1
|
Walter JM, Greses S, Hagen LH, Schiml VC, Pope PB, González-Fernández C, Arntzen MØ. Anaerobic digestion of microalgae: microbial response and recovery after organic loading disturbances. mSystems 2025; 10:e0167424. [PMID: 40013791 PMCID: PMC11915838 DOI: 10.1128/msystems.01674-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
Industrial anaerobic digestion (AD) represents a relevant energy source beyond today's fossil fuels, wherein organic matter is recycled to methane gas via an intricate and complex microbial food web. Despite its potential, anaerobic reactors often undergo process instability over time, which is frequently caused by substrate composition perturbations, making the system unreliable for stable energy production. To ensure the reliability of AD technologies, it is crucial to identify microbial and system responses to better understand the effect of such perturbations and ultimately detect signatures indicative of process failure. Here, we investigate the effect of the microalgal organic loading rate (OLR) on the fermentation product profile, microbiome dynamics, and disruption/recovery of major microbial metabolisms. Reactors subjected to low- and high-OLR disturbances were operated and monitored for fermentation products and biogas production over time, while microbial responses were investigated via 16S rRNA gene amplicon data, shotgun metagenomics, and metagenome-centric metaproteomics. Both low- and high-ORL fed systems encountered a sudden decline in methane production during OLR disturbances, followed by a recovery of the methanogenic activity within the microbiome. In the high-OLR disturbances, system failure triggered an upregulation of hydrolytic enzymes, an accumulation of fermentation products, and a shift in the methanogenic population from hydrogenotrophic to acetoclastic methanogens, with the latter being essential for recovery of the system after collapse. IMPORTANCE Anaerobic digestion (AD) with microalgae holds great potential for sustainable energy production, but process instability caused by substrate disturbances remains a significant barrier. This study highlights the importance of understanding the microbial dynamics and system responses during organic loading rate perturbations. By identifying key shifts in microbial populations and enzyme activity, particularly the transition from hydrogenotrophic to acetoclastic methanogens during recovery, this research provides critical insights for improving AD system stability and can contribute to optimizing microalgae-based AD processes for more reliable and efficient methane production.
Collapse
Affiliation(s)
- Juline M Walter
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, As, Norway
| | - Silvia Greses
- Biotechnological Processes Unit-IMDEA Energy, Avda. Ramón de la Sagra 3, Móstoles, Madrid, Spain
| | - Live H Hagen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, As, Norway
| | - Valerie C Schiml
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, As, Norway
| | - Phillip B Pope
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, As, Norway
- Faculty of Biosciences, NMBU-Norwegian University of Life Sciences, As, Norway
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Cristina González-Fernández
- Biotechnological Processes Unit-IMDEA Energy, Avda. Ramón de la Sagra 3, Móstoles, Madrid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina,, Valladolid, Spain
- Institute of Sustainable Processes, Dr. Mergelina, Valladolid, Spain
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, As, Norway
| |
Collapse
|
2
|
Akimoto S, Tsubota J, Tagawa S, Hirase T, Angelidaki I, Hidaka T, Fujiwara T. Process performance of in-situ bio-methanation for co-digestion of sewage sludge and lactic acid, aiming to utilize waste poly-lactic acid as methane. BIORESOURCE TECHNOLOGY 2025; 418:131945. [PMID: 39643062 DOI: 10.1016/j.biortech.2024.131945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/14/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
This study examined hydrogen conversion efficiency and operational stability in pilot-scale in-situ bio-methanation during the co-digestion of sewage sludge and lactic acid (partially derived from waste poly-lactic acid). Parallel laboratory-scale experiments were also conducted. In the pilot, hydrogen conversion efficiency decreased from 98.9 % to 84.4 % as the hydrogen feed rate increased from 240 to 1,200 mL/LR/d. Conversely, laboratory experiments maintained efficiencies above 95 % at a feed rate of 3,600 mL/LR/d, suggesting that hydrogen gas-liquid transfer limited hydrogen conversion efficiency in the pilot. Lactic acid degradation was observed both with and without hydrogen injection in the pilot. Methane yields from the acid were 310 ± 30 and 300 ± 30 mL/g (chemical oxygen demand (COD))-added, close to the theoretical methane yield (350 mL/gCOD). These results demonstrate the importance of hydrogen gas-liquid transfer when scaling up bio-methanation processes. Moreover, they showed the potential of waste poly-lactic acid as a methane source.
Collapse
Affiliation(s)
- Shinya Akimoto
- Energy Technology Laboratories, Osaka Gas Co., Ltd., Osaka 554-0051, Japan.
| | - Jun Tsubota
- Energy Technology Laboratories, Osaka Gas Co., Ltd., Osaka 554-0051, Japan
| | - Shinya Tagawa
- Biotech Research Laboratory, KRI, Inc., Osaka 554-0051, Japan
| | - Tatsuaki Hirase
- Biotech Research Laboratory, KRI, Inc., Osaka 554-0051, Japan
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs, Lyngby DK-2800, Denmark
| | - Taira Hidaka
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto 615-8540, Japan
| | - Taku Fujiwara
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto 615-8540, Japan
| |
Collapse
|
3
|
Markt R, Prem EM, Lackner N, Mutschlechner M, Illmer P, Wagner AO. Pre-treatment with Trichoderma viride: Towards a better understanding of its consequences for anaerobic digestion. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13281. [PMID: 38940659 PMCID: PMC11212294 DOI: 10.1111/1758-2229.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/30/2024] [Indexed: 06/29/2024]
Abstract
Understanding and optimising biological pre-treatment strategies for enhanced bio-methane production is a central aspect in second-generation biofuel research. In this regard, the application of fungi for pre-treatment seems highly promising; however, understanding the mode of action is crucial. Here, we show how aerobic pre-treatment of crystalline cellulose with the cellulolytic Trichoderma viride affects substrate degradability during mesophilic, anaerobic digestion. It could be demonstrated that fungal pre-treatment resulted in a slightly reduced substrate mass. Nevertheless, no significant impact on the overall methane yield was found during batch fermentation. Short chain organic acids accumulation, thus, overall degradation dynamics including methane production kinetics were affected by the pre-treatment as shown by Gompertz modelling. Finally, 16S rRNA amplicon sequencing followed by ANCOM-BC resulted in up to 53 operative taxonomic units including fermentative, syntrophic and methanogenic taxa, whereby their relative abundances were significantly affected by fungal pre-treatment depending on the duration of the pre-treatment. The results demonstrated the impact of soft rot fungal pre-treatment of cellulose on subsequent anaerobic cellulose hydrolysis as well as on methanogenic activity. To the best of our knowledge, this is the first study to investigate the direct causal effects of pre-treatment with T. viride on basic but crucial anaerobic digestion parameters in a highly standardised approach.
Collapse
Affiliation(s)
- Rudolf Markt
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | - Eva Maria Prem
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | - Nina Lackner
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | | | - Paul Illmer
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | | |
Collapse
|
4
|
Cubillos CF, Aguilar P, Moreira D, Bertolino P, Iniesto M, Dorador C, López-García P. Exploring the prokaryote-eukaryote interplay in microbial mats from an Andean athalassohaline wetland. Microbiol Spectr 2024; 12:e0007224. [PMID: 38456669 PMCID: PMC10986560 DOI: 10.1128/spectrum.00072-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/28/2024] [Indexed: 03/09/2024] Open
Abstract
Microbial community assembly results from the interaction between biotic and abiotic factors. However, environmental selection is thought to predominantly shape communities in extreme ecosystems. Salar de Huasco, situated in the high-altitude Andean Altiplano, represents a poly-extreme ecosystem displaying spatial gradients of physicochemical conditions. To disentangle the influence of abiotic and biotic factors, we studied prokaryotic and eukaryotic communities from microbial mats and underlying sediments across contrasting areas of this athalassohaline ecosystem. The prokaryotic communities were primarily composed of bacteria, notably including a significant proportion of photosynthetic organisms like Cyanobacteria and anoxygenic photosynthetic members of Alpha- and Gammaproteobacteria and Chloroflexi. Additionally, Bacteroidetes, Verrucomicrobia, and Deltaproteobacteria were abundantly represented. Among eukaryotes, photosynthetic organisms (Ochrophyta and Archaeplastida) were predominant, alongside relatively abundant ciliates, cercozoans, and flagellated fungi. Salinity emerged as a key driver for the assembly of prokaryotic communities. Collectively, abiotic factors influenced both prokaryotic and eukaryotic communities, particularly those of algae. However, prokaryotic communities strongly correlated with photosynthetic eukaryotes, suggesting a pivotal role of biotic interactions in shaping these communities. Co-occurrence networks suggested potential interactions between different organisms, such as diatoms with specific photosynthetic and heterotrophic bacteria or with protist predators, indicating influences beyond environmental selection. While some associations may be explained by environmental preferences, the robust biotic correlations, alongside insights from other ecosystems and experimental studies, suggest that symbiotic and trophic interactions significantly shape microbial mat and sediment microbial communities in this athalassohaline ecosystem.IMPORTANCEHow biotic and abiotic factors influence microbial community assembly is still poorly defined. Here, we explore their influence on prokaryotic and eukaryotic community assembly within microbial mats and sediments of an Andean high-altitude polyextreme wetland system. We show that, in addition to abiotic elements, mutual interactions exist between prokaryotic and eukaryotic communities. Notably, photosynthetic eukaryotes exhibit a strong correlation with prokaryotic communities, specifically diatoms with certain bacteria and other protists. Our findings underscore the significance of biotic interactions in community assembly and emphasize the necessity of considering the complete microbial community.
Collapse
Affiliation(s)
- Carolina F. Cubillos
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pablo Aguilar
- Laboratorio de Complejidad Microbiana, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
- Millennium Nucleus of Austral Invasive Salmonids - INVASAL, Concepción, Chile
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Paola Bertolino
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Miguel Iniesto
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | | |
Collapse
|
5
|
Hartman WH, Bueno de Mesquita CP, Theroux SM, Morgan-Lang C, Baldocchi DD, Tringe SG. Multiple microbial guilds mediate soil methane cycling along a wetland salinity gradient. mSystems 2024; 9:e0093623. [PMID: 38170982 PMCID: PMC10804969 DOI: 10.1128/msystems.00936-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Estuarine wetlands harbor considerable carbon stocks, but rising sea levels could affect their ability to sequester soil carbon as well as their potential to emit methane (CH4). While sulfate loading from seawater intrusion may reduce CH4 production due to the higher energy yield of microbial sulfate reduction, existing studies suggest other factors are likely at play. Our study of 11 wetland complexes spanning a natural salinity and productivity gradient across the San Francisco Bay and Delta found that while CH4 fluxes generally declined with salinity, they were highest in oligohaline wetlands (ca. 3-ppt salinity). Methanogens and methanogenesis genes were weakly correlated with CH4 fluxes but alone did not explain the highest rates observed. Taxonomic and functional gene data suggested that other microbial guilds that influence carbon and nitrogen cycling need to be accounted for to better predict CH4 fluxes at landscape scales. Higher methane production occurring near the freshwater boundary with slight salinization (and sulfate incursion) might result from increased sulfate-reducing fermenter and syntrophic populations, which can produce substrates used by methanogens. Moreover, higher salinities can solubilize ionically bound ammonium abundant in the lower salinity wetland soils examined here, which could inhibit methanotrophs and potentially contribute to greater CH4 fluxes observed in oligohaline sediments.IMPORTANCELow-level salinity intrusion could increase CH4 flux in tidal freshwater wetlands, while higher levels of salinization might instead decrease CH4 fluxes. High CH4 emissions in oligohaline sites are concerning because seawater intrusion will cause tidal freshwater wetlands to become oligohaline. Methanogenesis genes alone did not account for landscape patterns of CH4 fluxes, suggesting mechanisms altering methanogenesis, methanotrophy, nitrogen cycling, and ammonium release, and increasing decomposition and syntrophic bacterial populations could contribute to increases in net CH4 flux at oligohaline salinities. Improved understanding of these influences on net CH4 emissions could improve restoration efforts and accounting of carbon sequestration in estuarine wetlands. More pristine reference sites may have older and more abundant organic matter with higher carbon:nitrogen compared to wetlands impacted by agricultural activity and may present different interactions between salinity and CH4. This distinction might be critical for modeling efforts to scale up biogeochemical process interactions in estuarine wetlands.
Collapse
Affiliation(s)
| | | | | | - Connor Morgan-Lang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dennis D. Baldocchi
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Susannah G. Tringe
- DOE Joint Genome Institute, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
6
|
Xu Y, Meng X, Song Y, Lv X, Sun Y. Effects of different concentrations of butyrate on microbial community construction and metabolic pathways in anaerobic digestion. BIORESOURCE TECHNOLOGY 2023; 377:128845. [PMID: 36898564 DOI: 10.1016/j.biortech.2023.128845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Investigating the effect of butyric acid concentration on anaerobic digestion systems in complex systems is important for the efficient degradation of butyric acid and improving the efficiency of anaerobic digestion. In this study, different loadings of butyric acid with 2.8, 3.2, and 3.6 g/(L·d) were added to the anaerobic reactor. At a high organic loading rate of 3.6 g/(L·d), methane was efficiently produced with VBP (Volumetric Biogas Production) of 1.50 L/(L·d) and biogas content between 65% and 75%. VFAs concentration remained below 2000 mg/L. Metagenome sequencing revealed changes in the functional flora within different stages. Methanosarcina, Syntrophomonas, and Lentimicrobium were the main and functional microorganisms. That the relative abundance of methanogens exceeded 35% and methanogenic metabolic pathways were increased indicated the methanogenic capacity of the system significantly improved. The presence of a large number of hydrolytic acid-producing bacteria also indicated the importance of the hydrolytic acid-producing stage in the system.
