounds.
Collapse
Affiliation(s)
- Pietro Tedesco
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 80131 Naples, Italy; (P.T.); (F.P.E.); (A.M.); (G.A.V.); (E.T.)
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80122 Naples, Italy
| | - Fortunato Palma Esposito
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 80131 Naples, Italy; (P.T.); (F.P.E.); (A.M.); (G.A.V.); (E.T.)
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80122 Naples, Italy
| | - Antonio Masino
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 80131 Naples, Italy; (P.T.); (F.P.E.); (A.M.); (G.A.V.); (E.T.)
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
| | - Giovanni Andrea Vitale
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 80131 Naples, Italy; (P.T.); (F.P.E.); (A.M.); (G.A.V.); (E.T.)
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80122 Naples, Italy
| | - Emiliana Tortorella
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 80131 Naples, Italy; (P.T.); (F.P.E.); (A.M.); (G.A.V.); (E.T.)
| | - Annarita Poli
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, 80078 Naples, Italy; (A.P.); (B.N.)
| | - Barbara Nicolaus
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, 80078 Naples, Italy; (A.P.); (B.N.)
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Bellville, 7535 Cape Town, South Africa; (L.J.v.Z.); (M.T.)
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Bellville, 7535 Cape Town, South Africa; (L.J.v.Z.); (M.T.)
| | - Donatella de Pascale
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 80131 Naples, Italy; (P.T.); (F.P.E.); (A.M.); (G.A.V.); (E.T.)
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80122 Naples, Italy
- Correspondence:
| |
Collapse
|
24
|
Singh D, Gupta P, Singla-Pareek SL, Siddique KH, Pareek A. The Journey from Two-Step to Multi-Step Phosphorelay Signaling Systems. Curr Genomics 2021; 22:59-74. [PMID: 34045924 PMCID: PMC8142344 DOI: 10.2174/1389202921666210105154808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/21/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The two-component signaling (TCS) system is an important signal transduction machinery in prokaryotes and eukaryotes, excluding animals, that uses a protein phosphorylation mechanism for signal transmission. CONCLUSION Prokaryotes have a primitive type of TCS machinery, which mainly comprises a membrane-bound sensory histidine kinase (HK) and its cognate cytoplasmic response regulator (RR). Hence, it is sometimes referred to as two-step phosphorelay (TSP). Eukaryotes have more sophisticated signaling machinery, with an extra component - a histidine-containing phosphotransfer (HPT) protein that shuttles between HK and RR to communicate signal baggage. As a result, the TSP has evolved from a two-step phosphorelay (His-Asp) in simple prokaryotes to a multi-step phosphorelay (MSP) cascade (His-Asp-His-Asp) in complex eukaryotic organisms, such as plants, to mediate the signaling network. This molecular evolution is also reflected in the form of considerable structural modifications in the domain architecture of the individual components of the TCS system. In this review, we present TCS system's evolutionary journey from the primitive TSP to advanced MSP type across the genera. This information will be highly useful in designing the future strategies of crop improvement based on the individual members of the TCS machinery.
Collapse
Affiliation(s)
| | | | | | | | - Ashwani Pareek
- Address correspondence to this author at the Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Tel/Fax: 91-11-26704504 / 26742558; E-mail:
| |
Collapse
|
25
|
Broser M, Spreen A, Konold PE, Schiewer E, Adam S, Borin V, Schapiro I, Seifert R, Kennis JTM, Bernal Sierra YA, Hegemann P. NeoR, a near-infrared absorbing rhodopsin. Nat Commun 2020; 11:5682. [PMID: 33173168 PMCID: PMC7655827 DOI: 10.1038/s41467-020-19375-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
The Rhizoclosmatium globosum genome encodes three rhodopsin-guanylyl cyclases (RGCs), which are predicted to facilitate visual orientation of the fungal zoospores. Here, we show that RGC1 and RGC2 function as light-activated cyclases only upon heterodimerization with RGC3 (NeoR). RGC1/2 utilize conventional green or blue-light-sensitive rhodopsins (λmax = 550 and 480 nm, respectively), with short-lived signaling states, responsible for light-activation of the enzyme. The bistable NeoR is photoswitchable between a near-infrared-sensitive (NIR, λmax = 690 nm) highly fluorescent state (QF = 0.2) and a UV-sensitive non-fluorescent state, thereby modulating the activity by NIR pre-illumination. No other rhodopsin has been reported so far to be functional as a heterooligomer, or as having such a long wavelength absorption or high fluorescence yield. Site-specific mutagenesis and hybrid quantum mechanics/molecular mechanics simulations support the idea that the unusual photochemical properties result from the rigidity of the retinal chromophore and a unique counterion triad composed of two glutamic and one aspartic acids. These findings substantially expand our understanding of the natural potential and limitations of spectral tuning in rhodopsin photoreceptors.
