1
|
Gu L, Grodzinski B, Han J, Marie T, Zhang YJ, Song YC, Sun Y. An exploratory steady-state redox model of photosynthetic linear electron transport for use in complete modelling of photosynthesis for broad applications. PLANT, CELL & ENVIRONMENT 2023; 46:1540-1561. [PMID: 36760139 DOI: 10.1111/pce.14563] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/24/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
A photochemical model of photosynthetic electron transport (PET) is needed to integrate photophysics, photochemistry, and biochemistry to determine redox conditions of electron carriers and enzymes for plant stress assessment and mechanistically link sun-induced chlorophyll fluorescence to carbon assimilation for remotely sensing photosynthesis. Towards this goal, we derived photochemical equations governing the states and redox reactions of complexes and electron carriers along the PET chain. These equations allow the redox conditions of the mobile plastoquinone pool and the cytochrome b6 f complex (Cyt) to be inferred with typical fluorometry. The equations agreed well with fluorometry measurements from diverse C3 /C4 species across environments in the relationship between the PET rate and fraction of open photosystem II reaction centres. We found the oxidation of plastoquinol by Cyt is the bottleneck of PET, and genetically improving the oxidation of plastoquinol by Cyt may enhance the efficiency of PET and photosynthesis across species. Redox reactions and photochemical and biochemical interactions are highly redundant in their complex controls of PET. Although individual reaction rate constants cannot be resolved, they appear in parameter groups which can be collectively inferred with fluorometry measurements for broad applications. The new photochemical model developed enables advances in different fronts of photosynthesis research.
Collapse
Affiliation(s)
- Lianhong Gu
- Oak Ridge National Laboratory, Environmental Sciences Division and Climate Change Science Institute, Oak Ridge, Tennessee, USA
| | - Bernard Grodzinski
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
| | - Jimei Han
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Telesphore Marie
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
| | - Yang C Song
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona, USA
| | - Ying Sun
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Zournas A, Mani K, Dismukes GC. Cyclic electron flow around photosystem II in silico: How it works and functions in vivo. PHOTOSYNTHESIS RESEARCH 2023; 156:129-145. [PMID: 36753032 DOI: 10.1007/s11120-023-00997-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
To date, cyclic electron flow around PSI (PSI-CEF) has been considered the primary (if not the only) mechanism accepted to adjust the ratio of linear vs cyclic electron flow that is essential to adjust the ratio of ATP/NADPH production needed for CO2 carboxylation. Here we provide a kinetic model showing that cyclic electron flow within PSII (PSII-CEF) is essential to account for the accelerating rate of decay in flash-induced oscillations of O2 yield as the PQ pool progressively reduces to PQH2. Previously, PSII-CEF was modeled by backward transitions using empirical Markov models like Joliot-Kok (J-K) type. Here, we adapted an ordinary differential equation methodology denoted RODE1 to identify which microstates within PSII are responsible for branching between PSII-CEF and Linear Electron Flow (LEF). We applied it to simulate the oscillations of O2 yield from both Chlorella ohadii, an alga that shows strong PSII-CEF attributed to high backward transitions, and Synechococcus elongatus sp. 7002, a widely studied model cyanobacterium. RODE2 simulations reveal that backward transitions occur in microstates that possess a QB- semiquinone prior to the flash. Following a flash that forms microstates populating (QAQB)2-, PSII-CEF redirects these two electrons to the donor side of PSII only when in the oxidized S2 and S3 states. We show that this backward transition pathway is the origin of the observed period-2 oscillations of flash O2 yield and contributes to the accelerated decay of period-4 oscillations. This newly added pathway improved RODE1 fits for cells of both S. elongatus and C. ohadii. RODE2 simulations show that cellular adaptation to high light intensity growth is due to a decrease in QB availability (empty or blocked by Q2-B), or equivalently due to a decrease in the difference in reduction potential relative to QA/QA-. PSII-CEF provides an alternative mechanism for rebalancing the NADPH:ATP ratio that occurs rapidly by adjusting the redox level of the PQ:PQH2 pool and is a necessary process for energy metabolism in aquatic phototrophs.
Collapse
Affiliation(s)
- Apostolos Zournas
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Chemical and Biological Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Kyle Mani
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - G Charles Dismukes
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA.