Collapse
Affiliation(s)
- Yonghua Xu
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| | - Xianghui Meng
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| | - Yunong Song
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| | - Xiaoyi Lv
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| | - Yong Sun
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China.
| |
Collapse
|
7
|
Jin Y, Lu Y. Syntrophic Propionate Oxidation: One of the Rate-Limiting Steps of Organic Matter Decomposition in Anoxic Environments. Appl Environ Microbiol 2023; 89:e0038423. [PMID: 37097179 PMCID: PMC10231205 DOI: 10.1128/aem.00384-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Syntrophic propionate oxidation is one of the rate-limiting steps during anaerobic decomposition of organic matter in anoxic environments. Syntrophic propionate-oxidizing bacteria (SPOB) are members of the "rare biosphere" living at the edge of the thermodynamic limit in most natural habitats. Hitherto, only 10 bacterial species capable of syntrophic propionate oxidization have been identified. SPOB employ different metabolisms for propionate oxidation (e.g., methylmalonyl-CoA pathway and C6 dismutation pathway) and show diverse life strategies (e.g., obligately and facultatively syntrophic lifestyle). The flavin-based electron bifurcation/confurcation (FBEB/C) systems have been proposed to help solve the thermodynamic dilemma during the formation of the low-potential products H2 and formate. Molecular ecological approaches, such as DNA stable isotope probing (DNA-SIP) and metagenomics, have been used to detect SPOB in natural environments. Furthermore, the biogeographical pattern of SPOB has been recently described in paddy soils. A comprehensive understanding of SPOB is essential for better predicting and managing organic matter decomposition and carbon cycling in anoxic environments. In this review, we described the critical role of syntrophic propionate oxidation in anaerobic decomposition of organic matter, phylogenetic and metabolic diversity, life strategies and ecophysiology, composition of syntrophic partners, and pattern of biogeographic distribution of SPOB in natural environments. We ended up with a few perspectives for future research.
Collapse
Affiliation(s)
- Yidan Jin
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
8
|
Prem EM, Schwarzenberger A, Markt R, Wagner AO. Effects of phenyl acids on different degradation phases during thermophilic anaerobic digestion. Front Microbiol 2023; 14:1087043. [PMID: 37089573 PMCID: PMC10113666 DOI: 10.3389/fmicb.2023.1087043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Aromatic compounds like phenyl acids (PA) can accumulate during anaerobic digestion (AD) of organic wastes due to an increased entry of lignocellulose, secondary plant metabolites or proteins, and thermodynamic challenges in degrading the benzene ring. The effects of aromatic compounds can be various - from being highly toxic to be stimulating for methanogenesis - depending on many parameters like inoculum or molecular characteristics of the aromatic compound. To contribute to a better understanding of the consequences of PA exposure during AD, the aim was to evaluate the effects of 10 mM PA on microbial communities degrading different, degradation phase-specific substrates in thermophilic batch reactors within 28 days: Microcrystalline cellulose (MCC, promoting hydrolytic to methanogenic microorganisms), butyrate or propionate (promoting syntrophic volatile fatty acid (VFA) oxidisers to methanogens), or acetate (promoting syntrophic acetate oxidisers to methanogens). Methane production, VFA concentrations and pH were evaluated, and microbial communities and extracellular polymeric substances (EPS) were assessed. The toxicity of PA depended on the type of substrate which in turn determined the (i) microbial diversity and composition and (ii) EPS quantity and quality. Compared with the respective controls, methane production in MCC reactors was less impaired by PA than in butyrate, propionate and acetate reactors which showed reductions in methane production of up to 93%. In contrast to the controls, acetate concentrations were high in all PA reactors at the end of incubation thus acetate was a bottle-neck intermediate in those reactors. Considerable differences in EPS quantity and quality could be found among substrates but not among PA variants of each substrate. Methanosarcina spp. was the dominant methanogen in VFA reactors without PA exposure and was inhibited when PA were present. VFA oxidisers and Methanothermobacter spp. were abundant in VFA assays with PA exposure as well as in all MCC reactors. As MCC assays showed higher methane yields, a higher microbial diversity and a higher EPS quantity and quality than VFA reactors when exposed to PA, we conclude that EPS in MCC reactors might have been beneficial for absorbing/neutralising phenyl acids and keeping (more susceptible) microorganisms shielded in granules or biofilms.
Collapse
Affiliation(s)
- Eva Maria Prem
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | | | | | | |
Collapse
|
9
|
Yang B, Yu Q, Zhang Y. Applying Dynamic Magnetic Field To Promote Anaerobic Digestion via Enhancing the Electron Transfer of a Microbial Respiration Chain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2138-2148. [PMID: 36696287 DOI: 10.1021/acs.est.2c08577] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrochemical methods have been reported to strengthen anaerobic digestion, but the continuous electrical power supply and the complicated electrode installed inside the digester have restricted it from practical use. In this study, a dynamic magnetic field (DMF) was placed outside a digester to induce an electromotive force to electrically promote anaerobic digestion. With the applied DMF, an electromotive force of 0.14 mV was generated in the anaerobic sludge, and a 65.02% methane increment was obtained from the anaerobic digestion of waste-activated sludge. Experiments on each stage of anaerobic digestion showed that acidification and methanogenesis that involve electron transfer of respiration chains were promoted with the DMF, while solubilization and hydrolysis less related to respiration chains were not enhanced. Further analysis indicated that the induced electromotive force polarized the protein-like substances in the sludge to increase the conductivity and capacitance of the sludge. Electrotrophic methanogens (Methanothrix) and exoelectrogens (Exiguobacterium) were enriched with DMF. The kinetic isotope effect test confirmed that electron transfer was accelerated with DMF. Consistently, the concentration ratio of co-enzymes (NADH/NAD+ and F420H2/F420) that reflects the electron exchange with respiration chains significantly increased. Applying the DMF seemed a more accessible strategy to electrically strengthen anaerobic digestion.
Collapse
Affiliation(s)
- Bowen Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
10
|
Westerholm M, Calusinska M, Dolfing J. Syntrophic propionate-oxidizing bacteria in methanogenic systems. FEMS Microbiol Rev 2022; 46:fuab057. [PMID: 34875063 PMCID: PMC8892533 DOI: 10.1093/femsre/fuab057] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/03/2021] [Indexed: 12/04/2022] Open
Abstract
The mutual nutritional cooperation underpinning syntrophic propionate degradation provides a scant amount of energy for the microorganisms involved, so propionate degradation often acts as a bottleneck in methanogenic systems. Understanding the ecology, physiology and metabolic capacities of syntrophic propionate-oxidizing bacteria (SPOB) is of interest in both engineered and natural ecosystems, as it offers prospects to guide further development of technologies for biogas production and biomass-derived chemicals, and is important in forecasting contributions by biogenic methane emissions to climate change. SPOB are distributed across different phyla. They can exhibit broad metabolic capabilities in addition to syntrophy (e.g. fermentative, sulfidogenic and acetogenic metabolism) and demonstrate variations in interplay with cooperating partners, indicating nuances in their syntrophic lifestyle. In this review, we discuss distinctions in gene repertoire and organization for the methylmalonyl-CoA pathway, hydrogenases and formate dehydrogenases, and emerging facets of (formate/hydrogen/direct) electron transfer mechanisms. We also use information from cultivations, thermodynamic calculations and omic analyses as the basis for identifying environmental conditions governing propionate oxidation in various ecosystems. Overall, this review improves basic and applied understanding of SPOB and highlights knowledge gaps, hopefully encouraging future research and engineering on propionate metabolism in biotechnological processes.
Collapse
Affiliation(s)
- Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCentre, Almas allé 5, SE-75007 Uppsala, Sweden
| | - Magdalena Calusinska
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, rue du Brill 41, L-4422 Belvaux, Luxembourg
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Wynne Jones 2.11, Ellison Place, Newcastle-upon-Tyne NE1 8QH, UK
| |
Collapse
|
11
|
Lagoa-Costa B, Kennes C, Veiga MC. Influence of feedstock mix ratio on microbial dynamics during acidogenic fermentation for polyhydroxyalkanoates production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114132. [PMID: 34863075 DOI: 10.1016/j.jenvman.2021.114132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
The nature of microbial populations plays an essential role in the production of volatile fatty acids (VFA) during acidogenesis, the first stage in polyhydroxyalkanoates (PHA) production using mixed cultures. However, the composition of microbial communities is generally affected by substrate alterations. This work aimed to unravel the microbial dynamics in response to a gradual change in the feedstock composition in an acidogenic reactor, with subsequent PHA production. To achieve this, co-digestion of cheese whey and brewery wastewater (BW) was carried out for the production of VFA, in which the ratio of these feedstocks was varied by gradually increasing the proportion of BW from 0 up to 50% of the organic content. Bacteria such as Megasphaera, Bifidobacterium or Caproiciproducens were the most abundant in the first stages of the co-digestion. However, when BW reached 25% of the organic load, new taxa emerged and displaced the former ones; like Selenomonas, Ethanoligenens or an undefined member of the Bacteroidales order. Accordingly, the production of butyric acid dropped from 52 down to 27%, while the production of acetic acid increased from 36 up to 52%. Furthermore, the gradual increase of the BW ratio led to a progressive drop in the degree of acidification, from 72 down to 57%. In a subsequent approach, the VFA-rich streams, obtained from the co-digestion, were used as substrates in PHA accumulation tests. All the tests yielded similar PHA contents, but with slightly different monomeric composition. The overall results confirmed that the microbiome was altered by a gradual change in the feedstock composition and, consequently, the VFA profile and the monomeric composition of the biopolymer also did.
Collapse
Affiliation(s)
- Borja Lagoa-Costa
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, Rúa da Fraga 10, 15008, A Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, Rúa da Fraga 10, 15008, A Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, Rúa da Fraga 10, 15008, A Coruña, Spain.
| |
Collapse
|
12
|
Wu K, Xu W, Wang C, Lu J, He X. Saponification with calcium has different impacts on anaerobic digestion of saturated/unsaturated long chain fatty acids. BIORESOURCE TECHNOLOGY 2022; 343:126134. [PMID: 34655784 DOI: 10.1016/j.biortech.2021.126134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Little is known about the influence of the saturation degree of long chain fatty acids (LCFAs) on the bio-methane potential of calcium-LCFAs salts. In this study, palmitic acid and oleic acid were chosen as the model compounds to investigate the impact of saponification between calcium and saturated/unsaturated LCFAs on the methane recovery from LCFAs in anaerobic digestion. A 2.2-fold enhancement of methane yield was obtained due to the formation of calcium palmitate, which was primarily attributed to the enhanced bio-aggregation and significant change of microbial community. However, saponification between calcium and oleic acid decreased the methane recovery from oleic acid digestion. Only partial saponification with excess oleic acid led to 4% increment of methane production. The low bio-accessibility of calcium oleate and the little change of microbial community may be responsible for the small difference of methane recovery due to the formation of calcium oleate.
Collapse
Affiliation(s)
- Kun Wu
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, PR China
| | - Weijia Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, PR China
| | - Chun Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, PR China
| | - Jian Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong 264003, PR China
| | - Xia He
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, PR China.
| |
Collapse
|
13
|
Transcriptomic evidence for versatile metabolic activities of mercury cycling microorganisms in brackish microbial mats. NPJ Biofilms Microbiomes 2021; 7:83. [PMID: 34799579 PMCID: PMC8605020 DOI: 10.1038/s41522-021-00255-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/22/2021] [Indexed: 01/29/2023] Open
Abstract
Methylmercury, biomagnifying through food chains, is highly toxic for aquatic life. Its production and degradation are largely driven by microbial transformations; however, diversity and metabolic activity of mercury transformers, resulting in methylmercury concentrations in environments, remain poorly understood. Microbial mats are thick biofilms where oxic and anoxic metabolisms cooccur, providing opportunities to investigate the complexity of the microbial mercury transformations over contrasted redox conditions. Here, we conducted a genome-resolved metagenomic and metatranscriptomic analysis to identify putative activity of mercury reducers, methylators and demethylators in microbial mats strongly contaminated by mercury. Our transcriptomic results revealed the major role of rare microorganisms in mercury cycling. Mercury methylators, mainly related to Desulfobacterota, expressed a large panel of metabolic activities in sulfur, iron, nitrogen, and halogen compound transformations, extending known activities of mercury methylators under suboxic to anoxic conditions. Methylmercury detoxification processes were dissociated in the microbial mats with methylmercury cleavage being carried out by sulfide-oxidizing Thiotrichaceae and Rhodobacteraceae populations, whereas mercury reducers included members of the Verrucomicrobia, Bacteroidetes, Gammaproteobacteria, and different populations of Rhodobacteraceae. However most of the mercury reduction was potentially carried out anaerobically by sulfur- and iron-reducing Desulfuromonadaceae, revising our understanding of mercury transformers ecophysiology.
