1
|
Zhang B, Xu Y, Liu S, Chen S, Zhao W, Li Z, Wang J, Zhao W, Zhang H, Dong Y, Gong Y, Sheng W, Cao P. A High-Resolution Crystallographic Study of Cytochrome c6: Structural Basis for Electron Transfer in Cyanobacterial Photosynthesis. Int J Mol Sci 2025; 26:824. [PMID: 39859539 PMCID: PMC11765882 DOI: 10.3390/ijms26020824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Cyanobacterial cytochrome c6 (Cyt c6) is crucial for electron transfer between the cytochrome b6f complex and photosystem I (PSI), playing a key role in photosynthesis and enhancing adaptation to extreme environments. This study investigates the high-resolution crystal structures of Cyt c6 from Synechococcus elongatus PCC 7942 and Synechocystis PCC 6803, focusing on its dimerization mechanisms and functional implications for photosynthesis. Cyt c6 was expressed in Escherichia coli using a dual-plasmid co-expression system and characterized in both oxidized and reduced states. X-ray crystallography revealed three distinct crystal forms, with asymmetric units containing 2, 4, or 12 molecules, all of which consist of repeating dimeric structures. Structural comparisons across species indicated that dimerization predominantly occurs through hydrophobic interactions within a conserved motif around the heme crevice, despite notable variations in dimer positioning. We propose that the dimerization of Cyt c6 enhances structural stability, optimizes electron transfer kinetics, and protects the protein from oxidative damage. Furthermore, we used AlphaFold3 to predict the structure of the PSI-Cyt c6 complex, revealing specific interactions that may facilitate efficient electron transfer. These findings provide new insights into the functional role of Cyt c6 dimerization and its contribution to improving cyanobacterial photosynthetic electron transport.
Collapse
Affiliation(s)
- Botao Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; (B.Z.); (Y.X.); (S.L.); (S.C.); (W.Z.); (Z.L.); (J.W.); (W.Z.)
| | - Yuancong Xu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; (B.Z.); (Y.X.); (S.L.); (S.C.); (W.Z.); (Z.L.); (J.W.); (W.Z.)
| | - Shuwen Liu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; (B.Z.); (Y.X.); (S.L.); (S.C.); (W.Z.); (Z.L.); (J.W.); (W.Z.)
| | - Sixu Chen
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; (B.Z.); (Y.X.); (S.L.); (S.C.); (W.Z.); (Z.L.); (J.W.); (W.Z.)
| | - Wencong Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; (B.Z.); (Y.X.); (S.L.); (S.C.); (W.Z.); (Z.L.); (J.W.); (W.Z.)
| | - Zhaoyang Li
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; (B.Z.); (Y.X.); (S.L.); (S.C.); (W.Z.); (Z.L.); (J.W.); (W.Z.)
| | - Junshuai Wang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; (B.Z.); (Y.X.); (S.L.); (S.C.); (W.Z.); (Z.L.); (J.W.); (W.Z.)
| | - Weijian Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; (B.Z.); (Y.X.); (S.L.); (S.C.); (W.Z.); (Z.L.); (J.W.); (W.Z.)
| | - Heng Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (H.Z.); (Y.D.); (Y.G.)
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (H.Z.); (Y.D.); (Y.G.)
| | - Yong Gong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (H.Z.); (Y.D.); (Y.G.)
| | - Wang Sheng
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; (B.Z.); (Y.X.); (S.L.); (S.C.); (W.Z.); (Z.L.); (J.W.); (W.Z.)
| | - Peng Cao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; (B.Z.); (Y.X.); (S.L.); (S.C.); (W.Z.); (Z.L.); (J.W.); (W.Z.)