Collapse
Affiliation(s)
- Matthias Broser
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| | - Anika Spreen
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Patrick E Konold
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Enrico Schiewer
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Suliman Adam
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Veniamin Borin
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Reinhard Seifert
- Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - John T M Kennis
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | | | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| |
Collapse
|
26
|
Yamamoto A, Tsukamoto T, Suzuki K, Hashimoto E, Kobashigawa Y, Shibasaki K, Uchida T, Inagaki F, Demura M, Ishimori K. Spectroscopic Characterization of Halorhodopsin Reconstituted into Nanodisks Using Native Lipids. Biophys J 2020; 118:2853-2865. [PMID: 32396848 DOI: 10.1016/j.bpj.2020.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022] Open
Abstract
We successfully reconstituted single Natronomonas pharaonis halorhodopsin (NpHR) trimers into a nanodisk (ND) using the native archaeal lipid (NL) and an artificial lipid having a zwitterionic headgroup, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Incorporation of single trimeric NpHR into NDs was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, size-exclusion chromatography, and visible circular dichroism spectroscopy. The Cl- binding affinity of NpHR in NDs using NL (NL-ND NpHR) or POPC (POPC-ND NpHR) was examined by absorption spectroscopy, showing that the Cl--releasing affinities (Kd,N↔O) of these ND-reconstituted NpHRs are more than 10 times higher than that obtained from native NpHR membrane fragments (MFs) harvested from a NpHR-overexpressing archaeal strain (MF NpHR). The photoreaction kinetics of these ND-reconstituted NpHRs revealed that the Cl- uptake was faster than that of MF NpHR. These differences in the Cl--releasing and uptake properties of ND-reconstituted NpHRs and MF NpHR may arise from suppression of protein conformational changes associated with Cl- release from the trimeric NpHR caused by ND reconstitution, conformational perturbation in the trimeric state, and loss of the trimer-trimer interactions. On the other hand, POPC-ND NpHR demonstrated accelerated Cl- uptake compared to NL-ND NpHR, suggesting that the negative charge on the archaeal membrane surface regulates the photocycle of NpHR. Although NL-ND NpHR and MF NpHR are embedded in the same lipid, the lower Cl--binding affinity at the initial state (Kd,initial) and faster recovering from the NpHR' state to the original state of the photoreaction cycle were observed for NL-ND NpHR, probably because of insufficient interactions with a chromophore in the native membrane, bacterioruberin in reconstituted NDs. Our results indicate that specific interactions of NpHR with surrounding lipids and bacterioruberin, structural flexibility of the membrane, and interactions between trimeric NpHRs may be necessary for efficient Cl- pumping.
Collapse
Affiliation(s)
- Ayumi Yamamoto
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Takashi Tsukamoto
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Kenshiro Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Eri Hashimoto
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | | | - Kousuke Shibasaki
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Fuyuhiko Inagaki
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
27
|
Yun JH, Ohki M, Park JH, Ishimoto N, Sato-Tomita A, Lee W, Jin Z, Tame JRH, Shibayama N, Park SY, Lee W. Pumping mechanism of NM-R3, a light-driven bacterial chloride importer in the rhodopsin family. SCIENCE ADVANCES 2020; 6:eaay2042. [PMID: 32083178 PMCID: PMC7007266 DOI: 10.1126/sciadv.aay2042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
A newly identified microbial rhodopsin, NM-R3, from the marine flavobacterium Nonlabens marinus, was recently shown to drive chloride ion uptake, extending our understanding of the diversity of mechanisms for biological energy conversion. To clarify the mechanism underlying its function, we characterized the crystal structures of NM-R3 in both the dark state and early intermediate photoexcited states produced by laser pulses of different intensities and temperatures. The displacement of chloride ions at five different locations in the model reflected the detailed anion-conduction pathway, and the activity-related key residues-Cys105, Ser60, Gln224, and Phe90-were identified by mutation assays and spectroscopy. Comparisons with other proteins, including a closely related outward sodium ion pump, revealed key motifs and provided structural insights into light-driven ion transport across membranes by the NQ subfamily of rhodopsins. Unexpectedly, the response of the retinal in NM-R3 to photostimulation appears to be substantially different from that seen in bacteriorhodopsin.
Collapse
Affiliation(s)
- Ji-Hye Yun
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Mio Ohki
- Research Complex at Harwell, Rutherford Appleton Laboratory, OX11 0FA Didcot, UK
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Jae-Hyun Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Naito Ishimoto
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Ayana Sato-Tomita
- Division of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Wonbin Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Zeyu Jin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Jeremy R. H. Tame
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Naoya Shibayama
- Division of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
28
|
Abstract
Signal transduction systems configured around a core phosphotransfer step between a histidine kinase and a cognate response regulator protein occur in organisms from all domains of life. These systems, termed two-component systems, constitute the majority of multi-component signaling pathways in Bacteria but are less prevalent in Archaea and Eukarya. The core signaling domains are modular, allowing versatility in configuration of components into single-step phosphotransfer and multi-step phosphorelay pathways, the former being predominant in bacteria and the latter in eukaryotes. Two-component systems regulate key cellular regulatory processes that provide adaptive responses to environmental stimuli and are of interest for the development of antimicrobial therapeutics, biotechnology applications, and biosensor engineering. In bacteria, two-component systems have been found to mediate responses to an extremely broad array of extracellular and intracellular chemical and physical stimuli, whereas in archaea and eukaryotes, the use of two-component systems is more limited. This review summarizes recent advances in exploring the repertoire of sensor histidine kinases in the Archaea and Eukarya domains of life.
Collapse
Affiliation(s)
- Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
| | - Ann M Stock
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| |
Collapse
|
29
|
Kojima K, Shibukawa A, Sudo Y. The Unlimited Potential of Microbial Rhodopsins as Optical Tools. Biochemistry 2019; 59:218-229. [PMID: 31815443 DOI: 10.1021/acs.biochem.9b00768] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microbial rhodopsins, a photoactive membrane protein family, serve as fundamental tools for optogenetics, an innovative technology for controlling biological activities with light. Microbial rhodopsins are widely distributed in nature and have a wide variety of biological functions. Regardless of the many different known types of microbial rhodopsins, only a few of them have been used in optogenetics to control neural activity to understand neural networks. The efforts of our group have been aimed at identifying and characterizing novel rhodopsins from nature and also at engineering novel variant rhodopsins by rational design. On the basis of the molecular and functional characteristics of those novel rhodopsins, we have proposed new rhodopsin-based optogenetics tools to control not only neural activities but also "non-neural" activities. In this Perspective, we introduce the achievements and summarize future challenges in creating optogenetics tools using rhodopsins. The implementation of optogenetics deep inside an in vivo brain is the well-known challenge for existing rhodopsins. As a perspective to address this challenge, we introduce innovative optical illumination techniques using wavefront shaping that can reinforce the low light sensitivity of the rhodopsins and realize deep-brain optogenetics. The applications of our optogenetics tools could be extended to manipulate non-neural biological activities such as gene expression, apoptosis, energy production, and muscle contraction. We also discuss the potentially unlimited biotechnological applications of microbial rhodopsins in the future such as in photovoltaic devices and in drug delivery systems. We believe that advances in the field will greatly expand the potential uses of microbial rhodopsins as optical tools.