Collapse
|
14
|
Jin Y, Jiao S, Dolfing J, Lu Y. Thermodynamics shapes the biogeography of propionate-oxidizing syntrophs in paddy field soils. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:684-695. [PMID: 34089233 DOI: 10.1111/1758-2229.12981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Soil biogeochemical processes are not only gauged by the dominant taxa in the microbiome but also depend on the critical functions of its 'rare biosphere' members. Here, we evaluated the biogeographical pattern of 'rare biosphere' propionate-oxidizing syntrophs in 113 paddy soil samples collected across China. The relative abundance, activity and growth potential of propionate-oxidizing syntrophs were analysed to provide a panoramic view of syntroph biogeographical distribution at the continental scale. The relative abundances of four syntroph genera, Syntrophobacter, Pelotomaculum, Smithella and Syntrophomonas were significantly greater at the warm low latitudes than at the cool high latitudes. Correspondingly, propionate degradation was faster in the low latitude soils compared with the high latitude soils. The low rate of propionate degradation in the high latitude soils resulted in a greater increase of the total syntroph relative abundance, probably due to their initial low relative abundances and the longer incubation time for propionate consumption. The mean annual temperature (MAT) is the most important factor shaping the biogeographical pattern of propionate-oxidizing syntrophs, with the next factor being the soil's total sulfur content (TS). We suggest that the effect of MAT is related to the thermodynamic conditions, in which the endergonic constraint of propionate oxidation is leveraged with the increase of MAT. The TS effect is likely due to the ability of some propionate syntrophs to facultatively perform sulfate respiration.
Collapse
Affiliation(s)
- Yidan Jin
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Shuo Jiao
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jan Dolfing
- Faculty of Engineering and Environment, Northumbria University, Newcastle-upon-Tyne, NE1 8QH, UK
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
15
|
Wu D, Zhao Y, Cheng L, Zhou Z, Wu Q, Wang Q, Yuan Q. Activity and structure of methanogenic microbial communities in sediments of cascade hydropower reservoirs, Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147515. [PMID: 33975103 DOI: 10.1016/j.scitotenv.2021.147515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Freshwater reservoirs are an important source of the greenhouse gas methane (CH4). However, little is known about the activity and structure of microbial communities involved in methanogenic decomposition of sediment organic matter (SOM) in cascade hydropower reservoirs. In this study, we targeted on sediments of three cascade reservoirs in Wujiang River, Southwest China. Our results showed that the content of sediment organic carbon (SOC) was between 3% and 11%, and it's positively correlated with both C/N ratio and recalcitrant organic carbon content of SOM. Meanwhile, SOC content was positively correlated with CH4 production rates but had no significant correlation with total CO2 production rates of the sediments, when rates were normalized to sediment volume. Resultantly, the sediment anaerobic decomposition rates hardly significantly increase along with the SOC content. These results suggested that the terrestrial organic matter accumulated after damming stimulated CH4 production from the reservoir sediments even though its decomposition rate was limited. Meantime, high throughput sequencing of 16S rRNA genes indicated that not only the hydrogenotrophic and acetoclastic, but also the methylotrophic methanogens (Methanomassiliicoccus) are abundant in the reservoir sediments. Moreover, metagenomic sequencing also suggested that methylotrophic methanogenesis are potentially important in the sediment of cascade reservoirs. Finally, the hydraulic residence time of the reservoir could be the key controlling factor of the structures of bacterial and archaeal communities as well as the CH4 production rates of the reservoir sediments.
Collapse
Affiliation(s)
- Debin Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Zhuo Zhou
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Qiusheng Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qian Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
16
|
Li J, Chen T, Yin J, Shen D. Effect of nano-magnetite on the propionic acid degradation in anaerobic digestion system with acclimated sludge. BIORESOURCE TECHNOLOGY 2021; 334:125143. [PMID: 33895069 DOI: 10.1016/j.biortech.2021.125143] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
In this study, a batch of acid-tolerant inoculation sludge was domesticated as inoculum, and different concentrations of nano-magnetite were added to the propionic acid (PA) anaerobic digestion system to explore its effect on the PA degradation. It was found the PA degradation rates of nano-magnetite groups were 10.96-74.62% higher than the control group without magnetite in the 6th day, especially with the dosage of 100 mg/L. Microbial community analysis showed some potential DIET participants of Chloroflexi, Proteobacteria and Bacteroidetes had the highest abundance, while metabolite analysis showed that nano-magnetite promoted the transformation of malic acid to oxaloacetic acid and the PA disproportionation to butyric acid. It indicated that nano-magnetite could effectively promote the early degradation of PA in the sludge acclimation system by accelerating DIET or PA disproportionation, so as to prevent the PA accumulation, which could provide reference for the acid accumulation regulation of anaerobic digestion system.
Collapse
Affiliation(s)
- Junrou Li
- School of Environment Science &Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycing, HangZhou 310012, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ting Chen
- School of Environment Science &Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycing, HangZhou 310012, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Jun Yin
- School of Environment Science &Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycing, HangZhou 310012, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, China
| | - Dongsheng Shen
- School of Environment Science &Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycing, HangZhou 310012, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
17
|
Detman A, Bucha M, Treu L, Chojnacka A, Pleśniak Ł, Salamon A, Łupikasza E, Gromadka R, Gawor J, Gromadka A, Drzewicki W, Jakubiak M, Janiga M, Matyasik I, Błaszczyk MK, Jędrysek MO, Campanaro S, Sikora A. Evaluation of acidogenesis products' effect on biogas production performed with metagenomics and isotopic approaches. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:125. [PMID: 34051845 PMCID: PMC8164749 DOI: 10.1186/s13068-021-01968-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/06/2021] [Indexed: 06/09/2023]
Abstract
BACKGROUND During the acetogenic step of anaerobic digestion, the products of acidogenesis are oxidized to substrates for methanogenesis: hydrogen, carbon dioxide and acetate. Acetogenesis and methanogenesis are highly interconnected processes due to the syntrophic associations between acetogenic bacteria and hydrogenotrophic methanogens, allowing the whole process to become thermodynamically favorable. The aim of this study is to determine the influence of the dominant acidic products on the metabolic pathways of methane formation and to find a core microbiome and substrate-specific species in a mixed biogas-producing system. RESULTS Four methane-producing microbial communities were fed with artificial media having one dominant component, respectively, lactate, butyrate, propionate and acetate, for 896 days in 3.5-L Up-flow Anaerobic Sludge Blanket (UASB) bioreactors. All the microbial communities showed moderately different methane production and utilization of the substrates. Analyses of stable carbon isotope composition of the fermentation gas and the substrates showed differences in average values of δ13C(CH4) and δ13C(CO2) revealing that acetate and lactate strongly favored the acetotrophic pathway, while butyrate and propionate favored the hydrogenotrophic pathway of methane formation. Genome-centric metagenomic analysis recovered 234 Metagenome Assembled Genomes (MAGs), including 31 archaeal and 203 bacterial species, mostly unknown and uncultivable. MAGs accounted for 54%-67% of the entire microbial community (depending on the bioreactor) and evidenced that the microbiome is extremely complex in terms of the number of species. The core microbiome was composed of Methanothrix soehngenii (the most abundant), Methanoculleus sp., unknown Bacteroidales and Spirochaetaceae. Relative abundance analysis of all the samples revealed microbes having substrate preferences. Substrate-specific species were mostly unknown and not predominant in the microbial communities. CONCLUSIONS In this experimental system, the dominant fermentation products subjected to methanogenesis moderately modified the final effect of bioreactor performance. At the molecular level, a different contribution of acetotrophic and hydrogenotrophic pathways for methane production, a very high level of new species recovered, and a moderate variability in microbial composition depending on substrate availability were evidenced. Propionate was not a factor ceasing methane production. All these findings are relevant because lactate, acetate, propionate and butyrate are the universal products of acidogenesis, regardless of feedstock.
Collapse
Affiliation(s)
- Anna Detman
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | - Michał Bucha
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
- Faculty of Earth Sciences, University of Silesia in Katowice, Sosnowiec, Poland
| | - Laura Treu
- Department of Biology, University of Padova, Padova, Italy
| | - Aleksandra Chojnacka
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw, University of Life Sciences, Warsaw, Poland
| | - Łukasz Pleśniak
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
- Institute of Geological Sciences, University of Wroclaw, Wrocław, Poland
| | | | - Ewa Łupikasza
- Faculty of Earth Sciences, University of Silesia in Katowice, Sosnowiec, Poland
| | - Robert Gromadka
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | - Jan Gawor
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | | | - Wojciech Drzewicki
- Institute of Geological Sciences, University of Wroclaw, Wrocław, Poland
| | - Marta Jakubiak
- Institute of Geological Sciences, University of Wroclaw, Wrocław, Poland
| | - Marek Janiga
- Oil and Gas Institute, National Research Institute, Cracow, Poland
| | - Irena Matyasik
- Oil and Gas Institute, National Research Institute, Cracow, Poland
| | - Mieczysław K Błaszczyk
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw, University of Life Sciences, Warsaw, Poland
| | | | | | - Anna Sikora
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland.
| |
Collapse
|
18
|
Agne M, Appel L, Seelmann C, Boll M. Enoyl-Coenzyme A Respiration via Formate Cycling in Syntrophic Bacteria. mBio 2021; 13:e0374021. [PMID: 35100874 PMCID: PMC8805022 DOI: 10.1128/mbio.03740-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/03/2022] [Indexed: 11/23/2022] Open
Abstract
Syntrophic bacteria play a key role in the anaerobic conversion of biological matter to methane. They convert short-chain fatty acids or alcohols to H2, formate, and acetate that serve as substrates for methanogenic archaea. Many syntrophic bacteria can also grow with unsaturated fatty acids such as crotonate without a syntrophic partner, and the reducing equivalents derived from the oxidation of one crotonate to two acetate are regenerated by the reduction of a second crotonate. However, it has remained unresolved how the oxidative and reductive catabolic branches are interconnected and how energy may be conserved in the reductive branch. Here, we provide evidence that during axenic growth of the syntrophic model organism Syntrophus aciditrophicus with crotonate, the NAD+-dependent oxidation of 3-hydroxybutyryl-CoA to acetoacetyl-CoA is coupled to the reduction of crotonyl-CoA via formate cycling. In this process, the intracellular formate generated by a NAD+-regenerating CO2 reductase is taken up by a periplasmic, membrane-bound formate dehydrogenase that in concert with a membrane-bound electron-transferring flavoprotein (ETF):methylmenaquinone oxidoreductase, ETF, and an acyl-CoA dehydrogenase reduces intracellular enoyl-CoA to acyl-CoA. This novel type of energy metabolism, referred to as enoyl-CoA respiration, generates a proton motive force via a methylmenaquinone-dependent redox-loop. As a result, the beneficial syntrophic cooperation of fermenting bacteria and methanogenic archaea during growth with saturated fatty acids appears to turn into a competition for formate and/or H2 during growth with unsaturated fatty acids. IMPORTANCE The syntrophic interaction of fermenting bacteria and methanogenic archaea is important for the global carbon cycle. As an example, it accomplishes the conversion of biomass-derived saturated fatty acid fermentation intermediates into methane. In contrast, unsaturated fatty acid intermediates such as crotonate may serve as growth substrate for the fermenting partner alone. Thereby, the reducing equivalents generated during the oxidation of one crotonate to two acetate are regenerated by reduction of a second crotonate to butyrate. Here, we show that the oxidative and reductive branches of this pathway are connected via formate cycling involving an energy-conserving redox-loop. We refer to this previously unknown type of energy metabolism as to enoyl-CoA respiration with acyl-CoA dehydrogenases serving as cytoplasmic terminal reductases.
Collapse
Affiliation(s)
- Michael Agne
- Faculty of Biology–Microbiology, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Lena Appel
- Faculty of Biology–Microbiology, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Carola Seelmann
- Faculty of Biology–Microbiology, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Matthias Boll
- Faculty of Biology–Microbiology, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
19
|
Syntrophic Hydrocarbon Degradation in a Decommissioned Off-Shore Subsea Oil Storage Structure. Microorganisms 2021; 9:microorganisms9020356. [PMID: 33670234 PMCID: PMC7916938 DOI: 10.3390/microorganisms9020356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/02/2022] Open
Abstract
Over the last decade, metagenomic studies have revealed the impact of oil production on the microbial ecology of petroleum reservoirs. However, despite their fundamental roles in bioremediation of hydrocarbons, biocorrosion, biofouling and hydrogen sulfide production, oil field and oil production infrastructure microbiomes are poorly explored. Understanding of microbial activities within oil production facilities is therefore crucial for environmental risk mitigation, most notably during decommissioning. The analysis of the planktonic microbial community from the aqueous phase of a subsea oil-storage structure was conducted. This concrete structure was part of the production platform of the Brent oil field (North Sea), which is currently undergoing decommissioning. Quantification and sequencing of microbial 16S rRNA genes, metagenomic analysis and reconstruction of metagenome assembled genomes (MAGs) revealed a unique microbiome, strongly dominated by organisms related to Dethiosulfatibacter and Cloacimonadetes. Consistent with the hydrocarbon content in the aqueous phase of the structure, a strong potential for degradation of low molecular weight aromatic hydrocarbons was apparent in the microbial community. These degradation pathways were associated with taxonomically diverse microorganisms, including the predominant Dethiosulfatibacter and Cloacimonadetes lineages, expanding the list of potential hydrocarbon degraders. Genes associated with direct and indirect interspecies exchanges (multiheme type-C cytochromes, hydrogenases and formate/acetate metabolism) were widespread in the community, suggesting potential syntrophic hydrocarbon degradation processes in the system. Our results illustrate the importance of genomic data for informing decommissioning strategies in marine environments and reveal that hydrocarbon-degrading community composition and metabolisms in man-made marine structures might differ markedly from natural hydrocarbon-rich marine environments.