- Institute of Matter Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Sarewicz M, Szwalec M, Pintscher S, Indyka P, Rawski M, Pietras R, Mielecki B, Koziej Ł, Jaciuk M, Glatt S, Osyczka A. High-resolution cryo-EM structures of plant cytochrome b 6f at work. SCIENCE ADVANCES 2023; 9:eadd9688. [PMID: 36638176 PMCID: PMC9839326 DOI: 10.1126/sciadv.add9688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Plants use solar energy to power cellular metabolism. The oxidation of plastoquinol and reduction of plastocyanin by cytochrome b6f (Cyt b6f) is known as one of the key steps of photosynthesis, but the catalytic mechanism in the plastoquinone oxidation site (Qp) remains elusive. Here, we describe two high-resolution cryo-EM structures of the spinach Cyt b6f homodimer with endogenous plastoquinones and in complex with plastocyanin. Three plastoquinones are visible and line up one after another head to tail near Qp in both monomers, indicating the existence of a channel in each monomer. Therefore, quinones appear to flow through Cyt b6f in one direction, transiently exposing the redox-active ring of quinone during catalysis. Our work proposes an unprecedented one-way traffic model that explains efficient quinol oxidation during photosynthesis and respiration.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mateusz Szwalec
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Sebastian Pintscher
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
| | - Paulina Indyka
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
| | - Michał Rawski
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
| | - Rafał Pietras
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Bohun Mielecki
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Łukasz Koziej
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
| | - Marcin Jaciuk
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
| | - Sebastian Glatt
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
3
|
Zhang S, Zou B, Cao P, Su X, Xie F, Pan X, Li M. Structural insights into photosynthetic cyclic electron transport. MOLECULAR PLANT 2023; 16:187-205. [PMID: 36540023 DOI: 10.1016/j.molp.2022.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
During photosynthesis, light energy is utilized to drive sophisticated biochemical chains of electron transfers, converting solar energy into chemical energy that feeds most life on earth. Cyclic electron transfer/flow (CET/CEF) plays an essential role in efficient photosynthesis, as it balances the ATP/NADPH ratio required in various regulatory and metabolic pathways. Photosystem I, cytochrome b6f, and NADH dehydrogenase (NDH) are large multisubunit protein complexes embedded in the thylakoid membrane of the chloroplast and key players in NDH-dependent CEF pathway. Furthermore, small mobile electron carriers serve as shuttles for electrons between these membrane protein complexes. Efficient electron transfer requires transient interactions between these electron donors and acceptors. Structural biology has been a powerful tool to advance our knowledge of this important biological process. A number of structures of the membrane-embedded complexes, soluble electron carrier proteins, and transient complexes composed of both have now been determined. These structural data reveal detailed interacting patterns of these electron donor-acceptor pairs, thus allowing us to visualize the different parts of the electron transfer process. This review summarizes the current state of structural knowledge of three membrane complexes and their interaction patterns with mobile electron carrier proteins.
Collapse
Affiliation(s)
- Shumeng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Baohua Zou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Peng Cao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Xiaodong Su
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fen Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Pan
- College of Life Science, Capital Normal University, Beijing, China
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Castell C, Rodríguez-Lumbreras LA, Hervás M, Fernández-Recio J, Navarro JA. New Insights into the Evolution of the Electron Transfer from Cytochrome f to Photosystem I in the Green and Red Branches of Photosynthetic Eukaryotes. PLANT & CELL PHYSIOLOGY 2021; 62:1082-1093. [PMID: 33772595 PMCID: PMC8557733 DOI: 10.1093/pcp/pcab044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/15/2021] [Indexed: 05/11/2023]
Abstract
In cyanobacteria and most green algae of the eukaryotic green lineage, the copper-protein plastocyanin (Pc) alternatively replaces the heme-protein cytochrome c6 (Cc6) as the soluble electron carrier from cytochrome f (Cf) to photosystem I (PSI). The functional and structural equivalence of 'green' Pc and Cc6 has been well established, representing an example of convergent evolution of two unrelated proteins. However, plants only produce Pc, despite having evolved from green algae. On the other hand, Cc6 is the only soluble donor available in most species of the red lineage of photosynthetic organisms, which includes, among others, red algae and diatoms. Interestingly, Pc genes have been identified in oceanic diatoms, probably acquired by horizontal gene transfer from green algae. However, the mechanisms that regulate the expression of a functional Pc in diatoms are still unclear. In the green eukaryotic lineage, the transfer of electrons from Cf to PSI has been characterized in depth. The conclusion is that in the green lineage, this process involves strong electrostatic interactions between partners, which ensure a high affinity and an efficient electron transfer (ET) at the cost of limiting the turnover of the process. In the red lineage, recent kinetic and structural modeling data suggest a different strategy, based on weaker electrostatic interactions between partners, with lower affinity and less efficient ET, but favoring instead the protein exchange and the turnover of the process. Finally, in diatoms the interaction of the acquired green-type Pc with both Cf and PSI may not yet be optimized.