Collapse
Affiliation(s)
- Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| | - Atsushi Shibukawa
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| |
Collapse
|
30
|
Möglich A. Signal transduction in photoreceptor histidine kinases. Protein Sci 2019; 28:1923-1946. [PMID: 31397927 PMCID: PMC6798134 DOI: 10.1002/pro.3705] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022]
Abstract
Two-component systems (TCS) constitute the predominant means by which prokaryotes read out and adapt to their environment. Canonical TCSs comprise a sensor histidine kinase (SHK), usually a transmembrane receptor, and a response regulator (RR). In signal-dependent manner, the SHK autophosphorylates and in turn transfers the phosphoryl group to the RR which then elicits downstream responses, often in form of altered gene expression. SHKs also catalyze the hydrolysis of the phospho-RR, hence, tightly adjusting the overall degree of RR phosphorylation. Photoreceptor histidine kinases are a subset of mostly soluble, cytosolic SHKs that sense light in the near-ultraviolet to near-infrared spectral range. Owing to their experimental tractability, photoreceptor histidine kinases serve as paradigms and provide unusually detailed molecular insight into signal detection, decoding, and regulation of SHK activity. The synthesis of recent results on receptors with light-oxygen-voltage, bacteriophytochrome and microbial rhodopsin sensor units identifies recurring, joint signaling strategies. Light signals are initially absorbed by the sensor module and converted into subtle rearrangements of α helices, mostly through pivoting and rotation. These conformational transitions propagate through parallel coiled-coil linkers to the effector unit as changes in left-handed superhelical winding. Within the effector, subtle conformations are triggered that modulate the solvent accessibility of residues engaged in the kinase and phosphatase activities. Taken together, a consistent view of the entire trajectory from signal detection to regulation of output emerges. The underlying allosteric mechanisms could widely apply to TCS signaling in general.
Collapse
Affiliation(s)
- Andreas Möglich
- Department of BiochemistryUniversität BayreuthBayreuthGermany
- Bayreuth Center for Biochemistry & Molecular BiologyUniversität BayreuthBayreuthGermany
- North‐Bavarian NMR CenterUniversität BayreuthBayreuthGermany
| |
Collapse
|
31
|
Retinal Configuration of ppR Intermediates Revealed by Photoirradiation Solid-State NMR and DFT. Biophys J 2019; 115:72-83. [PMID: 29972813 DOI: 10.1016/j.bpj.2018.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/25/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
Pharanois phoborhodopsin (ppR) from Natronomonas pharaonis is a transmembrane photoreceptor protein involved in negative phototaxis. Structural changes in ppR triggered by photoisomerization of the retinal chromophore are transmitted to its cognate transducer protein (pHtrII) through a cyclic photoreaction pathway involving several photointermediates. This pathway is called the photocycle. It is important to understand the detailed configurational changes of retinal during the photocycle. We previously observed one of the photointermediates (M-intermediates) by in situ photoirradiation solid-state NMR experiments. In this study, we further observed the 13C cross-polarization magic-angle-spinning NMR signals of late photointermediates such as O- and N'-intermediates by illumination with green light (520 nm). Under blue-light (365 nm) irradiation of the M-intermediates, 13C cross-polarization magic-angle-spinning NMR signals of 14- and 20-13C-labeled retinal in the O-intermediate appeared at 115.4 and 16.4 ppm and were assigned to the 13-trans, 15-syn configuration. The signals caused by the N'-intermediate appeared at 115.4 and 23.9 ppm and were assigned to the 13-cis configuration, and they were in an equilibrium state with the O-intermediate during thermal decay of the M-intermediates at -60°C. Thus, photoirradiation NMR studies revealed the photoreaction pathways from the M- to O-intermediates and the equilibrium state between the N'- and O-intermediate. Further, we evaluated the detailed retinal configurations in the O- and N'-intermediates by performing a density functional theory chemical shift calculation. The results showed that the N'-intermediate has a 63° twisted retinal state due to the 13-cis configuration. The retinal configurations of the O- and N'-intermediates were determined to be 13-trans, 15-syn, and 13-cis, respectively, based on the chemical shift values of [20-13C] and [14-13C] retinal obtained by photoirradiation solid-state NMR and density functional theory calculation.
Collapse
|
32
|
Yamanashi T, Maki M, Kojima K, Shibukawa A, Tsukamoto T, Chowdhury S, Yamanaka A, Takagi S, Sudo Y. Quantitation of the neural silencing activity of anion channelrhodopsins in Caenorhabditis elegans and their applicability for long-term illumination. Sci Rep 2019; 9:7863. [PMID: 31133660 PMCID: PMC6536681 DOI: 10.1038/s41598-019-44308-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/14/2019] [Indexed: 11/15/2022] Open
Abstract
Ion pumps and channels are responsible for a wide variety of biological functions. Ion pumps transport only one ion during each stimulus-dependent reaction cycle, whereas ion channels conduct a large number of ions during each cycle. Ion pumping rhodopsins such as archaerhodopsin-3 (Arch) are often utilized as light-dependent neural silencers in animals, but they require a high-density light illumination of around 1 mW/mm2. Recently, anion channelrhodopsins -1 and -2 (GtACR1 and GtACR2) were discovered as light-gated anion channels from the cryptophyte algae Guillardia theta. GtACRs are therefore expected to silence neural activity much more efficiently than Arch. In this study, we successfully expressed GtACRs in neurons of the nematode Caenorhabditis elegans (C. elegans) and quantitatively evaluated how potently GtACRs can silence neurons in freely moving C. elegans. The results showed that the light intensity required for GtACRs to cause locomotion paralysis was around 1 µW/mm2, which is three orders of magnitude smaller than the light intensity required for Arch. As attractive features, GtACRs are less harmfulness to worms and allow stable neural silencing effects under long-term illumination. Our findings thus demonstrate that GtACRs possess a hypersensitive neural silencing activity in C. elegans and are promising tools for long-term neural silencing.