Collapse
|
20
|
Singh A, Schnürer A, Westerholm M. Enrichment and description of novel bacteria performing syntrophic propionate oxidation at high ammonia level. Environ Microbiol 2021; 23:1620-1637. [PMID: 33400377 DOI: 10.1111/1462-2920.15388] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/15/2020] [Accepted: 01/02/2021] [Indexed: 01/04/2023]
Abstract
Inefficient syntrophic propionate degradation causes severe operating disturbances and reduces biogas productivity in many high-ammonia anaerobic digesters, but propionate-degrading microorganisms in these systems remain unknown. Here, we identified candidate ammonia-tolerant syntrophic propionate-oxidising bacteria using propionate enrichment at high ammonia levels (0.7-0.8 g NH3 L-1 ) in continuously-fed reactors. We reconstructed 30 high-quality metagenome-assembled genomes (MAGs) from the propionate-fed reactors, which revealed two novel species from the families Peptococcaceae and Desulfobulbaceae as syntrophic propionate-oxidising candidates. Both MAGs possess genomic potential for the propionate oxidation and electron transfer required for syntrophic energy conservation and, similar to ammonia-tolerant acetate degrading syntrophs, both MAGs contain genes predicted to link to ammonia and pH tolerance. Based on relative abundance, a Peptococcaceae sp. appeared to be the main propionate degrader and has been given the provisional name "Candidatus Syntrophopropionicum ammoniitolerans". This bacterium was also found in high-ammonia biogas digesters, using quantitative PCR. Acetate was degraded by syntrophic acetate-oxidising bacteria and the hydrogenotrophic methanogenic community consisted of Methanoculleus bourgensis and a yet to be characterised Methanoculleus sp. This work provides knowledge of cooperating syntrophic species in high-ammonia systems and reveals that ammonia-tolerant syntrophic propionate-degrading populations share common features, but diverge genomically and taxonomically from known species.
Collapse
Affiliation(s)
- Abhijeet Singh
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, SE-750 07, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, SE-750 07, Sweden
| | - Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, SE-750 07, Sweden
| |
Collapse
|
21
|
Alves JI, Salvador AF, Castro AR, Zheng Y, Nijsse B, Atashgahi S, Sousa DZ, Stams AJM, Alves MM, Cavaleiro AJ. Long-Chain Fatty Acids Degradation by Desulfomonile Species and Proposal of " Candidatus Desulfomonile Palmitatoxidans". Front Microbiol 2021; 11:539604. [PMID: 33391191 PMCID: PMC7773648 DOI: 10.3389/fmicb.2020.539604] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Microbial communities with the ability to convert long-chain fatty acids (LCFA) coupled to sulfate reduction can be important in the removal of these compounds from wastewater. In this work, an enrichment culture, able to oxidize the long-chain fatty acid palmitate (C16 : 0) coupled to sulfate reduction, was obtained from anaerobic granular sludge. Microscopic analysis of this culture, designated HP culture, revealed that it was mainly composed of one morphotype with a typical collar-like cell wall invagination, a distinct morphological feature of the Desulfomonile genus. 16S rRNA gene amplicon and metagenome-assembled genome (MAG) indeed confirmed that the abundant phylotype in HP culture belong to Desulfomonile genus [ca. 92% 16S rRNA gene sequences closely related to Desulfomonile spp.; and ca. 82% whole genome shotgun (WGS)]. Based on similar cell morphology and average nucleotide identity (ANI) (77%) between the Desulfomonile sp. in HP culture and the type strain Desulfomonile tiedjei strain DCB-1T, we propose a novel species designated as "Candidatus Desulfomonile palmitatoxidans." This bacterium shares 94.3 and 93.6% 16S rRNA gene identity with Desulfomonile limimaris strain DCB-MT and D. tiedjei strain DCB-1T, respectively. Based on sequence abundance of Desulfomonile-morphotype in HP culture, its predominance in the microscopic observations, and presence of several genes coding for enzymes involved in LCFA degradation, the proposed species "Ca. Desulfomonile palmitatoxidans" most probably plays an important role in palmitate degradation in HP culture. Analysis of the growth of HP culture and D. tiedjei strain DCB-1T with short- (butyrate), medium- (caprylate) and long-chain fatty acids (palmitate, stearate, and oleate) showed that both cultures degraded all fatty acids coupled to sulfate reduction, except oleate that was only utilized by HP culture. In the absence of sulfate, neither HP culture, nor D. tiedjei strain DCB-1T degraded palmitate when incubated with Methanobacterium formicicum as a possible methanogenic syntrophic partner. Unlike D. tiedjei strain DCB-1T, "Ca. Desulfomonile palmitatoxidans" lacks reductive dehalogenase genes in its genome, and HP culture was not able to grow by organohalide respiration. An emended description of the genus Desulfomonile is proposed. Our study reveals an unrecognized LCFA degradation feature of the Desulfomonile genus.
Collapse
Affiliation(s)
- Joana I Alves
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | | | - A Rita Castro
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ying Zheng
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Bart Nijsse
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands.,Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Diana Z Sousa
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Alfons J M Stams
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - M Madalena Alves
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ana J Cavaleiro
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
22
|
Abstract
Anaerobic digestion is an efficient technology for a sustainable conversion of various organic wastes such as animal manure, municipal solid waste, agricultural residues and industrial waste into biogas. This technology offers a unique set of benefits, some of which include a good waste management technique, enhancement in the ecology of rural areas, improvement in health through a decrease of pathogens and optimization of the energy consumption of communities. The biogas produced through anaerobic digestion varies in composition, but it consists mainly of carbon dioxide methane together with a low quantity of trace gases. The variation in biogas composition are dependent on some factors namely the substrate type being digested, pH, operating temperature, organic loading rate, hydraulic retention time and digester design. However, the type of substrate used is of greater interest due to the direct dependency of microorganism activities on the nutritional composition of the substrate. Therefore, the aim of this review study is to provide a detailed analysis of the various types of organic wastes that have been used as a substrate for the sustainable production of biogas. Biogas formation from various substrates reported in the literature were investigated, an analysis and characterization of these substrates provided the pro and cons associated with each substrate. The findings obtained showed that the methane yield for all animal manure varied from 157 to 500 mL/gVS with goat and pig manure superseding the other animal manure whereas lignocellulose biomass varied from 160 to 212 mL/gVS. In addition, organic municipal solid waste and industrial waste showed methane yield in the ranges of 143–516 mL/gVS and 25–429 mL/gVS respectively. These variations in methane yield are primarily attributed to the nutritional composition of the various substrates.
Collapse
|
23
|
Kim M, Lam TY, Tan GYA, Lee PH, Kim J. Use of polymeric scouring agent as fluidized media in anaerobic fluidized bed membrane bioreactor for wastewater treatment: System performance and microbial community. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Hu B, Wang M, Geng S, Wen L, Wu M, Nie Y, Tang YQ, Wu XL. Metabolic Exchange with Non-Alkane-Consuming Pseudomonas stutzeri SLG510A3-8 Improves n-Alkane Biodegradation by the Alkane Degrader Dietzia sp. Strain DQ12-45-1b. Appl Environ Microbiol 2020; 86:AEM.02931-19. [PMID: 32033953 PMCID: PMC7117941 DOI: 10.1128/aem.02931-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Biodegradation of alkanes by microbial communities is ubiquitous in nature. Interestingly, the microbial communities with high hydrocarbon-degrading performances are sometimes composed of not only hydrocarbon degraders but also nonconsumers, but the synergistic mechanisms remain unknown. Here, we found that two bacterial strains isolated from Chinese oil fields, Dietzia sp. strain DQ12-45-1b and Pseudomonas stutzeri SLG510A3-8, had a synergistic effect on hexadecane (C16 compound) biodegradation, even though P. stutzeri could not utilize C16 individually. To gain a better understanding of the roles of the alkane nonconsumer P. stutzeri in the C16-degrading consortium, we reconstructed a two-species stoichiometric metabolic model, iBH1908, and integrated in silico prediction with the following in vitro validation, a comparative proteomics analysis, and extracellular metabolomic detection. Metabolic interactions between P. stutzeri and Dietzia sp. were successfully revealed to have importance in efficient C16 degradation. In the process, P. stutzeri survived on C16 metabolic intermediates from Dietzia sp., including hexadecanoate, 3-hydroxybutanoate, and α-ketoglutarate. In return, P. stutzeri reorganized its metabolic flux distribution to fed back acetate and glutamate to Dietzia sp. to enhance its C16 degradation efficiency by improving Dietzia cell accumulation and by regulating the expression of Dietzia succinate dehydrogenase. By using the synergistic microbial consortium of Dietzia sp. and P. stutzeri with the addition of the in silico-predicted key exchanged metabolites, diesel oil was effectively disposed of in 15 days with a removal fraction of 85.54% ± 6.42%, leaving small amounts of C15 to C20 isomers. Our finding provides a novel microbial assembling mode for efficient bioremediation or chemical production in the future.IMPORTANCE Many natural and synthetic microbial communities are composed of not only species whose biological properties are consistent with their corresponding communities but also ones whose chemophysical characteristics do not directly contribute to the performance of their communities. Even though the latter species are often essential to the microbial communities, their roles are unclear. Here, by investigation of an artificial two-member microbial consortium in n-alkane biodegradation, we showed that the microbial member without the n-alkane-degrading capability had a cross-feeding interaction with and metabolic regulation to the leading member for the synergistic n-alkane biodegradation. Our study improves the current understanding of microbial interactions. Because "assistant" microbes showed importance in communities in addition to the functional microbes, our findings also suggest a useful "assistant-microbe" principle in the design of microbial communities for either bioremediation or chemical production.
Collapse
Affiliation(s)
- Bing Hu
- Institute for Synthetic Biosystems, Department of Biochemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Miaoxiao Wang
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Shuang Geng
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Liqun Wen
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Mengdi Wu
- School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yong Nie
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Yue-Qin Tang
- Department of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Xiao-Lei Wu
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| |
Collapse
|
25
|
St. James AR, Richardson RE. Ecogenomics reveals community interactions in a long-term methanogenic bioreactor and a rapid switch to sulfate-reducing conditions. FEMS Microbiol Ecol 2020; 96:5809959. [DOI: 10.1093/femsec/fiaa050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/17/2020] [Indexed: 01/13/2023] Open
Abstract
ABSTRACT
The anaerobic digestion of wastes is globally important in the production of methane (CH4) as a biofuel. When sulfate is present, sulfate-reducing bacteria (SRB) are stimulated, competing with methanogens for common substrates, which decreases CH4 production and results in the formation of corrosive, odorous hydrogen sulfide gas (H2S). Here, we show that a population of SRB within a methanogenic bioreactor fed only butyrate for years immediately (within hours) responded to sulfate availability and shifted the microbial community dynamics within the bioreactor. By mapping shotgun metatranscriptomes to metagenome-assembled genomes, we shed light on the transcriptomic responses of key community members in response to increased sulfate provision. We link these short-term transcriptional responses to long-term niche partitioning using comparative metagenomic analyses. Our results suggest that sulfate provision supports a syntrophic butyrate oxidation community that disfavors poly-β-hydroxyalkanoate storage and that hydrogenotrophic SRB populations effectively exclude obligately hydrogenotrophic, but not aceticlastic, methanogens when sulfate is readily available. These findings elucidate key ecological dynamics between SRB, methanogens and syntrophic butyrate-oxidizing bacteria, which can be applied to a variety of engineered and natural systems.
Collapse
Affiliation(s)
- Andrew R St. James
- School of Civil and Environmental Engineering, Cornell University, 527 College Ave, Hollister Hall, Ithaca, NY, USA 14853
| | - Ruth E Richardson
- School of Civil and Environmental Engineering, Cornell University, 527 College Ave, Hollister Hall, Ithaca, NY, USA 14853
| |
Collapse
|
26
|
Yi Y, Wang H, Chen Y, Gou M, Xia Z, Hu B, Nie Y, Tang Y. Identification of Novel Butyrate- and Acetate-Oxidizing Bacteria in Butyrate-Fed Mesophilic Anaerobic Chemostats by DNA-Based Stable Isotope Probing. MICROBIAL ECOLOGY 2020; 79:285-298. [PMID: 31263981 DOI: 10.1007/s00248-019-01400-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Butyrate is one of the most important intermediates during anaerobic digestion of protein wastewater, and its oxidization is considered as a rate-limiting step during methane production. However, information on syntrophic butyrate-oxidizing bacteria (SBOB) is limited due to the difficulty in isolation of pure cultures. In this study, two anaerobic chemostats fed with butyrate as the sole carbon source were operated at different dilution rates (0.01/day and 0.05/day). Butyrate- and acetate-oxidizing bacteria in both chemostats were investigated, combining DNA-Stable Isotope Probing (DNA-SIP) and 16S rRNA gene high-throughput sequencing. The results showed that, in addition to known SBOB, Syntrophomonas, other species of unclassified Syntrophomonadaceae were putative butyrate-oxidizing bacteria. Species of Mesotoga, Aminivibrio, Acetivibrio, Desulfovibrio, Petrimonas, Sedimentibacter, unclassified Anaerolineae, unclassified Synergistaceae, unclassified Spirochaetaceae, and unclassified bacteria may contribute to acetate oxidation from butyrate metabolism. Among them, the ability of butyrate oxidation was unclear for species of Sedimentibacter, unclassified Synergistaceae, unclassified Spirochaetaceae, and unclassified bacteria. These results suggested that more unknown species participated in the degradation of butyrate. However, the corresponding function and pathway for butyrate or acetate oxidization of these labeled species need to be further investigated.