Collapse
Affiliation(s)
- Carmen Castell
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, cicCartuja, Sevilla, Spain
| | - Luis A Rodríguez-Lumbreras
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC—Universidad de La Rioja—Gobierno de La Rioja, Logroño, Spain
| | - Manuel Hervás
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, cicCartuja, Sevilla, Spain
| | - Juan Fernández-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC—Universidad de La Rioja—Gobierno de La Rioja, Logroño, Spain
| | | |
Collapse
|
5
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
6
|
Kawakami T, Yu LJ, Liang T, Okazaki K, Madigan MT, Kimura Y, Wang-Otomo ZY. Crystal structure of a photosynthetic LH1-RC in complex with its electron donor HiPIP. Nat Commun 2021; 12:1104. [PMID: 33597527 PMCID: PMC7889895 DOI: 10.1038/s41467-021-21397-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/26/2021] [Indexed: 11/12/2022] Open
Abstract
Photosynthetic electron transfers occur through multiple components ranging from small soluble proteins to large integral membrane protein complexes. Co-crystallization of a bacterial photosynthetic electron transfer complex that employs weak hydrophobic interactions was achieved by using high-molar-ratio mixtures of a soluble donor protein (high-potential iron-sulfur protein, HiPIP) with a membrane-embedded acceptor protein (reaction center, RC) at acidic pH. The structure of the co-complex offers a snapshot of a transient bioenergetic event and revealed a molecular basis for thermodynamically unfavorable interprotein electron tunneling. HiPIP binds to the surface of the tetraheme cytochrome subunit in the light-harvesting (LH1) complex-associated RC in close proximity to the low-potential heme-1 group. The binding interface between the two proteins is primarily formed by uncharged residues and is characterized by hydrophobic features. This co-crystal structure provides a model for the detailed study of long-range trans-protein electron tunneling pathways in biological systems. The high potential iron-sulfur (HiPIP) proteins are direct electron donors to the light-harvesting-reaction center complexes (LH1-RC) in photosynthetic β- and γ-Proteobacteria. Here, the authors present the 2.9 Å crystal structure of the HiPIP-bound LH1-RC complex from the thermophilic purple sulfur bacterium Thermochromatium tepidum and discuss mechanistic implications for the electron transfer pathway.
Collapse
Affiliation(s)
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | - Tai Liang
- Faculty of Science, Ibaraki University, Mito, Japan
| | | | - Michael T Madigan
- Department of Microbiology, Southern Illinois University, Carbondale, IL, USA
| | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, Japan.
| | | |
Collapse
|
7
|
Pérez-Mejías G, Olloqui-Sariego JL, Guerra-Castellano A, Díaz-Quintana A, Calvente JJ, Andreu R, De la Rosa MA, Díaz-Moreno I. Physical contact between cytochrome c1 and cytochrome c increases the driving force for electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148277. [DOI: 10.1016/j.bbabio.2020.148277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023]
|
8
|
Falke S, Feiler C, Chapman H, Sarrou I. Crystal structures of native cytochrome c 6 from Thermosynechococcus elongatus in two different space groups and implications for its oligomerization. Acta Crystallogr F Struct Biol Commun 2020; 76:444-452. [PMID: 32880593 PMCID: PMC7470040 DOI: 10.1107/s2053230x20010249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/23/2020] [Indexed: 11/10/2022] Open
Abstract
Native cytochrome c6 was purified from an extract of strain BP-1 of the thermophilic cyanobacterium Thermosynechococcus elongatus. The protein was crystallized, and with only slight modifications of the buffer and vapour-diffusion conditions two different space groups were observed, namely H3 and C2. Both crystal structures were solved; they contained three and six molecules per asymmetric unit and were refined to 1.7 and 2.25 Å resolution, respectively. To date, the structure of native cytochrome c6 from T. elongatus has only been reported as a monomer using NMR spectroscopy, i.e. without addressing putative oligomerization, and related structures have only previously been solved using X-ray crystallography after recombinant gene overexpression in Escherichia coli. The reported space groups of related cyanobacterial cytochrome c6 structures differ from those reported here. Interestingly, the protein-protein interfaces that were observed utilizing X-ray crystallography could also explain homo-oligomerization in solution; specifically, trimerization is indicated by infra-red dynamic light scattering and blue native gel electrophoresis in solution. Trimers were also detected by mass spectrometry. Furthermore, there is an indication of post-translational methylation in the crystal structure. Additionally, the possibility of modifying the crystal size and the redox activity in the context of photosynthesis is shaping the investigated cytochrome as a highly suitable model protein for advanced serial crystallography at highly brilliant X-ray free-electron laser sources.