Collapse
Affiliation(s)
- Taro Yamanashi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Misayo Maki
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Atsushi Shibukawa
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Takashi Tsukamoto
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.,Faculty of Advanced Life Science and Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, 060-0810, Japan
| | - Srikanta Chowdhury
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Shin Takagi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
33
|
Red-shifting mutation of light-driven sodium-pump rhodopsin. Nat Commun 2019; 10:1993. [PMID: 31040285 PMCID: PMC6491443 DOI: 10.1038/s41467-019-10000-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/12/2019] [Indexed: 11/08/2022] Open
Abstract
Microbial rhodopsins are photoreceptive membrane proteins that transport various ions using light energy. While they are widely used in optogenetics to optically control neuronal activity, rhodopsins that function with longer-wavelength light are highly demanded because of their low phototoxicity and high tissue penetration. Here, we achieve a 40-nm red-shift in the absorption wavelength of a sodium-pump rhodopsin (KR2) by altering dipole moment of residues around the retinal chromophore (KR2 P219T/S254A) without impairing its ion-transport activity. Structural differences in the chromophore of the red-shifted protein from that of the wildtype are observed by Fourier transform infrared spectroscopy. QM/MM models generated with an automated protocol show that the changes in the electrostatic interaction between protein and chromophore induced by the amino-acid replacements, lowered the energy gap between the ground and the first electronically excited state. Based on these insights, a natural sodium pump with red-shifted absorption is identified from Jannaschia seosinensis. Microbial rhodopsins are photoreceptive and widely used in optogenetics for which they should preferable function with longer-wavelength light. Here, authors achieve a 40-nm red-shift in the absorption wavelength of a sodium-pump rhodopsin (KR2) by altering the distribution of the retinal chromophore.
Collapse
|
34
|
Chen JL, Lin YC, Fu HY, Yang CS. The Blue-Green Sensory Rhodopsin SRM from Haloarcula marismortui Attenuates Both Phototactic Responses Mediated by Sensory Rhodopsin I and II in Halobacterium salinarum. Sci Rep 2019; 9:5672. [PMID: 30952934 PMCID: PMC6450946 DOI: 10.1038/s41598-019-42193-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/25/2019] [Indexed: 11/10/2022] Open
Abstract
Haloarchaea utilize various microbial rhodopsins to harvest light energy or to mediate phototaxis in search of optimal environmental niches. To date, only the red light-sensing sensory rhodopsin I (SRI) and the blue light-sensing sensory rhodopsin II (SRII) have been shown to mediate positive and negative phototaxis, respectively. In this work, we demonstrated that a blue-green light-sensing (504 nm) sensory rhodopsin from Haloarcula marismortui, SRM, attenuated both positive and negative phototaxis through its sensing region. The H. marismortui genome encodes three sensory rhodopsins: SRI, SRII and SRM. Using spectroscopic assays, we first demonstrated the interaction between SRM and its cognate transducer, HtrM. We then transformed an SRM-HtrM fusion protein into Halobacterium salinarum, which contains only SRI and SRII, and observed that SRM-HtrM fusion protein decreased both positive and negative phototaxis of H. salinarum. Together, our results suggested a novel phototaxis signalling system in H. marismortui comprised of three sensory rhodopsins in which the phototactic response of SRI and SRII were attenuated by SRM.
Collapse
Affiliation(s)
- Jheng-Liang Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan
| | - Yu-Cheng Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan
| | - Hsu-Yuan Fu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan.
| |
Collapse
|
35
|
Naito A, Makino Y, Shigeta A, Kawamura I. Photoreaction pathways and photointermediates of retinal-binding photoreceptor proteins as revealed by in situ photoirradiation solid-state NMR spectroscopy. Biophys Rev 2019; 11:167-181. [PMID: 30811009 DOI: 10.1007/s12551-019-00501-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
Photoirradiation solid-state NMR spectroscopy is a powerful means to study photoreceptor retinal-binding proteins by the detection of short-lived photointermediates to elucidate the photoreaction cycle and photoactivated structural changes. An in situ photoirradiation solid-state NMR apparatus has been developed for the irradiation of samples with extremely high efficiency to enable observation of photointermediates which are stationary trapped states. Such observation enables elucidation of the photoreaction processes of photoreceptor membrane proteins. Therefore, in situ photoirradiation is particularly useful study the photocycle of retinal-binding proteins such as sensory rhodopsin I (SRI) and sensory rhodopsin II (SRII) because functional photointermediates have relatively longer half-lives than other photointermediates. As a result, several photointermediates have been trapped as stationary state and their detailed structures and photoreaction cycles have been revealed using photoirradiation solid-state NMR spectroscopy at low temperature. Photoreaction intermediates of bacteriorhodopsin, which functions to provide light-driven proton pump activity, were difficult to trap because the half-lives of the photointermediates were shorter than those of sensory rhodopsin. Therefore, these photointermediates are trapped in a freeze-trapped state at a very low temperature and the NMR signals were observed using a combination of photoirradiation and dynamic nuclear polarization (DNP) experiments.