Collapse
Affiliation(s)
- Yue Yi
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - HuiZhong Wang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - YaTing Chen
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, No. 122 Huanghe Middle Road Section 1, Shuangliu District, Chengdu, 610027, Sichuan, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China.
| | - ZiYuan Xia
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Bin Hu
- College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Yong Nie
- College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - YueQin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| |
Collapse
|
27
|
Yadav A, Vilcáez J, Farag IF, Johnson B, Mueller K, Youssef NH, Elshahed MS. Candidatus Mcinerneyibacterium aminivorans gen. nov., sp. nov., the first representative of the candidate phylum Mcinerneyibacteriota phyl. nov. recovered from a high temperature, high salinity tertiary oil reservoir in north central Oklahoma, USA. Syst Appl Microbiol 2020; 43:126057. [PMID: 31987701 DOI: 10.1016/j.syapm.2020.126057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 11/17/2022]
Abstract
We report on the characterization of a novel genomic assembly (ARYD3) recovered from formation water (17.6% salinity) and crude oil enrichment amended by isolated soy proteins (0.2%), and incubated for 100 days under anaerobic conditions at 50°C. Phylogenetic and phylogenomic analysis demonstrated that the ARYD3 is unaffiliated with all currently described bacterial phyla and candidate phyla, as evident by the low AAI (34.7%), shared gene content (19.4%), and 78.9% 16S rRNA gene sequence similarity to Halothiobacillus neapolitanus, its closest cultured relative. Genomic characterization predicts a slow-growing, non-spore forming, and non-motile Gram-negative rod. Adaptation to high salinity is potentially mediated by the production of the compatible solutes cyclic 2,3-diphosphoglycerate (cDPG), α-glucosylglycerate, as well as the uptake of glycine betaine. Metabolically, the genome encodes primarily aminolytic capabilities for a wide range of amino acids and peptides. Interestingly, evidence of propionate degradation to succinate via methyl-malonyl CoA was identified, suggesting possible capability for syntrophic propionate degradation. Analysis of ARYD3 global distribution patterns identified its occurrence in a very small fraction of Earth Microbiome Project datasets examined (318/27,068), where it consistently represented an extremely rare fraction (maximum 0.28%, average 0.004%) of the overall community. We propose the Candidatus name Mcinerneyibacterium aminivorans gen. nov, sp. nov. for ARYD3T, with the genome serving as the type material for the novel family Mcinerneyibacteriaceae fam. nov., order Mcinerneyibacteriales ord. nov., class Mcinerneyibacteria class nov., and phylum Mcinerneyibacteriota phyl. nov. The type material genome assembly is deposited in GenBank under accession number VSIX00000000.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Culture Media
- DNA, Bacterial/genetics
- Ecosystem
- Genome, Bacterial/genetics
- Gram-Negative Anaerobic Straight, Curved, and Helical Rods/classification
- Gram-Negative Anaerobic Straight, Curved, and Helical Rods/genetics
- Gram-Negative Anaerobic Straight, Curved, and Helical Rods/isolation & purification
- Gram-Negative Anaerobic Straight, Curved, and Helical Rods/metabolism
- Oil and Gas Fields/chemistry
- Oil and Gas Fields/microbiology
- Oklahoma
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Salinity
- Sequence Analysis, DNA
- Soybean Proteins/metabolism
- Temperature
Collapse
Affiliation(s)
- Archana Yadav
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Javier Vilcáez
- Boone Pickens School of Geology, Oklahoma State University, Stillwater, OK, United States
| | - Ibrahim F Farag
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Britny Johnson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Katherine Mueller
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
28
|
Novel syntrophic bacteria in full-scale anaerobic digesters revealed by genome-centric metatranscriptomics. ISME JOURNAL 2020; 14:906-918. [PMID: 31896784 PMCID: PMC7082340 DOI: 10.1038/s41396-019-0571-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 11/25/2022]
Abstract
Short-chain fatty acid (SCFA) degradation is an important process in methanogenic ecosystems, and is usually catalyzed by SCFA-oxidizing bacteria in syntrophy with methanogens. Current knowledge of this functional guild is mainly based on isolates or enrichment cultures, but these may not reflect the true diversity and in situ activities of the syntrophs predominating in full-scale systems. Here we obtained 182 medium to high quality metagenome-assembled genomes (MAGs) from the microbiome of two full-scale anaerobic digesters. The transcriptomic response of individual MAG was studied after stimulation with low concentrations of acetate, propionate, or butyrate, separately. The most pronounced response to butyrate was observed for two MAGs of the recently described genus Candidatus Phosphitivorax (phylum Desulfobacterota), expressing a butyrate beta-oxidation pathway. For propionate, the largest response was observed for an MAG of a novel genus in the family Pelotomaculaceae, transcribing a methylmalonyl-CoA pathway. All three species were common in anaerobic digesters at Danish wastewater treatment plants as shown by amplicon analysis, and this is the first time their syntrophic features involved in SCFA oxidation were revealed with transcriptomic evidence. Further, they also possessed unique genomic features undescribed in well-characterized syntrophs, including the metabolic pathways for phosphite oxidation, nitrite and sulfate reduction.
Collapse
|
29
|
Ziels RM, Nobu MK, Sousa DZ. Elucidating Syntrophic Butyrate-Degrading Populations in Anaerobic Digesters Using Stable-Isotope-Informed Genome-Resolved Metagenomics. mSystems 2019; 4:e00159-19. [PMID: 31387934 PMCID: PMC6687939 DOI: 10.1128/msystems.00159-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/12/2019] [Indexed: 11/20/2022] Open
Abstract
Linking the genomic content of uncultivated microbes to their metabolic functions remains a critical challenge in microbial ecology. Resolving this challenge has implications for improving our management of key microbial interactions in biotechnologies such as anaerobic digestion, which relies on slow-growing syntrophic and methanogenic communities to produce renewable methane from organic waste. In this study, we combined DNA stable-isotope probing (SIP) with genome-centric metagenomics to recover the genomes of populations enriched in 13C after growing on [13C]butyrate. Differential abundance analysis of recovered genomic bins across the SIP metagenomes identified two metagenome-assembled genomes (MAGs) that were significantly enriched in heavy [13C]DNA. Phylogenomic analysis assigned one MAG to the genus Syntrophomonas and the other MAG to the genus Methanothrix. Metabolic reconstruction of the annotated genomes showed that the Syntrophomonas genome encoded all the enzymes for beta-oxidizing butyrate, as well as several mechanisms for interspecies electron transfer via electron transfer flavoproteins, hydrogenases, and formate dehydrogenases. The Syntrophomonas genome shared low average nucleotide identity (<95%) with any cultured representative species, indicating that it is a novel species that plays a significant role in syntrophic butyrate degradation within anaerobic digesters. The Methanothrix genome contained the complete pathway for acetoclastic methanogenesis, indicating that it was enriched in 13C from syntrophic acetate transfer. This study demonstrates the potential of stable-isotope-informed genome-resolved metagenomics to identify in situ interspecies metabolic cooperation within syntrophic consortia important to anaerobic waste treatment as well as global carbon cycling.IMPORTANCE Predicting the metabolic potential and ecophysiology of mixed microbial communities remains a major challenge, especially for slow-growing anaerobes that are difficult to isolate. Unraveling the in situ metabolic activities of uncultured species may enable a more descriptive framework to model substrate transformations by microbiomes, which has broad implications for advancing the fields of biotechnology, global biogeochemistry, and human health. Here, we investigated the in situ function of mixed microbiomes by combining stable-isotope probing with metagenomics to identify the genomes of active syntrophic populations converting butyrate, a C4 fatty acid, into methane within anaerobic digesters. This approach thus moves beyond the mere presence of metabolic genes to resolve "who is doing what" by obtaining confirmatory assimilation of the labeled substrate into the DNA signature. Our findings provide a framework to further link the genomic identities of uncultured microbes with their ecological function within microbiomes driving many important biotechnological and global processes.
Collapse
Affiliation(s)
- Ryan M Ziels
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
30
|
Weinrich S, Koch S, Bonk F, Popp D, Benndorf D, Klamt S, Centler F. Augmenting Biogas Process Modeling by Resolving Intracellular Metabolic Activity. Front Microbiol 2019; 10:1095. [PMID: 31156601 PMCID: PMC6533897 DOI: 10.3389/fmicb.2019.01095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/30/2019] [Indexed: 01/23/2023] Open
Abstract
The process of anaerobic digestion in which waste biomass is transformed to methane by complex microbial communities has been modeled for more than 16 years by parametric gray box approaches that simplify process biology and do not resolve intracellular microbial activity. Information on such activity, however, has become available in unprecedented detail by recent experimental advances in metatranscriptomics and metaproteomics. The inclusion of such data could lead to more powerful process models of anaerobic digestion that more faithfully represent the activity of microbial communities. We augmented the Anaerobic Digestion Model No. 1 (ADM1) as the standard kinetic model of anaerobic digestion by coupling it to Flux-Balance-Analysis (FBA) models of methanogenic species. Steady-state results of coupled models are comparable to standard ADM1 simulations if the energy demand for non-growth associated maintenance (NGAM) is chosen adequately. When changing a constant feed of maize silage from continuous to pulsed feeding, the final average methane production remains very similar for both standard and coupled models, while both the initial response of the methanogenic population at the onset of pulsed feeding as well as its dynamics between pulses deviates considerably. In contrast to ADM1, the coupled models deliver predictions of up to 1,000s of intracellular metabolic fluxes per species, describing intracellular metabolic pathway activity in much higher detail. Furthermore, yield coefficients which need to be specified in ADM1 are no longer required as they are implicitly encoded in the topology of the species’ metabolic network. We show the feasibility of augmenting ADM1, an ordinary differential equation-based model for simulating biogas production, by FBA models implementing individual steps of anaerobic digestion. While cellular maintenance is introduced as a new parameter, the total number of parameters is reduced as yield coefficients no longer need to be specified. The coupled models provide detailed predictions on intracellular activity of microbial species which are compatible with experimental data on enzyme synthesis activity or abundance as obtained by metatranscriptomics or metaproteomics. By providing predictions of intracellular fluxes of individual community members, the presented approach advances the simulation of microbial community driven processes and provides a direct link to validation by state-of-the-art experimental techniques.
Collapse
Affiliation(s)
- Sören Weinrich
- Biochemical Conversion Department, Deutsches Biomasseforschungszentrum gGmbH, Leipzig, Germany
| | - Sabine Koch
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Fabian Bonk
- Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Denny Popp
- Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Dirk Benndorf
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Florian Centler
- Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
31
|
Wang S, Zhang B, Diao M, Shi J, Jiang Y, Cheng Y, Liu H. Enhancement of synchronous bio-reductions of vanadium (V) and chromium (VI) by mixed anaerobic culture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:249-256. [PMID: 29990932 DOI: 10.1016/j.envpol.2018.06.080] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/06/2018] [Accepted: 06/23/2018] [Indexed: 06/08/2023]
Abstract
The co-occurrence of toxic vanadium (V) and chromium (VI) in groundwater receives incremental attention while knowledge on their interactions in biogeochemical processes is limited, with lack of efficient removal means. This study is the first to realize synchronous bio-reductions of V(V) and Cr(VI) with high efficiency by mixed anaerobic culture. After 72-h operation, 97.0 ± 1.0% of V(V) and 99.1 ± 0.7% of Cr(VI) were removed, respectively, with initial concentration of 1 mM for both V(V) and Cr(VI). Cr(VI) bio-reduction took priority while V(V) detoxification was inhibited. V(IV) and Cr(III) were the identified reduction products, both of which could precipitate naturally. Initial Cr(VI) and acetate concentrations as well as pH affected this process significantly. High-throughput 16S rRNA gene sequencing analysis indicated the accumulation of Anaerolineaceae, Spirochaeta and Spirochaetaceae, which could contribute to V(V) and Cr(VI) bio-reductions. The new knowledge obtained in this study will facilitate understanding the biogeochemical fate of co-existing V(V) and Cr(VI) in groundwater and development of bioremediation strategy for their induced combined pollution.