Collapse
Affiliation(s)
- Sven Falke
- Institute for Biochemistry and Molecular Biology, University of Hamburg, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | - Christian Feiler
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Henry Chapman
- Center for Free-Electron Laser Science, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Iosifina Sarrou
- Center for Free-Electron Laser Science, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
9
|
Zuccarello L, Berthomieu C, Boussac A, Brubach JB, Díaz-Moreno I, Díaz Quintana AJ, Hienerwadel R. Protonation of the Cysteine Axial Ligand Investigated in His/Cys c-Type Cytochrome by UV-Vis and Mid- and Far-IR Spectroscopy. J Phys Chem Lett 2020; 11:4198-4205. [PMID: 32364390 DOI: 10.1021/acs.jpclett.0c01016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
His/Cys coordination was recently found in several c-type cytochromes, which could act as sensors, in electron transport or in regulation. Toward a better understanding of Cys function and reactivity in these cytochromes, we compare cytochrome c6 (c6wt) from the cyanobacterium Nostoc PCC 7120 with its Met58Cys mutant. We probe the axial ligands and heme properties by combining visible and mid- to far-FTIR difference spectroscopies. Cys58 determines the strong negative redox potential and pH dependence of M58C (EmM58C = -375 mV, versus Emc6wt = +339 mV). Mid-IR (notably Cys ν(SH), His ν(C5N1), heme δ(CmH)) and far-IR (ν(Fe(II)-His), ν(His-Fe(III)-Cys)) markers of the heme and ligands show that Cys58 remains a strong thiolate ligand of reduced Met58Cys at alkaline pH, while it is protonated at pH 7.5, is stabilized by a strong hydrogen bonding interaction, and weakly interacts with Fe(II). These data provide a benchmark for further analysis of c-type cytochromes with natural His/Cys coordination.
Collapse
Affiliation(s)
- Lidia Zuccarello
- CEA, CNRS, Aix Marseille Univ., BIAM, Interactions Protéine Métal UMR 7265, 13108 Saint Paul-Lez-Durance, France
- Aix Marseille Univ., CEA, CNRS, BIAM, Luminy Genetics and Biophysic of Plants, UMR 7265, 13288 Marseille Cedex, France
| | - Catherine Berthomieu
- CEA, CNRS, Aix Marseille Univ., BIAM, Interactions Protéine Métal UMR 7265, 13108 Saint Paul-Lez-Durance, France
| | - Alain Boussac
- I2BC, UMR CNRS 9198, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Jean-Blaise Brubach
- Synchrotron SOLEIL, AILES Beamline, L'Orme des Merisier, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Antonio J Díaz Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Rainer Hienerwadel
- Aix Marseille Univ., CEA, CNRS, BIAM, Luminy Genetics and Biophysic of Plants, UMR 7265, 13288 Marseille Cedex, France
| |
Collapse
|
10
|
Pérez-Mejías G, Guerra-Castellano A, Díaz-Quintana A, De la Rosa MA, Díaz-Moreno I. Cytochrome c: Surfing Off of the Mitochondrial Membrane on the Tops of Complexes III and IV. Comput Struct Biotechnol J 2019; 17:654-660. [PMID: 31193759 PMCID: PMC6542325 DOI: 10.1016/j.csbj.2019.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 11/30/2022] Open
Abstract
The proper arrangement of protein components within the respiratory electron transport chain is nowadays a matter of intense debate, since altering it leads to cell aging and other related pathologies. Here, we discuss three current views—the so-called solid, fluid and plasticity models—which describe the organization of the main membrane-embedded mitochondrial protein complexes and the key elements that regulate and/or facilitate supercomplex assembly. The soluble electron carrier cytochrome c has recently emerged as an essential factor in the assembly and function of respiratory supercomplexes. In fact, a ‘restricted diffusion pathway’ mechanism for electron transfer between complexes III and IV has been proposed based on the secondary, distal binding sites for cytochrome c at its two membrane partners recently discovered. This channeling pathway facilitates the surfing of cytochrome c on both respiratory complexes, thereby tuning the efficiency of oxidative phosphorylation and diminishing the production of reactive oxygen species. The well-documented post-translational modifications of cytochrome c could further contribute to the rapid adjustment of electron flow in response to changing cellular conditions.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mejías
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Alejandra Guerra-Castellano
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Miguel A De la Rosa
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| |