Collapse
Affiliation(s)
- Akira Naito
- Graduate School of Engineering, Yokohama National University, Yokohama, 240-8501, Japan.
| | - Yoshiteru Makino
- Graduate School of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Arisu Shigeta
- Graduate School of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| |
Collapse
|
36
|
Kaneko A, Inoue K, Kojima K, Kandori H, Sudo Y. Conversion of microbial rhodopsins: insights into functionally essential elements and rational protein engineering. Biophys Rev 2017; 9:861-876. [PMID: 29178082 DOI: 10.1007/s12551-017-0335-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/07/2017] [Indexed: 01/16/2023] Open
Abstract
Technological progress has enabled the successful application of functional conversion to a variety of biological molecules, such as nucleotides and proteins. Such studies have revealed the functionally essential elements of these engineered molecules, which are difficult to characterize at the level of an individual molecule. The functional conversion of biological molecules has also provided a strategy for their rational and atomistic design. The engineered molecules can be used in studies to improve our understanding of their biological functions and to develop protein-based tools. In this review, we introduce the functional conversion of membrane-embedded photoreceptive retinylidene proteins (also called rhodopsins) and discuss these proteins mainly on the basis of results obtained from our own studies. This information provides insights into the molecular mechanism of light-induced protein functions and their use in optogenetics, a technology which involves the use of light to control biological activities.
Collapse
Affiliation(s)
- Akimasa Kaneko
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Yuki Sudo
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
37
|
Few-cycle pulse generation from noncollinear optical parametric amplifier with static dispersion compensation. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Jaubert M, Bouly JP, Ribera d'Alcalà M, Falciatore A. Light sensing and responses in marine microalgae. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:70-77. [PMID: 28456112 DOI: 10.1016/j.pbi.2017.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/13/2017] [Indexed: 06/07/2023]
Abstract
Marine eukaryotic phytoplankton are major contributors to global primary production. To adapt and thrive in the oceans, phytoplankton relies on a variety of light-regulated responses and light-acclimation capacities probably driven by sophisticated photoregulatory mechanisms. A plethora of photoreceptor-like sequences from marine microalgae have been identified in omics approaches. Initial studies have revealed that some algal photoreceptors are similar to those known in plants. In addition, new variants with different spectral tuning and algal-specific light sensors have also been found, changing current views and perspectives on how photoreceptor structure and function have diversified in phototrophs experiencing different environmental conditions.
Collapse
Affiliation(s)
- Marianne Jaubert
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 4, Place de Jussieu, 75005 Paris, France
| | - Jean-Pierre Bouly
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 4, Place de Jussieu, 75005 Paris, France
| | - Maurizio Ribera d'Alcalà
- Stazione Zoologica Anton Dohrn, Laboratory of Ecology and Evolution of Plankton, Villa Comunale, 80121 Naples, Italy.
| | - Angela Falciatore
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 4, Place de Jussieu, 75005 Paris, France.
| |
Collapse
|
39
|
Niho A, Yoshizawa S, Tsukamoto T, Kurihara M, Tahara S, Nakajima Y, Mizuno M, Kuramochi H, Tahara T, Mizutani Y, Sudo Y. Demonstration of a Light-Driven SO42– Transporter and Its Spectroscopic Characteristics. J Am Chem Soc 2017; 139:4376-4389. [DOI: 10.1021/jacs.6b12139] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Akiko Niho
- Faculty
of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Susumu Yoshizawa
- Atmosphere
and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Takashi Tsukamoto
- Faculty
of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
- Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Marie Kurihara
- Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Shinya Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yu Nakajima
- Atmosphere
and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Misao Mizuno
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hikaru Kuramochi
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yasuhisa Mizutani
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuki Sudo
- Faculty
of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
- Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
40
|
Tsukamoto T, Yoshizawa S, Kikukawa T, Demura M, Sudo Y. Implications for the Light-Driven Chloride Ion Transport Mechanism of Nonlabens marinus Rhodopsin 3 by Its Photochemical Characteristics. J Phys Chem B 2017; 121:2027-2038. [PMID: 28194973 DOI: 10.1021/acs.jpcb.6b11101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several new retinal-based photoreceptor proteins that act as light-driven electrogenic halide ion pumps have recently been discovered. Some of them, called "NTQ" rhodopsins, contain a conserved Asn-Thr-Gln motif in the third or C-helix. In this study, we investigated the photochemical characteristics of an NTQ rhodopsin, Nonlabens marinus rhodopsin 3 (NM-R3), which was discovered in the N. marinus S1-08T strain, using static and time-resolved spectroscopic techniques. We demonstrate that NM-R3 binds a Cl- in the vicinity of the retinal chromophore accompanied by a spectral blueshift from 568 nm in the absence of Cl- to 534 nm in the presence of Cl-. From the Cl- concentration dependence, we estimated the affinity (dissociation constant, Kd) for Cl- in the original state as 24 mM, which is ca. 10 times weaker than that of archaeal halorhodopsins but ca. 3 times stronger than that of a marine bacterial Cl- pumping rhodopsin (C1R). NM-R3 showed no dark-light adaptation of the retinal chromophore and predominantly possessed an all-trans-retinal, which is responsible for the light-driven Cl- pump function. Flash-photolysis experiments suggest that NM-R3 passes through five or six photochemically distinct intermediates (K, L(N), O1, O2, and NM-R3'). From these results, we assume that the Cl- is released and taken up during the L(N)-O1 transition from a transiently formed cytoplasmic (CP) binding site and the O2-NM-R3' or the NM-R3'-original NM-R3 transitions from the extracellular (EC) side, respectively. We propose a mechanism for the Cl- transport by NM-R3 based on our results and its recently reported crystal structure.