Collapse
Affiliation(s)
- Song Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Muhe Diao
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE, Amsterdam, the Netherlands
| | - Jiaxin Shi
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Yufeng Jiang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Yutong Cheng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Hui Liu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
32
|
Sorokin DY, Messina E, La Cono V, Ferrer M, Ciordia S, Mena MC, Toshchakov SV, Golyshin PN, Yakimov MM. Sulfur Respiration in a Group of Facultatively Anaerobic Natronoarchaea Ubiquitous in Hypersaline Soda Lakes. Front Microbiol 2018; 9:2359. [PMID: 30333814 PMCID: PMC6176080 DOI: 10.3389/fmicb.2018.02359] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/14/2018] [Indexed: 11/21/2022] Open
Abstract
The ubiquity of strictly anaerobic sulfur-respiring haloarchaea in hypersaline systems with circumneutral pH has shaken a traditional concept of this group as predominantly aerobic heterotrophs. Here, we demonstrated that this functional group of haloarchaea also has its representatives in hypersaline alkaline lakes. Sediments from various hypersaline soda lakes showed high activity of sulfur reduction only partially inhibited by antibiotics. Eight pure cultures of sulfur-reducing natronoarchaea were isolated from such sediments using formate and butyrate as electron donors and sulfur as an electron acceptor. Unlike strict anaerobic haloarchaea, these novel sulfur-reducing natronoarchaea are facultative anaerobes, whose metabolic capabilities were inferred from cultivation experiments and genomic/proteomic reconstruction. While sharing many physiological traits with strict anaerobic haloarchaea, following metabolic distinctions make these new organisms be successful in both anoxic and aerobic habitats: the recruiting of heme-copper quinol oxidases as terminal electron sink in aerobic respiratory chain and the utilization of formate, hydrogen or short-chain fatty acids as electron donors during anaerobic growth with elemental sulfur. Obtained results significantly advance the emerging concept of halo(natrono)archaea as important players in the anaerobic sulfur and carbon cycling in various salt-saturated habitats.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Enzo Messina
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Violetta La Cono
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Manuel Ferrer
- Institute of Catalysis, Spanish National Research Council, Madrid, Spain
| | - Sergio Ciordia
- Proteomics Unit, National Center for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Maria C Mena
- Proteomics Unit, National Center for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Stepan V Toshchakov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Peter N Golyshin
- School of Biological Sciences and The Centre for Environmental Biotechnology, Bangor University, Bangor, United Kingdom
| | - Michail M Yakimov
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy.,Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
33
|
Liang X, Whitham JM, Holwerda EK, Shao X, Tian L, Wu YW, Lombard V, Henrissat B, Klingeman DM, Yang ZK, Podar M, Richard TL, Elkins JG, Brown SD, Lynd LR. Development and characterization of stable anaerobic thermophilic methanogenic microbiomes fermenting switchgrass at decreasing residence times. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:243. [PMID: 30202438 PMCID: PMC6126044 DOI: 10.1186/s13068-018-1238-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Anaerobic fermentation of lignocellulose occurs in both natural and managed environments, and is an essential part of the carbon cycle as well as a promising route to sustainable production of fuels and chemicals. Lignocellulose solubilization by mixed microbiomes is important in these contexts. RESULTS Here, we report the development of stable switchgrass-fermenting enrichment cultures maintained at various residence times and moderately high (55 °C) temperatures. Anaerobic microbiomes derived from a digester inoculum were incubated at 55 °C and fed semi-continuously with medium containing 30 g/L mid-season harvested switchgrass to achieve residence times (RT) of 20, 10, 5, and 3.3 days. Stable, time-invariant cellulolytic methanogenic cultures with minimal accumulation of organic acids were achieved for all RTs. Fractional carbohydrate solubilization was 0.711, 0.654, 0.581 and 0.538 at RT = 20, 10, 5 and 3.3 days, respectively, and glucan solubilization was proportional to xylan solubilization at all RTs. The rate of solubilization was described well by the equation r = k(C - C0fr), where C represents the concentration of unutilized carbohydrate, C0 is the concentration of carbohydrate (cellulose and hemicellulose) entering the bioreactor and fr is the extrapolated fraction of entering carbohydrate that is recalcitrant at infinite residence time. The 3.3 day RT is among the shortest RT reported for stable thermophilic, methanogenic digestion of a lignocellulosic feedstock. 16S rDNA phylotyping and metagenomic analyses were conducted to characterize the effect of RT on community dynamics and to infer functional roles in the switchgrass to biogas conversion to the various microbial taxa. Firmicutes were the dominant phylum, increasing in relative abundance from 54 to 96% as RT decreased. A Clostridium clariflavum strain with genetic markers for xylose metabolism was the most abundant lignocellulose-solubilizing bacterium. A Thermotogae (Defluviitoga tunisiensis) was the most abundant bacterium in switchgrass digesters at RT = 20 days but decreased in abundance at lower RTs as did multiple Chloroflexi. Synergistetes and Euryarchaeota were present at roughly constant levels over the range of RTs examined. CONCLUSIONS A system was developed in which stable methanogenic steady-states were readily obtained with a particulate biomass feedstock, mid-season switchgrass, at laboratory (1 L) scale. Characterization of the extent and rate of carbohydrate solubilization in combination with 16S rDNA and metagenomic sequencing provides a multi-dimensional view of performance, species composition, glycoside hydrolases, and metabolic function with varying residence time. These results provide a point of reference and guidance for future studies and organism development efforts involving defined cultures.
Collapse
Affiliation(s)
- Xiaoyu Liang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
| | - Jason M. Whitham
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Evert K. Holwerda
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
| | - Xiongjun Shao
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
| | - Liang Tian
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, 106 Taiwan
| | - Vincent Lombard
- CNRS, UMR 7257, Aix-Marseille University, 13288 Marseille, France
- INRA, USC 1408 AFMB, 13288 Marseille, France
| | - Bernard Henrissat
- CNRS, UMR 7257, Aix-Marseille University, 13288 Marseille, France
- INRA, USC 1408 AFMB, 13288 Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dawn M. Klingeman
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Zamin K. Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Tom L. Richard
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, State College, PA 16802 USA
| | - James G. Elkins
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Steven D. Brown
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- Present Address: LanzaTech, Inc., Skokie, IL 60077 USA
| | - Lee R. Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
| |
Collapse
|
34
|
Chau ATT, Lee M, Adrian L, Manefield MJ. Syntrophic Partners Enhance Growth and Respiratory Dehalogenation of Hexachlorobenzene by Dehalococcoides mccartyi Strain CBDB1. Front Microbiol 2018; 9:1927. [PMID: 30186256 PMCID: PMC6113397 DOI: 10.3389/fmicb.2018.01927] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/30/2018] [Indexed: 11/19/2022] Open
Abstract
This study investigated syntrophic interactions between chlorinated benzene respiring Dehalococcoides mccartyi strain CBDB1 and fermenting partners (Desulfovibrio vulgaris, Syntrophobacter fumaroxidans, and Geobacter lovleyi) during hexachlorobenzene respiration. Dechlorination rates in syntrophic co-cultures were enhanced 2-3 fold compared to H2 fed CBDB1 pure cultures (0.23 ± 0.04 μmol Cl− day−1). Syntrophic partners were also able to supply cobalamins to CBDB1, albeit with 3–10 fold lower resultant dechlorination activity compared to cultures receiving exogenous cyanocobalamin. Strain CBDB1 pure cultures accumulated ~1 μmol of carbon monoxide per 87.5 μmol Cl− released during hexachlorobenzene respiration resulting in decreases in dechlorination activity. The syntrophic partners investigated were shown to consume carbon monoxide generated by CBDB1, thus relieving carbon monoxide autotoxicity. Accumulation of lesser chlorinated chlorobenzene congeners (1,3- and 1,4-dichlorobenzene and 1,3,5-trichlorobenzene) also inhibited dechlorination activity and their removal from the headspace through adsorption to granular activated carbon was shown to restore activity. Proteomic analysis revealed co-culturing strain CBDB1 with Geobacter lovleyi upregulated CBDB1 genes associated with reductive dehalogenases, hydrogenases, formate dehydrogenase, and ribosomal proteins. These data provide insight into CBDB1 ecology and inform strategies for application of CBDB1 in ex situ hexachlorobenzene destruction technologies.
Collapse
Affiliation(s)
- Anh T T Chau
- College of Agriculture and Applied Biology, Cantho University, Can Tho, Vietnam.,School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Matthew Lee
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Lorenz Adrian
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Michael J Manefield
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia.,School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
35
|
Fu L, Song T, Zhang W, Zhang J, Lu Y. Stimulatory Effect of Magnetite Nanoparticles on a Highly Enriched Butyrate-Oxidizing Consortium. Front Microbiol 2018; 9:1480. [PMID: 30026737 PMCID: PMC6041394 DOI: 10.3389/fmicb.2018.01480] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/13/2018] [Indexed: 11/13/2022] Open
Abstract
Syntrophic oxidation of butyrate is catabolized by a few bacteria specialists in the presence of methanogens. In the present study, a highly enriched butyrate-oxidizing consortium was obtained from a wetland sediment in Tibetan Plateau. During continuous transfers of the enrichment, the addition of magnetite nanoparticles (nanoFe3O4) consistently enhanced butyrate oxidation and CH4 production. Molecular analysis revealed that all bacterial sequences from the consortium belonged to Syntrophomonas with the closest relative of Syntrophomonas wolfei and 96% of the archaeal sequences were related to Methanobacteria with the remaining sequences to Methanocella. Addition of graphite and carbon nanotubes for a replacement of nanoFe3O4 caused the similar stimulatory effect. Silica coating of nanoFe3O4 surface, however, completely eliminated the stimulatory effect. The control experiment with axenic cultivation of a Syntrophomonas strain and two methanogen strains showed no effect by nanoFe3O4. Together, the results in the present study support that syntrophic oxidation of butyrate is likely facilitated by direct interspecies electron transfer in the presence of conductive nanomaterials.
Collapse
Affiliation(s)
- Li Fu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianze Song
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Wei Zhang
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jie Zhang
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
36
|
Treu L, Campanaro S, Kougias PG, Sartori C, Bassani I, Angelidaki I. Hydrogen-Fueled Microbial Pathways in Biogas Upgrading Systems Revealed by Genome-Centric Metagenomics. Front Microbiol 2018; 9:1079. [PMID: 29892275 PMCID: PMC5985405 DOI: 10.3389/fmicb.2018.01079] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/07/2018] [Indexed: 01/16/2023] Open
Abstract
Biogas upgrading via carbon dioxide hydrogenation is an emerging technology for electrofuel production. The biomethanation efficiency is strongly dependent on a balanced microbial consortium, whose high- resolution characterization along with their functional potential and interactions are pivotal for process optimization. The present work is the first genome-centric metagenomic study on mesophilic and thermophilic biogas upgrading reactors aiming to define the metabolic profile of more than 200 uncultivated microbes involved in hydrogen assisted methanogenesis. The outcomes from predictive functional analyses were correlated with microbial abundance variations to clarify the effect of process parameters on the community. The operational temperature significantly influenced the microbial richness of the reactors, while the H2 addition distinctively alternated the abundance of the taxa. Two different Methanoculleus species (one mesophilic and one thermophilic) were identified as the main responsible ones for methane metabolism. Finally, it was demonstrated that the addition of H2 exerted a selective pressure on the concerted or syntrophic interactions of specific microbes functionally related to carbon fixation, propionate and butanoate metabolisms. Novel bacteria were identified as candidate syntrophic acetate oxidizers (e.g., Tepidanaerobacter sp. DTU063), while the addition of H2 favored the proliferation of potential homoacetogens (e.g., Clostridia sp. DTU183). Population genomes encoding genes of Wood-Ljungdahl pathway were mainly thermophilic, while propionate degraders were mostly identified at mesophilic conditions. Finally, putative syntrophic interactions were identified between microbes that have either versatile metabolic abilities or are obligate/facultative syntrophs.
Collapse
Affiliation(s)
- Laura Treu
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Panagiotis G. Kougias
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Cristina Sartori
- Department of Agronomy, Food Natural Resources Animals and Environment, University of Padova, Padova, Italy
| | - Ilaria Bassani
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
37
|
Zhang J, Jiao S, Lu Y. Biogeographic distribution of bacterial, archaeal and methanogenic communities and their associations with methanogenic capacity in Chinese wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:664-675. [PMID: 29223893 DOI: 10.1016/j.scitotenv.2017.11.279] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 05/12/2023]
Abstract
Natural wetlands and anthropogenic paddy fields are the dominant biogenic sources of atmospheric methane emission which have been speculated as the most probable sources for the increase of post-2006 atmospheric methane. Regional differences in CH4 emission is possibly due to microbial biogeographic distribution. Here we collected soils from 19 wetlands from different regions in China. The methane production capacity (MPC) was measured for each soil samples and varied from 1.11 to 841.94mg/kg dry soil. High throughput sequencing was employed to investigate the diversity and composition of bacterial, archaeal and methanogenic communities. Similar biogeographic patterns for bacterial, archaeal and methanogenic communities along the latitudinal gradient were observed, and the biogeographic assemblies of different microbial groups were driven by concurrent factors, including edaphic variables (total organic carbon, total phosphorus and pH) and climatic variables (annual frost days, mean annual temperature, direct solar radiation and mean annual precipitation). MPC was significantly correlated with TOC concentration, and in addition, various functional taxa were positively correlated with MPC (P<0.05), for example, Sphingomonas, Syntrophomonas, Methanospirillum and Methanoregula, indicating their potential contributions in the methanogenic process, and many of them were fermentative bacteria and methanogens. Network analysis showed that some syntrophs, sulfate-reducers and methanogens were tightly co-occurred in one module, suggesting their involvements in cross-linked functional processes. Our study implicated both temperature and substrate availability altered the biogeographic patterns of microbial community as well as methane production potential in Chinese wetlands.