Collapse
|
11
|
Foerster J, Poehner I, Ullmann GM. MCMap-A Computational Tool for Mapping Energy Landscapes of Transient Protein-Protein Interactions. ACS OMEGA 2018; 3:6465-6475. [PMID: 31458826 PMCID: PMC6644659 DOI: 10.1021/acsomega.8b00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/22/2018] [Indexed: 06/10/2023]
Abstract
MCMap is a tool particularly well-suited for analyzing energy landscapes of transient macromolecular complexes. The program applies a Monte Carlo strategy, where the ligand moves randomly in the electrostatic field of the receptor. By applying importance sampling, the major interaction sites are mapped, resulting in a global distribution of ligand-receptor complexes. This approach displays the dynamic character of transiently interacting protein complexes where not a single complex but an ensemble of complexes better describes the protein interactions. The software provides a broad range of analysis options which allow for relating the simulations to experimental data and for interpreting them on a structural level. The application of MCMap is exemplified by the electron-transfer complex of cytochrome c peroxidase and cytochrome c from baker's yeast. The functionality of MCMap and the visualization of simulation data are in particular demonstrated by studying the dependence of the association on ionic strength and on the oxidation state of the binding partner. Furthermore, microscopically, a repulsion of a second ligand can be seen in the ternary complex upon the change of the oxidation state of the bound cytochrome c. The software is made available as open source software together with the example and can be downloaded free of charge from http://www.bisb.uni-bayreuth.de/index.php?page=downloads.
Collapse
|
12
|
González-Arzola K, Díaz-Quintana A, Rivero-Rodríguez F, Velázquez-Campoy A, De la Rosa MA, Díaz-Moreno I. Histone chaperone activity of Arabidopsis thaliana NRP1 is blocked by cytochrome c. Nucleic Acids Res 2017; 45:2150-2165. [PMID: 27924001 PMCID: PMC5389710 DOI: 10.1093/nar/gkw1215] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
Higher-order plants and mammals use similar mechanisms to repair and tolerate oxidative DNA damage. Most studies on the DNA repair process have focused on yeast and mammals, in which histone chaperone-mediated nucleosome disassembly/reassembly is essential for DNA to be accessible to repair machinery. However, little is known about the specific role and modulation of histone chaperones in the context of DNA damage in plants. Here, the histone chaperone NRP1, which is closely related to human SET/TAF-Iβ, was found to exhibit nucleosome assembly activity in vitro and to accumulate in the chromatin of Arabidopsis thaliana after DNA breaks. In addition, this work establishes that NRP1 binds to cytochrome c, thereby preventing the former from binding to histones. Since NRP1 interacts with cytochrome c at its earmuff domain, that is, its histone-binding domain, cytochrome c thus competes with core histones and hampers the activity of NRP1 as a histone chaperone. Altogether, the results obtained indicate that the underlying molecular mechanisms in nucleosome disassembly/reassembly are highly conserved throughout evolution, as inferred from the similar inhibition of plant NRP1 and human SET/TAF-Iβ by cytochrome c during DNA damage response.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Antonio Díaz-Quintana
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Francisco Rivero-Rodríguez
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Adrián Velázquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit Institute of Physical Chemistry Rocasolano (IQFR)-BIFI-Spanish National Research Council (CSIC), University of Zaragoza, Mariano Esquillor s/n, 50018 Zaragoza, Spain.,Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); and Aragon Agency for Research and Development (ARAID), Regional Government of Aragon, Maria de Luna 11, 50018 Zaragoza, Spain
| | - Miguel A De la Rosa
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Irene Díaz-Moreno
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
13
|
Motomura T, Suga M, Hienerwadel R, Nakagawa A, Lai TL, Nitschke W, Kuma T, Sugiura M, Boussac A, Shen JR. Crystal structure and redox properties of a novel cyanobacterial heme protein with a His/Cys heme axial ligation and a Per-Arnt-Sim (PAS)-like domain. J Biol Chem 2017; 292:9599-9612. [PMID: 28428249 DOI: 10.1074/jbc.m116.746263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/17/2017] [Indexed: 01/05/2023] Open