- Department. of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
3
|
Laisk A. Prying into the green black-box. PHOTOSYNTHESIS RESEARCH 2022; 154:89-112. [PMID: 36114436 DOI: 10.1007/s11120-022-00960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Life-long efforts of the Tartu photosynthesis research group have been summarized. The measurements were facilitated by self-designed instruments, distinct in multifunctionality and fastresponse time. The black-box type kinetical analysis on intact leaves has revealed several physiologically significant features of leaf photosynthesis. Rubisco studies reflected competition for the active site between the substrates and products, linearizing in vivo kinetics compared with the low-Km in vitro responses. Rubisco Activase usually activates only a small part of the Rubisco, making the rest of it a storage protein. Precisely quantifying absorbed photons and the responding transmittance changes, electron flow rates through cytochrome b6f, plastocyanin and photosystem I were measured, revealing competition between the proton-uncoupled cyclic electron flow from PSI to Cyt b6f to P700+ and the proton-coupled linear flow from PSII to Cyt b6f to P700+. Analyzing responses of O2 evolution and Chl fluorescence to ms-length light pulses we concluded that explanation of the sigmoidal fluorescence induction by excitonic connectivity between PSII units is a misconception. Each PSII processes excitation from its own antenna, but the sigmoidicity is caused by rise of the fluorescence yield of the QA-reduced PSII units after their QB site becomes occupied by reduced plastoquinone (or diuron). Unlike respiration, photosynthetic electrons must prepare their acceptor by coupled synthesis of 3ATP/4e-. Feedback regulation of this ratio leads to oscillations under saturating light and CO2, when the rate is Pi-limited. The slow oscillations (period 60s) indicate that the magnitudes of the deflections in the 3ATP/4e- ratio, corrected by regulating cyclic and alternative electron flow (including the Mehler type O2 reduction), are only a fraction of a per cent. The Pi limitation causes slip in the ATP synthase, slightly increasing the basic 12H+/3ATP requirement.
Collapse
Affiliation(s)
- Agu Laisk
- Institute of Technology, University of Tartu, W. Ostwaldi 1, 51011, Tartu, Estonia.
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia.
| |
Collapse
|
4
|
Gu L, Grodzinski B, Han J, Marie T, Zhang Y, Song YC, Sun Y. Granal thylakoid structure and function: explaining an enduring mystery of higher plants. THE NEW PHYTOLOGIST 2022; 236:319-329. [PMID: 35832001 PMCID: PMC9805053 DOI: 10.1111/nph.18371] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/07/2022] [Indexed: 05/11/2023]
Abstract
In higher plants, photosystems II and I are found in grana stacks and unstacked stroma lamellae, respectively. To connect them, electron carriers negotiate tortuous multi-media paths and are subject to macromolecular blocking. Why does evolution select an apparently unnecessary, inefficient bipartition? Here we systematically explain this perplexing phenomenon. We propose that grana stacks, acting like bellows in accordions, increase the degree of ultrastructural control on photosynthesis through thylakoid swelling/shrinking induced by osmotic water fluxes. This control coordinates with variations in stomatal conductance and the turgor of guard cells, which act like an accordion's air button. Thylakoid ultrastructural dynamics regulate macromolecular blocking/collision probability, direct diffusional pathlengths, division of function of Cytochrome b6 f complex between linear and cyclic electron transport, luminal pH via osmotic water fluxes, and the separation of pH dynamics between granal and lamellar lumens in response to environmental variations. With the two functionally asymmetrical photosystems located distantly from each other, the ultrastructural control, nonphotochemical quenching, and carbon-reaction feedbacks maximally cooperate to balance electron transport with gas exchange, provide homeostasis in fluctuating light environments, and protect photosystems in drought. Grana stacks represent a dry/high irradiance adaptation of photosynthetic machinery to improve fitness in challenging land environments. Our theory unifies many well-known but seemingly unconnected phenomena of thylakoid structure and function in higher plants.