Collapse
Affiliation(s)
- Jie Zhang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Shuo Jiao
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
38
|
Sedano-Núñez VT, Boeren S, Stams AJM, Plugge CM. Comparative proteome analysis of propionate degradation by Syntrophobacter fumaroxidans in pure culture and in coculture with methanogens. Environ Microbiol 2018; 20:1842-1856. [PMID: 29611893 PMCID: PMC5947623 DOI: 10.1111/1462-2920.14119] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 11/28/2022]
Abstract
Syntrophobacter fumaroxidans is a sulfate-reducing bacterium able to grow on propionate axenically or in syntrophic interaction with methanogens or other sulfate-reducing bacteria. We performed a proteome analysis of S. fumaroxidans growing with propionate axenically with sulfate or fumarate, and in syntrophy with Methanospirillum hungatei, Methanobacterium formicicum or Desulfovibrio desulfuricans. Special attention was put on the role of hydrogen and formate in interspecies electron transfer (IET) and energy conservation. Formate dehydrogenase Fdh1 and hydrogenase Hox were the main confurcating enzymes used for energy conservation. In the periplasm, Fdh2 and hydrogenase Hyn play an important role in reverse electron transport associated with succinate oxidation. Periplasmic Fdh3 and Fdh5 were involved in IET. The sulfate reduction pathway was poorly regulated and many enzymes associated with sulfate reduction (Sat, HppA, AprAB, DsrAB and DsrC) were abundant even at conditions where sulfate was not present. Proteins similar to heterodisulfide reductases (Hdr) were abundant. Hdr/Flox was detected in all conditions while HdrABC/HdrL was exclusively detected when sulfate was available; these complexes most likely confurcate electrons. Our results suggest that S. fumaroxidans mainly used formate for electron release and that different confurcating mechanisms were used in its sulfidogenic metabolism.
Collapse
Affiliation(s)
- Vicente T Sedano-Núñez
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, Wageningen, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen, The Netherlands.,Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen, The Netherlands
| |
Collapse
|
39
|
Li Y, Sun Y, Li L, Yuan Z. Acclimation of acid-tolerant methanogenic propionate-utilizing culture and microbial community dissecting. BIORESOURCE TECHNOLOGY 2018; 250:117-123. [PMID: 29161570 DOI: 10.1016/j.biortech.2017.11.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 05/28/2023]
Abstract
The acid-tolerant methanogenic propionate degradation culture was acclimated in a propionate-fed semi-continuous bioreactor by daily adjusting the digestate pH. The performance of propionate fermentation, the respond of microbial community structure to the acidic environment, and the microbial network for propionate degradation in the acid-tolerant culture was investigated. The results demonstrated that after long term of acclimation to low pH, the digester could produce methane from propionate at pH 4.8-5.5 with 0.3-0.4 L g-1 propionic acid (HPr) d-1 of the volatile solids (VS) methane production. The predominant methanogens shifted from acetoclastic methanogens (∼87%) to hydrogenotrophic methanogens (∼67%) in the bioreactor with the dropping pH, indicating that hydrogenotrophic methanogens were more acid-tolerant than acetoclastic methanogens. Smithella (∼11%), Syntrophobacter (∼7%) and Pelotomaculum (∼3%) were the main propionate oxidizers in the acid-tolerant propionate-utilizing culture. Methanothrix dominant acetoclastic methanogens, while Methanolinea and Methanospirillum were the major H2 scavengers to support Syntrophobacter and Pelotomaculum syntrophic propionate degradation.
Collapse
Affiliation(s)
- Ying Li
- Laboratory of Biomass Bio-chemical Conversion, GuangZhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yongming Sun
- Laboratory of Biomass Bio-chemical Conversion, GuangZhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Lianhua Li
- Laboratory of Biomass Bio-chemical Conversion, GuangZhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| | - Zhenhong Yuan
- Laboratory of Biomass Bio-chemical Conversion, GuangZhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| |
Collapse
|
40
|
Ruiz-Sánchez J, Campanaro S, Guivernau M, Fernández B, Prenafeta-Boldú FX. Effect of ammonia on the active microbiome and metagenome from stable full-scale digesters. BIORESOURCE TECHNOLOGY 2018; 250:513-522. [PMID: 29197774 DOI: 10.1016/j.biortech.2017.11.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 05/20/2023]
Abstract
Four full-scale anaerobic digesters with a long history of stable operation were characterized in terms of active microbiome and metagenome. Isotopic fractionation of biogas demonstrated that acetotrophy was rather prevalent in reactors operated at <3 gTAN L-1 while hydrogenotrophy was predominant at >6 gTAN L-1, suggesting that syntrophic acetate oxidizing bacteria (SAOB) played a significant role in the latter. These results were generally coherent with the observed active bacterial and archaeal communities but no known SAOB were observed. Metagenome descriptions yielded 73 assembled population genomes, of which only 7 could be assigned at the species level. Gene annotation and association to relevant metabolic pathways indicated that the phyla Chloroflexi and Bacteroidales might encompass new, currently undescribed, SAOB/formate producing species that would metabolize acetate via the glycine cleavage system. The predominant hydrogenotrophic counterpart at a high ammonia content belonged to the genus Methanoculleus, which could also grow on acetate to a certain extent.
Collapse
Affiliation(s)
- J Ruiz-Sánchez
- GIRO Joint Research Unit IRTA-UPC, IRTA Torre Marimon, 08140 Caldes de Montbui (Barcelona), Catalonia, Spain.
| | - S Campanaro
- Department of Biology, University of Padua, Via U.Bassi 58/b 35121, Padua, Italy
| | - M Guivernau
- GIRO Joint Research Unit IRTA-UPC, IRTA Torre Marimon, 08140 Caldes de Montbui (Barcelona), Catalonia, Spain
| | - B Fernández
- GIRO Joint Research Unit IRTA-UPC, IRTA Torre Marimon, 08140 Caldes de Montbui (Barcelona), Catalonia, Spain
| | - F X Prenafeta-Boldú
- GIRO Joint Research Unit IRTA-UPC, IRTA Torre Marimon, 08140 Caldes de Montbui (Barcelona), Catalonia, Spain
| |
Collapse
|
41
|
Detman A, Mielecki D, Pleśniak Ł, Bucha M, Janiga M, Matyasik I, Chojnacka A, Jędrysek MO, Błaszczyk MK, Sikora A. Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:116. [PMID: 29721040 PMCID: PMC5910564 DOI: 10.1186/s13068-018-1106-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/04/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Anaerobic digestion, whose final products are methane and carbon dioxide, ensures energy flow and circulation of matter in ecosystems. This naturally occurring process is used for the production of renewable energy from biomass. Lactate, a common product of acidic fermentation, is a key intermediate in anaerobic digestion of biomass in the environment and biogas plants. Effective utilization of lactate has been observed in many experimental approaches used to study anaerobic digestion. Interestingly, anaerobic lactate oxidation and lactate oxidizers as a physiological group in methane-yielding microbial communities have not received enough attention in the context of the acetogenic step of anaerobic digestion. This study focuses on metabolic transformation of lactate during the acetogenic and methanogenic steps of anaerobic digestion in methane-yielding bioreactors. RESULTS Methane-yielding microbial communities instead of pure cultures of acetate producers were used to process artificial lactate-rich media to methane and carbon dioxide in up-flow anaerobic sludge blanket reactors. The media imitated the mixture of acidic products found in anaerobic environments/digesters where lactate fermentation dominates in acidogenesis. Effective utilization of lactate and biogas production was observed. 16S rRNA profiling was used to examine the selected methane-yielding communities. Among Archaea present in the bioreactors, the order Methanosarcinales predominated. The acetoclastic pathway of methane formation was further confirmed by analysis of the stable carbon isotope composition of methane and carbon dioxide. The domain Bacteria was represented by Bacteroidetes, Firmicutes, Proteobacteria, Synergistetes, Actinobacteria, Spirochaetes, Tenericutes, Caldithrix, Verrucomicrobia, Thermotogae, Chloroflexi, Nitrospirae, and Cyanobacteria. Available genome sequences of species and/or genera identified in the microbial communities were searched for genes encoding the lactate-oxidizing metabolic machinery homologous to those of Acetobacterium woodii and Desulfovibrio vulgaris. Furthermore, genes for enzymes of the reductive acetyl-CoA pathway were present in the microbial communities. CONCLUSIONS The results indicate that lactate is oxidized mainly to acetate during the acetogenic step of AD and this comprises the acetotrophic pathway of methanogenesis. The genes for lactate utilization under anaerobic conditions are widespread in the domain Bacteria. Lactate oxidation to the substrates for methanogens is the most energetically attractive process in comparison to butyrate, propionate, or ethanol oxidation.
Collapse
Affiliation(s)
- Anna Detman
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Damian Mielecki
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz Pleśniak
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Bucha
- Faculty of Earth Sciences, University of Silesia in Katowice, Sosnowiec, Poland
| | - Marek Janiga
- Oil and Gas Institute, National Research Institute, Cracow, Poland
| | - Irena Matyasik
- Oil and Gas Institute, National Research Institute, Cracow, Poland
| | - Aleksandra Chojnacka
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Anna Sikora
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
42
|
Müller N, Timmers P, Plugge CM, Stams AJM, Schink B. Syntrophy in Methanogenic Degradation. (ENDO)SYMBIOTIC METHANOGENIC ARCHAEA 2018. [DOI: 10.1007/978-3-319-98836-8_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Stolze Y, Bremges A, Maus I, Pühler A, Sczyrba A, Schlüter A. Targeted in situ metatranscriptomics for selected taxa from mesophilic and thermophilic biogas plants. Microb Biotechnol 2017; 11:667-679. [PMID: 29205917 PMCID: PMC6011919 DOI: 10.1111/1751-7915.12982] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 11/26/2022] Open
Abstract
Biogas production is performed anaerobically by complex microbial communities with key species driving the process. Hence, analyses of their in situ activities are crucial to understand the process. In a previous study, metagenome sequencing and subsequent genome binning for different production‐scale biogas plants (BGPs) resulted in four genome bins of special interest, assigned to the phyla Thermotogae, Fusobacteria, Spirochaetes and Cloacimonetes, respectively, that were genetically analysed. In this study, metatranscriptome sequencing of the same BGP samples was conducted, enabling in situ transcriptional activity determination of these genome bins. For this, mapping of metatranscriptome reads on genome bin sequences was performed providing transcripts per million (TPM) values for each gene. This approach revealed an active sugar‐based metabolism of the Thermotogae and Spirochaetes bins and an active amino acid‐based metabolism of the Fusobacteria and Cloacimonetes bins. The data also hint at syntrophic associations of the four corresponding species with methanogenic Archaea.
Collapse
Affiliation(s)
- Yvonne Stolze
- Center for Biotechnology - CeBiTec, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Andreas Bremges
- Center for Biotechnology - CeBiTec, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany.,Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Irena Maus
- Center for Biotechnology - CeBiTec, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Alfred Pühler
- Center for Biotechnology - CeBiTec, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Alexander Sczyrba
- Center for Biotechnology - CeBiTec, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany.,Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology - CeBiTec, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| |
Collapse
|
44
|
Liu H, Zhang B, Yuan H, Cheng Y, Wang S, He Z. Microbial reduction of vanadium (V) in groundwater: Interactions with coexisting common electron acceptors and analysis of microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1362-1369. [PMID: 28916278 DOI: 10.1016/j.envpol.2017.08.111] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 07/02/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
Vanadium (V) pollution in groundwater has posed serious risks to the environment and public health. Anaerobic microbial reduction can achieve efficient and cost-effective remediation of V(V) pollution, but its interactions with coexisting common electron acceptors such as NO3-, Fe3+, SO42- and CO2 in groundwater remain unknown. In this study, the interactions between V(V) reduction and reduction of common electron acceptors were examined with revealing relevant microbial community and identifying dominant species. The results showed that the presence of NO3- slowed down the removal of V(V) in the early stage of the reaction but eventually led to a similar reduction efficiency (90.0% ± 0.4% in 72-h operation) to that in the reactor without NO3-. The addition of Fe3+, SO42-, or CO2 decreased the efficiency of V(V) reduction. Furthermore, the microbial reduction of these coexisting electron acceptors was also adversely affected by the presence of V(V). The addition of V(V) as well as the extra dose of Fe3+, SO42- and CO2 decreased microbial diversity and evenness, whereas the reactor supplied with NO3- showed the increased diversity. High-throughput 16S rRNA gene pyrosequencing analysis indicated the accumulation of Geobacter, Longilinea, Syntrophobacter, Spirochaeta and Anaerolinea, which might be responsible for the reduction of multiple electron acceptors. The findings of this study have demonstrated the feasibility of anaerobic bioremediation of V(V) and the possible influence of coexisting electron acceptors commonly found in groundwater.