Collapse
Affiliation(s)
- Takashi Tsukamoto
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University , 700-8530 Okayama, Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo , Chiba 277-8564, Japan
| | | | | | - Yuki Sudo
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University , 700-8530 Okayama, Japan
| |
Collapse
|
41
|
Ishchenko A, Round E, Borshchevskiy V, Grudinin S, Gushchin I, Klare JP, Remeeva A, Polovinkin V, Utrobin P, Balandin T, Engelhard M, Büldt G, Gordeliy V. New Insights on Signal Propagation by Sensory Rhodopsin II/Transducer Complex. Sci Rep 2017; 7:41811. [PMID: 28165484 PMCID: PMC5292967 DOI: 10.1038/srep41811] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/01/2016] [Indexed: 01/29/2023] Open
Abstract
The complex of two membrane proteins, sensory rhodopsin II (NpSRII) with its cognate transducer (NpHtrII), mediates negative phototaxis in halobacteria N. pharaonis. Upon light activation NpSRII triggers a signal transduction chain homologous to the two-component system in eubacterial chemotaxis. Here we report on crystal structures of the ground and active M-state of the complex in the space group I212121. We demonstrate that the relative orientation of symmetrical parts of the dimer is parallel (“U”-shaped) contrary to the gusset-like (“V”-shaped) form of the previously reported structures of the NpSRII/NpHtrII complex in the space group P21212, although the structures of the monomers taken individually are nearly the same. Computer modeling of the HAMP domain in the obtained “V”- and “U”-shaped structures revealed that only the “U”-shaped conformation allows for tight interactions of the receptor with the HAMP domain. This is in line with existing data and supports biological relevance of the “U” shape in the ground state. We suggest that the “V”-shaped structure may correspond to the active state of the complex and transition from the “U” to the “V”-shape of the receptor-transducer complex can be involved in signal transduction from the receptor to the signaling domain of NpHtrII.
Collapse
Affiliation(s)
- A Ishchenko
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institute of Crystallography, University of Aachen (RWTH), Jägerstraße 17-19, 52056 Aachen, Germany
| | - E Round
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, F-38000 Grenoble, France
| | - V Borshchevskiy
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| | - S Grudinin
- CNRS, Laboratoire Jean Kuntzmann, BP 53, Grenoble Cedex 9, France.,NANO-D, INRIA Grenoble-Rhone-Alpes Research Center, 38334 Saint Ismier Cedex, Montbonnot, France
| | - I Gushchin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, F-38000 Grenoble, France.,Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| | - J P Klare
- Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany.,Department of Physics, University of Osnabrück, Barbarastrasse 7, D-49069 Osnabrück, Germany
| | - A Remeeva
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany
| | - V Polovinkin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, F-38000 Grenoble, France
| | - P Utrobin
- Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| | - T Balandin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany
| | - M Engelhard
- Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - G Büldt
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| | - V Gordeliy
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institute of Crystallography, University of Aachen (RWTH), Jägerstraße 17-19, 52056 Aachen, Germany.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, F-38000 Grenoble, France.,Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| |
Collapse
|
42
|
Ganapathy S, Venselaar H, Chen Q, de Groot HJM, Hellingwerf KJ, de Grip WJ. Retinal-Based Proton Pumping in the Near Infrared. J Am Chem Soc 2017; 139:2338-2344. [PMID: 28094925 PMCID: PMC5342321 DOI: 10.1021/jacs.6b11366] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Proteorhodopsin (PR) and Gloeobacter rhodopsin (GR) are retinal-based light-driven proton pumps that absorb visible light (maxima at 520-540 nm). Shifting the action spectra of these proton pumps beyond 700 nm would generate new prospects in optogenetics, membrane sensor technology, and complementation of oxygenic phototrophy. We therefore investigated the effect of red-shifting analogues of retinal, combined with red-shifting mutations, on the spectral properties and pump activity of the resulting pigments. We investigated a variety of analogues, including many novel ones. One of the novel analogues we tested, 3-methylamino-16-nor-1,2,3,4-didehydroretinal (MMAR), produced exciting results. This analogue red-shifted all of the rhodopsin variants tested, accompanied by a strong broadening of the absorbance band, tailing out to 850-950 nm. In particular, MMAR showed a strong synergistic effect with the PR-D212N,F234S double mutant, inducing an astonishing 200 nm red shift in the absorbance maximum. To our knowledge, this is by far the largest red shift reported for any retinal protein. Very importantly, all MMAR-containing holoproteins are the first rhodopsins retaining significant pump activity under near-infrared illumination (730 nm light-emitting diode). Such MMAR-based rhodopsin variants present very promising opportunities for further synthetic biology modification and for a variety of biotechnological and biophysical applications.
Collapse
Affiliation(s)
- Srividya Ganapathy
- Leiden Institute of Chemistry, Leiden University , 2333 CC Leiden, The Netherlands
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center , 6500 HB Nijmegen, The Netherlands
| | - Que Chen
- Swammerdam Institute for Life Sciences, University of Amsterdam , 1090 GE Amsterdam, The Netherlands
| | - Huub J M de Groot
- Leiden Institute of Chemistry, Leiden University , 2333 CC Leiden, The Netherlands
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam , 1090 GE Amsterdam, The Netherlands
| | - Willem J de Grip
- Leiden Institute of Chemistry, Leiden University , 2333 CC Leiden, The Netherlands
| |
Collapse
|
43
|
An inhibitory role of Arg-84 in anion channelrhodopsin-2 expressed in Escherichia coli. Sci Rep 2017; 7:41879. [PMID: 28150799 PMCID: PMC5288786 DOI: 10.1038/srep41879] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022] Open
Abstract
Anion channelrhodopsin-2 (ACR2) was recently identified from the cryptophyte algae Guillardia theta and has become a focus of interest in part because of its novel light-gated anion channel activity and its extremely high neural silencing activity. In this study, we tried to express ACR2 in Escherichia coli cells as a recombinant protein. The E. coli cells expressing ACR2 showed an increase in pH upon blue-light illumination in the presence of monovalent anions and the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), indicating an inward anion channel activity. Then, taking advantage of the E. coli expression system, we performed alanine-scanning mutagenesis on conserved basic amino acid residues. One of them, R84A, showed strong signals compared with the wild-type, indicating an inhibitory role of R84 on Cl− transportation. The signal was strongly enhanced in R84E, whereas R84K was less effective than the wild-type (i.e., R84). These results suggest that the positive charge at position 84 is critical for the inhibition. Thus we succeeded in functional expression of ACR2 in E. coli and found the inhibitory role of R84 during the anion transportation.