Collapse
Affiliation(s)
- Lianhong Gu
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Bernard Grodzinski
- Department of Plant AgricultureUniversity of GuelphGuelphONN1G 2W1Canada
| | - Jimei Han
- School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Telesphore Marie
- Department of Plant AgricultureUniversity of GuelphGuelphONN1G 2W1Canada
| | | | - Yang C. Song
- Department of Hydrology and Atmospheric SciencesUniversity of ArizonaTucsonAZ85721USA
| | - Ying Sun
- School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| |
Collapse
|
5
|
Oja V, Laisk A. Time- and reduction-dependent rise of photosystem II fluorescence during microseconds-long inductions in leaves. PHOTOSYNTHESIS RESEARCH 2020; 145:209-225. [PMID: 32918663 DOI: 10.1007/s11120-020-00783-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/02/2020] [Indexed: 05/16/2023]
Abstract
Lettuce (Lactuca sativa) and benth (Nicotiana benthamiana) leaves were illuminated with 720 nm background light to mix S-states and oxidize electron carriers. Green-filtered xenon flashes of different photon dose were applied and O2 evolution induced by a flash was measured. After light intensity gradient across the leaf was mathematically considered, the flash-induced PSII electron transport (= 4·O2 evolution) exponentially increased with the flash photon dose in any differential layer of the leaf optical density. This proved the absence of excitonic connectivity between PSII units. Time courses of flash light intensity and 680 nm chlorophyll fluorescence emission were recorded. While with connected PSII the sigmoidal fluorescence rise has been explained by quenching of excitation in closed PSII by its open neighbors, in the absence of connectivity the sigmoidicity indicates gradual rise of the fluorescence yield of an individual closed PSII during the induction. Two phases were discerned: the specific fluorescence yield immediately increased from Fo to 1.8Fo in a PSII, whose reaction center became closed; fluorescence yield of the closed PSII was keeping time-dependent rise from 1.8Fo to about 3Fo, approaching the flash fluorescence yield Ff = 0.6Fm during 40 μs. The time-dependent fluorescence rise was resolved from the quenching by 3Car triplets and related to protein conformational change. We suggest that QA reduction induces a conformational change, which by energetic or structural means closes the gate for excitation entrance into the central radical pair trap-efficiently when QB cannot accept the electron, but less efficiently when it can.
Collapse
Affiliation(s)
- Vello Oja
- Institute of Technology, University of Tartu, Nooruse st. 1, 50411, Tartu, Estonia
| | - Agu Laisk
- Institute of Technology, University of Tartu, Nooruse st. 1, 50411, Tartu, Estonia.
| |
Collapse
|
6
|
Laisk A, Oja V. Variable fluorescence of closed photochemical reaction centers. PHOTOSYNTHESIS RESEARCH 2020; 143:335-346. [PMID: 31960223 DOI: 10.1007/s11120-020-00712-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/13/2020] [Indexed: 05/12/2023]
Abstract
Chlorophyll fluorescence induction during 0.4 to 200 ms multiple-turnover pulses (MTP) was measured in parallel with O2 evolution induced by the MTP light. Additionally, a saturating single-turnover flash (STF) was applied at the end of each MTP and the total MTP +STF O2 evolution was measured. Quantum yield of O2 evolution during the MTP transients was calculated and related to the number of open PSII centers, found from the STF O2 evolution. Proportionality between the number of open PSII and their running photochemical activity showed the quantum yield of open PSII remained constant independent of the closure of adjacent centers. During the induction, total fluorescence was partitioned between Fo of all the open centers and Fc of all the closed centers. The fluorescence yield of a closed center was 0.55 of the final Fm while less than a half of the centers were closed, but later increased, approaching Fm to the end of the induction. In the framework of the antenna/radical pair equilibrium model, the collective rise of the fluorescence of centers closed earlier during the induction is explained by an electric field, facilitating return of excitation energy from the Pheo- P680+ radical pair to the antenna.