Collapse
Affiliation(s)
- Hui Liu
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, Beijing 100083, China
| | - Baogang Zhang
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, Beijing 100083, China.
| | - Heyang Yuan
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Yutong Cheng
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, Beijing 100083, China
| | - Song Wang
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, Beijing 100083, China
| | - Zhen He
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA.
| |
Collapse
|
45
|
Losey NA, Mus F, Peters JW, Le HM, McInerney MJ. Syntrophomonas wolfei Uses an NADH-Dependent, Ferredoxin-Independent [FeFe]-Hydrogenase To Reoxidize NADH. Appl Environ Microbiol 2017; 83:e01335-17. [PMID: 28802265 PMCID: PMC5626996 DOI: 10.1128/aem.01335-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/29/2017] [Indexed: 12/19/2022] Open
Abstract
Syntrophomonas wolfei syntrophically oxidizes short-chain fatty acids (four to eight carbons in length) when grown in coculture with a hydrogen- and/or formate-using methanogen. The oxidation of 3-hydroxybutyryl-coenzyme A (CoA), formed during butyrate metabolism, results in the production of NADH. The enzyme systems involved in NADH reoxidation in S. wolfei are not well understood. The genome of S. wolfei contains a multimeric [FeFe]-hydrogenase that may be a mechanism for NADH reoxidation. The S. wolfei genes for the multimeric [FeFe]-hydrogenase (hyd1ABC; SWOL_RS05165, SWOL_RS05170, SWOL_RS05175) and [FeFe]-hydrogenase maturation proteins (SWOL_RS05180, SWOL_RS05190, SWOL_RS01625) were coexpressed in Escherichia coli, and the recombinant Hyd1ABC was purified and characterized. The purified recombinant Hyd1ABC was a heterotrimer with an αβγ configuration and a molecular mass of 115 kDa. Hyd1ABC contained 29.2 ± 1.49 mol of Fe and 0.7 mol of flavin mononucleotide (FMN) per mole enzyme. The purified, recombinant Hyd1ABC reduced NAD+ and oxidized NADH without the presence of ferredoxin. The HydB subunit of the S. wolfei multimeric [FeFe]-hydrogenase lacks two iron-sulfur centers that are present in known confurcating NADH- and ferredoxin-dependent [FeFe]-hydrogenases. Hyd1ABC is a NADH-dependent hydrogenase that produces hydrogen from NADH without the need of reduced ferredoxin, which differs from confurcating [FeFe]-hydrogenases. Hyd1ABC provides a mechanism by which S. wolfei can reoxidize NADH produced during syntrophic butyrate oxidation when low hydrogen partial pressures are maintained by a hydrogen-consuming microorganism.IMPORTANCE Our work provides mechanistic understanding of the obligate metabolic coupling that occurs between hydrogen-producing fatty and aromatic acid-degrading microorganisms and their hydrogen-consuming partners in the process called syntrophy (feeding together). The multimeric [FeFe]-hydrogenase used NADH without the involvement of reduced ferredoxin. The multimeric [FeFe]-hydrogenase would produce hydrogen from NADH only when hydrogen concentrations were low. Hydrogen production from NADH by Syntrophomonas wolfei would likely cease before any detectable amount of cell growth occurred. Thus, continual hydrogen production requires the presence of a hydrogen-consuming partner to keep hydrogen concentrations low and explains, in part, the obligate requirement that S. wolfei has for a hydrogen-consuming partner organism during growth on butyrate. We have successfully expressed genes encoding a multimeric [FeFe]-hydrogenase in E. coli, demonstrating that such an approach can be advantageous to characterize complex redox proteins from difficult-to-culture microorganisms.
Collapse
Affiliation(s)
- Nathaniel A Losey
- Department of Plant Biology and Microbiology, University of Oklahoma, Norman, Oklahoma, USA
| | - Florence Mus
- Department of Chemistry and Biochemistry, Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - John W Peters
- Department of Chemistry and Biochemistry, Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Huynh M Le
- Department of Plant Biology and Microbiology, University of Oklahoma, Norman, Oklahoma, USA
| | - Michael J McInerney
- Department of Plant Biology and Microbiology, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
46
|
da Silva Martins A, Ornelas Ferreira B, Ribeiro NC, Martins R, Rabelo Leite L, Oliveira G, Colturato LF, Chernicharo CA, de Araujo JC. Metagenomic analysis and performance of a mesophilic anaerobic reactor treating food waste at various load rates. ENVIRONMENTAL TECHNOLOGY 2017; 38:2153-2163. [PMID: 27788622 DOI: 10.1080/09593330.2016.1247197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
The performance of a demonstration-scale anaerobic reactor treating food waste was evaluated with an emphasis on microbial response to increasing organic loading rates (OLRs). The reactor exhibited a stable performance in terms of methane yield at OLR ranging from 1.0 to 2.4 kg VS L-1 day-1 (phases I and II), compared to that at phase III (OLR: 1.0-1.5 kg VS L-1 day-1) when the food waste exhibited greater acidity. Deep sequencing analysis revealed shifts in the microbial composition at each operational phase. The phyla Firmicutes and Bacteroidetes were favoured, whereas the abundance of Proteobacteria and Chloroflexi decreased at higher OLRs, indicating that fermenting-, hydrolytic- (and acidogenic) bacteria were selected under this condition. Changes were observed in the composition of methanogens, and not the abundance, in response to a shift in OLR. Methanosaeta and Methanospirillum dominated at low OLRs, indicating the importance of both acetoclastic and hydrogenotrophic methanogens for methane production during this condition. Methanosaeta almost disappeared at high OLRs, whereas Methanoculleus was favoured. Syntrophic prokaryotes were in high abundance (>9%), indicating that syntrophic methane production was important in this reactor. Syntrophic interactions between hydrogen-producer (Syntrophomonas and Desulfosporosinus) and hydrogenotrophic methanogens were more evident at high OLR. These results indicate that hydrogenotrophic methanogenesis contributed significantly to methane production at higher OLRs than when the reactor was operated at low OLR.
Collapse
Affiliation(s)
- Alessandra da Silva Martins
- a Departamento de Engenharia Sanitária e Ambiental , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Bernardo Ornelas Ferreira
- a Departamento de Engenharia Sanitária e Ambiental , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Nirvana Cecília Ribeiro
- a Departamento de Engenharia Sanitária e Ambiental , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Raiane Martins
- a Departamento de Engenharia Sanitária e Ambiental , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Laura Rabelo Leite
- b Genomics and Computational Biology Group , René Rachou Research Center, Oswaldo Cruz Foundation , Belo Horizonte , Brazil
| | - Guilherme Oliveira
- b Genomics and Computational Biology Group , René Rachou Research Center, Oswaldo Cruz Foundation , Belo Horizonte , Brazil
| | - Luis Felipe Colturato
- a Departamento de Engenharia Sanitária e Ambiental , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Carlos Augusto Chernicharo
- a Departamento de Engenharia Sanitária e Ambiental , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Juliana Calabria de Araujo
- a Departamento de Engenharia Sanitária e Ambiental , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
47
|
Qin QS, Feng DS, Liu PF, He Q, Li X, Liu AM, Zhang H, Hu GQ, Cheng L. Metagenomic Characterization of Candidatus Smithella cisternae Strain M82_1, a Syntrophic Alkane-Degrading Bacteria, Enriched from the Shengli Oil Field. Microbes Environ 2017; 32:234-243. [PMID: 28781346 PMCID: PMC5606693 DOI: 10.1264/jsme2.me17022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The methanogenic degradation of hydrocarbons plays an important role in hydrocarbon-contaminated environments in the absence of an external electron acceptor. Members of Syntrophaceae sublineages were previously reported to be responsible for syntrophic alkane degradation. However, limited information is currently available on their physiological capabilities in nature because it is very challenging to cultivate these as-yet uncultured microbes. We herein performed metagenomic sequencing of the methanogenic hexadecane-degrading culture M82 and recovered a nearly complete genome (2.75 Mb, estimated completeness ≥97%) belonging to Syntrophaceae sublineage II. The assembly genome was tentatively named “Candidatus Smithella cisternae strain M82_1”. Genes encoding alkylsuccinate synthase for alkane activation were identified, suggesting that this organism is capable of oxidizing alkanes through fumarate addition. This capability was further supported by the detection of methyl pentadecyl succinic acid and methyl tetradecyl succinic acid in cultures amended with hexadecane and pentadecane, respectively. Genes encoding enzymes for the β-oxidation of long-chain fatty acids and butyrate were also identified. The electron transfer flavoprotein/DUF224 complex is presumed to link electron flow from acyl-CoA dehydrogenase to a membrane hydrogenase or formate dehydrogenase. Although no indications of Rnf complexes were detected, genes encoding electron-confurcating hydrogenase and formate dehydrogenase were proposed to couple the thermodynamically favorable oxidation of ferredoxin to generate H2 and formate from NADH. Strain M82_1 synthesized ATP from acetyl-CoA by substrate-level phosphorylation or F1F0-ATP synthases. These results provide an insight into the potential metabolic traits and ecophysiological roles of the syntrophic alkane degrader Syntrophaceae.
Collapse
Affiliation(s)
- Qian-Shan Qin
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture
| | | | - Peng-Fei Liu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture
| | - Qiao He
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture
| | - Xia Li
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture
| | | | - Hui Zhang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture
| | - Guo-Quan Hu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture
| |
Collapse
|
48
|
Liu P, Conrad R. Syntrophobacteraceae-affiliated species are major propionate-degrading sulfate reducers in paddy soil. Environ Microbiol 2017; 19:1669-1686. [DOI: 10.1111/1462-2920.13698] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/09/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Pengfei Liu
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| | - Ralf Conrad
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| |
Collapse
|
49
|
Reverse Methanogenesis and Respiration in Methanotrophic Archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2017; 2017:1654237. [PMID: 28154498 PMCID: PMC5244752 DOI: 10.1155/2017/1654237] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/11/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022]
Abstract
Anaerobic oxidation of methane (AOM) is catalyzed by anaerobic methane-oxidizing archaea (ANME) via a reverse and modified methanogenesis pathway. Methanogens can also reverse the methanogenesis pathway to oxidize methane, but only during net methane production (i.e., “trace methane oxidation”). In turn, ANME can produce methane, but only during net methane oxidation (i.e., enzymatic back flux). Net AOM is exergonic when coupled to an external electron acceptor such as sulfate (ANME-1, ANME-2abc, and ANME-3), nitrate (ANME-2d), or metal (oxides). In this review, the reversibility of the methanogenesis pathway and essential differences between ANME and methanogens are described by combining published information with domain based (meta)genome comparison of archaeal methanotrophs and selected archaea. These differences include abundances and special structure of methyl coenzyme M reductase and of multiheme cytochromes and the presence of menaquinones or methanophenazines. ANME-2a and ANME-2d can use electron acceptors other than sulfate or nitrate for AOM, respectively. Environmental studies suggest that ANME-2d are also involved in sulfate-dependent AOM. ANME-1 seem to use a different mechanism for disposal of electrons and possibly are less versatile in electron acceptors use than ANME-2. Future research will shed light on the molecular basis of reversal of the methanogenic pathway and electron transfer in different ANME types.
Collapse
|
50
|
Großkopf T, Zenobi S, Alston M, Folkes L, Swarbreck D, Soyer OS. A stable genetic polymorphism underpinning microbial syntrophy. THE ISME JOURNAL 2016; 10:2844-2853. [PMID: 27258948 PMCID: PMC5042321 DOI: 10.1038/ismej.2016.80] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
Syntrophies are metabolic cooperations, whereby two organisms co-metabolize a substrate in an interdependent manner. Many of the observed natural syntrophic interactions are mandatory in the absence of strong electron acceptors, such that one species in the syntrophy has to assume the role of electron sink for the other. While this presents an ecological setting for syntrophy to be beneficial, the potential genetic drivers of syntrophy remain unknown to date. Here, we show that the syntrophic sulfate-reducing species Desulfovibrio vulgaris displays a stable genetic polymorphism, where only a specific genotype is able to engage in syntrophy with the hydrogenotrophic methanogen Methanococcus maripaludis. This 'syntrophic' genotype is characterized by two genetic alterations, one of which is an in-frame deletion in the gene encoding for the ion-translocating subunit cooK of the membrane-bound COO hydrogenase. We show that this genotype presents a specific physiology, in which reshaping of energy conservation in the lactate oxidation pathway enables it to produce sufficient intermediate hydrogen for sustained M. maripaludis growth and thus, syntrophy. To our knowledge, these findings provide for the first time a genetic basis for syntrophy in nature and bring us closer to the rational engineering of syntrophy in synthetic microbial communities.
Collapse
Affiliation(s)
- Tobias Großkopf
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - Simone Zenobi
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - Mark Alston
- The Genome Analysis Centre, Norwich Research Park, Norwich, UK
| | - Leighton Folkes
- The Genome Analysis Centre, Norwich Research Park, Norwich, UK
| | - David Swarbreck
- The Genome Analysis Centre, Norwich Research Park, Norwich, UK
| | - Orkun S Soyer
- School of Life Sciences, The University of Warwick, Coventry, UK
| |
Collapse
|