Collapse
|
44
|
Shigeta A, Ito S, Inoue K, Okitsu T, Wada A, Kandori H, Kawamura I. Solid-State Nuclear Magnetic Resonance Structural Study of the Retinal-Binding Pocket in Sodium Ion Pump Rhodopsin. Biochemistry 2017; 56:543-550. [PMID: 28040890 DOI: 10.1021/acs.biochem.6b00999] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The recently identified Krokinobacter rhodopsin 2 (KR2) functions as a light-driven sodium ion pump. The structure of the retinal-binding pocket of KR2 offers important insights into the mechanisms of KR2, which has motif of Asn112, Asp116, and Gln123 (NDQ) that is common among sodium ion pump rhodopsins but is unique among other microbial rhodopsins. Here we present solid-state nuclear magnetic resonance (NMR) characterization of retinal and functionally important residues in the vicinity of retinal in the ground state. We assigned chemical shifts of retinal C14 and C20 atoms, and Tyr218Cζ, Lys255Cε, and the protonated Schiff base of KR2 in lipid environments at acidic and neutral pH. 15N NMR signals of the protonated Schiff base showed a twist around the N-Cε bond under neutral conditions, compared with other microbial rhodopsins. These data indicated that the location of the counterion Asp116 is one helical pitch toward the cytoplasmic side. In acidic environments, the 15N Schiff base signal was shifted to a lower field, indicating that protonation of Asp116 induces reorientation during interactions between the Schiff base and Asp116. In addition, the Tyr218 residue in the vicinity of retinal formed a weak hydrogen bond with Asp251, a temporary Na+-binding site during the photocycle. These features may indicate unique mechanisms of sodium ion pumps.
Collapse
Affiliation(s)
- Arisu Shigeta
- Graduate School of Engineering, Yokohama National University , Hodogaya-ku, Yokohama 240-8501, Japan
| | - Shota Ito
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan.,PRESTO, Japan Science and Technology Agency (JST) , 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Takashi Okitsu
- Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University , Higashinada-ku, Kobe 658-8558, Japan
| | - Akimori Wada
- Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University , Higashinada-ku, Kobe 658-8558, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University , Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
45
|
Inoue K. The Study and Application of Photoreceptive Membrane Protein, Rhodopsin. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Iyer ESS, Misra R, Maity A, Liubashevski O, Sudo Y, Sheves M, Ruhman S. Temperature Independence of Ultrafast Photoisomerization in Thermophilic Rhodopsin: Assessment versus Other Microbial Proton Pumps. J Am Chem Soc 2016; 138:12401-7. [DOI: 10.1021/jacs.6b05002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Ramprasad Misra
- Department
of Organic Chemistry, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Arnab Maity
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Oleg Liubashevski
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Yuki Sudo
- Division
of Pharmaceutical sciences, Okayama University, Kita-Ku, Okayama 700-0082, Japan
| | - Mordechai Sheves
- Department
of Organic Chemistry, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sanford Ruhman
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|
47
|
Becker EA, Yao AI, Seitzer PM, Kind T, Wang T, Eigenheer R, Shao KSY, Yarov-Yarovoy V, Facciotti MT. A Large and Phylogenetically Diverse Class of Type 1 Opsins Lacking a Canonical Retinal Binding Site. PLoS One 2016; 11:e0156543. [PMID: 27327432 PMCID: PMC4915679 DOI: 10.1371/journal.pone.0156543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/19/2016] [Indexed: 11/24/2022] Open
Abstract
Opsins are photosensitive proteins catalyzing light-dependent processes across the tree of life. For both microbial (type 1) and metazoan (type 2) opsins, photosensing depends upon covalent interaction between a retinal chromophore and a conserved lysine residue. Despite recent discoveries of potential opsin homologs lacking this residue, phylogenetic dispersal and functional significance of these abnormal sequences have not yet been investigated. We report discovery of a large group of putatively non-retinal binding opsins, present in a number of fungal and microbial genomes and comprising nearly 30% of opsins in the Halobacteriacea, a model clade for opsin photobiology. We report phylogenetic analyses, structural modeling, genomic context analysis and biochemistry, to describe the evolutionary relationship of these recently described proteins with other opsins, show that they are expressed and do not bind retinal in a canonical manner. Given these data, we propose a hypothesis that these abnormal opsin homologs may represent a novel family of sensory opsins which may be involved in taxis response to one or more non-light stimuli. If true, this finding would challenge our current understanding of microbial opsins as a light-specific sensory family, and provides a potential analogy with the highly diverse signaling capabilities of the eukaryotic G-protein coupled receptors (GPCRs), of which metazoan type 2 opsins are a light-specific sub-clade.