Abstract
Photosystem II catalyzes light-induced water oxidation leading to the generation of dioxygen indispensable for sustaining aerobic life on Earth. The Photosystem II reaction center is composed of D1 and D2 proteins encoded by psbA and psbD genes, respectively. In cyanobacteria, different psbA genes are present in the genome. The thermophilic cyanobacterium Thermosynechococcus elongatus contains three psbA genes: psbA1, psbA2, and psbA3, and a new c-type heme protein, Tll0287, was found to be expressed in a strain expressing the psbA2 gene only, but the structure and function of Tll0287 are unknown. Here we solved the crystal structure of Tll0287 at a 2.0 Å resolution. The overall structure of Tll0287 was found to be similar to some kinases and sensor proteins with a Per-Arnt-Sim-like domain rather than to other c-type cytochromes. The fifth and sixth axial ligands for the heme were Cys and His, instead of the His/Met or His/His ligand pairs observed for most of the c-type hemes. The redox potential, E½, of Tll0287 was -255 ± 20 mV versus normal hydrogen electrode at pH values above 7.5. Below this pH value, the E½ increased by ≈57 mV/pH unit at 15 °C, suggesting the involvement of a protonatable group with a pKred = 7.2 ± 0.3. Possible functions of Tll0287 as a redox sensor under microaerobic conditions or a cytochrome subunit of an H2S-oxidizing system are discussed in view of the environmental conditions in which psbA2 is expressed, as well as phylogenetic analysis, structural, and sequence homologies.
Collapse
Affiliation(s)
- Taiki Motomura
- From the Department of Picobiology, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan.,the Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Michihiro Suga
- the Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Rainer Hienerwadel
- the Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, CNRS-CEA-Aix-Marseille Université, Faculté des Sciences de Luminy, 13288 Marseille, France
| | - Akiko Nakagawa
- the Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.,the Proteo-Science Research Center, Ehime University, Ehime 790-8577, Japan
| | - Thanh-Lan Lai
- iBiTec-S, SB2SM, CNRS UMR 9198, CEA Saclay, 91191 Gif-sur-Yvette, France, and
| | - Wolfgang Nitschke
- the Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS UMR 7281, 13402 Marseille Cedex 20, France
| | - Takahiro Kuma
- the Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Miwa Sugiura
- the Proteo-Science Research Center, Ehime University, Ehime 790-8577, Japan
| | - Alain Boussac
- iBiTec-S, SB2SM, CNRS UMR 9198, CEA Saclay, 91191 Gif-sur-Yvette, France, and
| | - Jian-Ren Shen
- From the Department of Picobiology, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan, .,the Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
14
|
Electron transfer and docking between cytochrome cd 1 nitrite reductase and different redox partners — A comparative study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1412-1421. [DOI: 10.1016/j.bbabio.2016.04.279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/30/2016] [Accepted: 04/27/2016] [Indexed: 11/21/2022]
|
15
|
Veit S, Nagadoi A, Rögner M, Rexroth S, Stoll R, Ikegami T. The cyanobacterial cytochrome b6f subunit PetP adopts an SH3 fold in solution. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:705-14. [DOI: 10.1016/j.bbabio.2016.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/02/2016] [Accepted: 03/23/2016] [Indexed: 12/22/2022]
|
16
|
Abstract
Many biomolecular interactions proceed via lowly populated, transient intermediates. Believed to facilitate formation of a productive complex, these short-lived species are inaccessible to conventional biophysical and structural techniques and, until recently, could only be studied by theoretical simulations. Recent development of experimental approaches sensitive to the presence of minor species--in particular paramagnetic relaxation enhancement (PRE) NMR spectroscopy--has enabled direct visualization and detailed characterization of such lowly populated states. Collectively referred to as an encounter complex, the binding intermediates are particularly important in transient protein interactions, such as those orchestrating signaling cascades or energy-generating electron transfer (ET) chains. Here I discuss encounter complexes of redox proteins mediating biological ET reactions, which are essential for many vital cellular activities including oxidative phosphorylation and photosynthesis. In particular, this Account focuses on the complex of cytochrome c (Cc) and cytochrome c peroxidase (CcP), which is a paradigm of biomolecular ET and an attractive system for studying protein binding and enzymatic catalysis. The Cc-CcP complex formation proceeds via an encounter state, consisting of multiple protein-protein orientations sampled in the search of the dominant, functionally active bound form and exhibiting a broad spatial distribution, in striking agreement with earlier theoretical simulations. At low ionic strength, CcP binds another Cc molecule to form a weak ternary complex, initially inferred from kinetics experiments and postulated to account for the measured ET activity. Despite strenuous efforts, the ternary complex could not be observed directly and remained eagerly sought for the past two decades. Very recently, we have solved its structure in solution and shown that it consists of two binding forms: the dominant, ET-inactive geometry and an ensemble of lowly populated species with short separations between Cc and CcP cofactors, which summarily account for the measured ET rate. Unlike most protein complexes, which require accurate alignment of the binding surfaces in a single, well-defined orientation to carry out their function, redox proteins can form multiple productive complexes. As fast ET will occur any time the redox centers of the binding partners are close enough to ensure efficient electron tunneling across the interface, many protein-protein orientations are expected to be ET active. The present analysis confirms that the low-occupancy states can support the functional ET activity and contribute to the stability of redox protein complexes. As illustrated here, boundaries between the dominant and the encounter forms become blurred for many dynamic ET systems, which are more aptly described by ensembles of functionally and structurally heterogeneous bound forms.
Collapse
Affiliation(s)
- Alexander N. Volkov
- Jean Jeener NMR Centre, Structural
Biology Brussels, Vrije Universiteit Brussel, and Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
17
|
Moreno-Beltrán B, Díaz-Quintana A, González-Arzola K, Velázquez-Campoy A, De la Rosa MA, Díaz-Moreno I. Cytochrome c1 exhibits two binding sites for cytochrome c in plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1717-29. [PMID: 25091281 DOI: 10.1016/j.bbabio.2014.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/23/2014] [Accepted: 07/26/2014] [Indexed: 11/27/2022]
Abstract
In plants, channeling of cytochrome c molecules between complexes III and IV has been purported to shuttle electrons within the supercomplexes instead of carrying electrons by random diffusion across the intermembrane bulk phase. However, the mode plant cytochrome c behaves inside a supercomplex such as the respirasome, formed by complexes I, III and IV, remains obscure from a structural point of view. Here, we report ab-initio Brownian dynamics calculations and nuclear magnetic resonance-driven docking computations showing two binding sites for plant cytochrome c at the head soluble domain of plant cytochrome c1, namely a non-productive (or distal) site with a long heme-to-heme distance and a functional (or proximal) site with the two heme groups close enough as to allow electron transfer. As inferred from isothermal titration calorimetry experiments, the two binding sites exhibit different equilibrium dissociation constants, for both reduced and oxidized species, that are all within the micromolar range, thus revealing the transient nature of such a respiratory complex. Although the docking of cytochrome c at the distal site occurs at the interface between cytochrome c1 and the Rieske subunit, it is fully compatible with the complex III structure. In our model, the extra distal site in complex III could indeed facilitate the functional cytochrome c channeling towards complex IV by building a "floating boat bridge" of cytochrome c molecules (between complexes III and IV) in plant respirasome.
Collapse
Affiliation(s)
- Blas Moreno-Beltrán
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Antonio Díaz-Quintana
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Katiuska González-Arzola
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Adrián Velázquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain; Fundacion ARAID, Government of Aragon, Maria de Luna 11, 50018, Zaragoza, Spain
| | - Miguel A De la Rosa
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Irene Díaz-Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain.
| |
Collapse
|