Collapse
Affiliation(s)
- Erin A. Becker
- Genome Center, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
- Microbiology Graduate Group, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
| | - Andrew I. Yao
- Genome Center, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
- Department of Biomedical Engineering, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
| | - Phillip M. Seitzer
- Genome Center, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
- Department of Biomedical Engineering, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
- Proteome Software, 1340 SW Bertha Blvd., Portland, Oregon, United States of America
| | - Tobias Kind
- Genome Center, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
| | - Ting Wang
- Genome Center, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
| | - Rich Eigenheer
- California Department of Food and Agriculture, 1220 N St., Sacramento, CA, 95814, United States of America
| | - Katie S. Y. Shao
- William’s College, 880 Main St., Williamstown, MA, 01267, United States of America
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
| | - Marc T. Facciotti
- Genome Center, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
- Microbiology Graduate Group, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
- Department of Biomedical Engineering, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
| |
Collapse
|
48
|
Tsukamoto T, Mizutani K, Hasegawa T, Takahashi M, Honda N, Hashimoto N, Shimono K, Yamashita K, Yamamoto M, Miyauchi S, Takagi S, Hayashi S, Murata T, Sudo Y. X-ray Crystallographic Structure of Thermophilic Rhodopsin: IMPLICATIONS FOR HIGH THERMAL STABILITY AND OPTOGENETIC FUNCTION. J Biol Chem 2016; 291:12223-32. [PMID: 27129243 DOI: 10.1074/jbc.m116.719815] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 01/01/2023] Open
Abstract
Thermophilic rhodopsin (TR) is a photoreceptor protein with an extremely high thermal stability and the first characterized light-driven electrogenic proton pump derived from the extreme thermophile Thermus thermophilus JL-18. In this study, we confirmed its high thermal stability compared with other microbial rhodopsins and also report the potential availability of TR for optogenetics as a light-induced neural silencer. The x-ray crystal structure of TR revealed that its overall structure is quite similar to that of xanthorhodopsin, including the presence of a putative binding site for a carotenoid antenna; but several distinct structural characteristics of TR, including a decreased surface charge and a larger number of hydrophobic residues and aromatic-aromatic interactions, were also clarified. Based on the crystal structure, the structural changes of TR upon thermal stimulation were investigated by molecular dynamics simulations. The simulations revealed the presence of a thermally induced structural substate in which an increase of hydrophobic interactions in the extracellular domain, the movement of extracellular domains, the formation of a hydrogen bond, and the tilting of transmembrane helices were observed. From the computational and mutational analysis, we propose that an extracellular LPGG motif between helices F and G plays an important role in the thermal stability, acting as a "thermal sensor." These findings will be valuable for understanding retinal proteins with regard to high protein stability and high optogenetic performance.
Collapse
Affiliation(s)
- Takashi Tsukamoto
- From the Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Kenji Mizutani
- the Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan, the Molecular Chirality Research Center, Chiba University, Chiba 263-8522, Japan
| | - Taisuke Hasegawa
- the Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Megumi Takahashi
- the Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Naoya Honda
- From the Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Naoki Hashimoto
- the Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Kazumi Shimono
- the Faculty of Pharmaceutical Sciences, Toho University, Funabashi 274-8510, Japan, and
| | | | | | - Seiji Miyauchi
- the Faculty of Pharmaceutical Sciences, Toho University, Funabashi 274-8510, Japan, and
| | - Shin Takagi
- the Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Shigehiko Hayashi
- the Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takeshi Murata
- the Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan, the Molecular Chirality Research Center, Chiba University, Chiba 263-8522, Japan,
| | - Yuki Sudo
- From the Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan,
| |
Collapse
|
49
|
Sudo Y, Yoshizawa S. Functional and Photochemical Characterization of a Light-Driven Proton Pump from the Gammaproteobacterium Pantoea vagans. Photochem Photobiol 2016; 92:420-7. [PMID: 26970049 DOI: 10.1111/php.12585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 11/29/2022]
Abstract
Photoactive retinal proteins are widely distributed throughout the domains of the microbial world (i.e., bacteria, archaea, and eukarya). Here we describe three retinal proteins belonging to a phylogenetic clade with a unique DTG motif. Light-induced decrease in the environmental pH and its inhibition by carbonyl cyanide m-chlorophenylhydrazone revealed that these retinal proteins function as light-driven outward electrogenic proton pumps. We further characterized one of these proteins, Pantoea vagans rhodopsin (PvR), spectroscopically. Visible spectroscopy and high-performance liquid chromatography revealed that PvR has an absorption maximum at 538 nm with the retinal chromophore predominantly in the all-trans form (>90%) under both dark and light conditions. We estimated the pKa values of the protonated Schiff base of the retinal chromophore and its counterion as approximately 13.5 and 2.1, respectively, by using pH titration experiments, and the photochemical reaction cycle of PvR was measured by time-resolved flash-photolysis in the millisecond timeframe. We observed a blue-shifted and a red-shifted intermediate, which we assigned as M-like and O-like intermediates, respectively. Decay of the M-like intermediate was highly sensitive to environmental pH, suggesting that proton uptake is coupled to decay of the M-like intermediate. From these results, we propose a putative model for the photoreaction of PvR.
Collapse
Affiliation(s)
- Yuki Sudo
- Division of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| |
Collapse
|
50
|
Berbasova T, Santos EM, Nosrati M, Vasileiou C, Geiger JH, Borhan B. Light-Activated Reversible Imine Isomerization: Towards a Photochromic Protein Switch. Chembiochem 2016; 17:407-14. [PMID: 26684483 PMCID: PMC4835339 DOI: 10.1002/cbic.201500613] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 01/07/2023]
Abstract
Mutants of cellular retinoic acid-binding protein II (CRABPII), engineered to bind all-trans-retinal as an iminium species, demonstrate photochromism upon irradiation with light at different wavelengths. UV light irradiation populates the cis-imine geometry, which has a high pKa , leading to protonation of the imine and subsequent "turn-on" of color. Yellow light irradiation yields the trans-imine isomer, which has a depressed pKa , leading to loss of color because the imine is not protonated. The protein-bound retinylidene chromophore undergoes photoinduced reversible interconversion between the colored and uncolored species, with excellent fatigue resistance.
Collapse
Affiliation(s)
- Tetyana Berbasova
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Elizabeth M Santos
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Meisam Nosrati
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Chrysoula Vasileiou
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - James H Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|