Collapse
Affiliation(s)
- Agu Laisk
- Institute of Technology, University of Tartu, Nooruse st. 1, 50411, Tartu, Estonia.
| | - Vello Oja
- Institute of Technology, University of Tartu, Nooruse st. 1, 50411, Tartu, Estonia
| |
Collapse
|
7
|
Kaminskaya OP, Shuvalov VA. Analysis of the transformation effect in cytochrome b559 of photosystem II in terms of the model of the heme-quinone redox interaction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1161-1172. [PMID: 32314739 DOI: 10.1016/j.bbabio.2018.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
Transformation of three-component redox pattern of cytochrome (Cyt) b559 in PS II membrane fragments upon various treatments is manifested in decrease of the relative content (R) of the high potential (HP) redox form of Cyt b559 and concomitant increase in the fractions of the two lower potential forms. Redox titration of Cyt b559 in different types of PS II membrane preparations was performed and revealed that (1) alteration of redox titration curve of Cyt b559 upon treatment of a sample is not specific to the type of treatment; (2) each value of RHP defines the individual shape of the redox titration curve; (3) population of Cyt b559 may exist in several stable forms with multicomponent redox pattern: three types of three-component redox pattern and one type of two-component redox pattern as well as in the form with a single Em; (4) transformation of Cyt b559 proceeds as successive conversion between the stable forms with multicomponent redox pattern; (5) upon harsh treatments, Cyt b559 abruptly converts into the state with a single Em which value is intermediate between the Em values of the two lower potential forms. Analysis of the data using the model of Cyt b559-quinone redox interaction revealed that diminution of RHP in a range from 80 to 10% reflects a shift in redox equilibrium between the heme group of Cyt b559 and the interacting quinone, due to a gradual decrease of 90 mV in Em of the heme group at the virtually unchanged Em of the quinone component.
Collapse
Affiliation(s)
- Olga P Kaminskaya
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | - Vladimir A Shuvalov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
8
|
Murakami K, Matsuda R, Fujiwara K. A Mathematical Model of Photosynthetic Electron Transport in Response to the Light Spectrum Based on Excitation Energy Distributed to Photosystems. PLANT & CELL PHYSIOLOGY 2018; 59:1643-1651. [PMID: 29697808 DOI: 10.1093/pcp/pcy085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
To enable us to analyze more systematically the effects of the spectral distribution of light (i.e. light quality) on photosynthetic electron transport, we propose a simple mathematical model which describes electron transport reactions under light-limited conditions based on the excitation energy distributed to the photosystems. The model assumes that the rate-limiting photosystem performs the photochemical reaction at its maximum yield, while the yield in the other photosystem is passively down-regulated to equalize the rates of linear electron transport through the photosystems. Using intact cucumber leaves, we tested the model by comparing actual and estimated photosynthetic parameters under several combinations of photon flux densities of red and far-red lights (R and FR, respectively). Simultaneously provided R and FR yielded greater gross photosynthetic rates than the sums of the rates under only R and only FR, which is known as the 'enhancement effect'. The present model reproduced these non-additive increases in the gross photosynthetic rates in response to supplemental FR to R and provided more accurate estimates than an existing method that did not take the enhancement effect into account (root mean square errors: 0.11 and 0.21 μmol m-2 s-1, respectively). Using the present model, the photon flux density of the supplemental FR which gives the changing point of rate-limiting photosystem and the photochemical yields of the non-rate-limiting photosystems were estimated reasonably well. The present study has therefore formulated a simplified quantitative electron transport model in response to the light spectrum based on generally accepted concepts and demonstrated its validity experimentally.
Collapse
Affiliation(s)
- Keach Murakami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, Japan
| | - Ryo Matsuda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, Japan
| | - Kazuhiro Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, Japan
| |
Collapse
|
9
|
Laisk A, Oja V. Kinetics of photosystem II electron transport: a mathematical analysis based on chlorophyll fluorescence induction. PHOTOSYNTHESIS RESEARCH 2018; 136:63-82. [PMID: 28936722 DOI: 10.1007/s11120-017-0439-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/28/2017] [Indexed: 05/28/2023]
Abstract
The OJDIP rise in chlorophyll fluorescence during induction at different light intensities was mathematically modeled using 24 master equations describing electron transport through photosystem II (PSII) plus ordinary differential equations for electron budgets in plastoquinone, cytochrome f, plastocyanin, photosystem I, and ferredoxin. A novel feature of the model is consideration of electron in- and outflow budgets resulting in changes in redox states of Tyrosine Z, P680, and QA as sole bases for changes in fluorescence yield during the transient. Ad hoc contributions by transmembrane electric fields, protein conformational changes, or other putative quenching species were unnecessary to account for primary features of the phenomenon, except a peculiar slowdown of intra-PSII electron transport during induction at low light intensities. The lower than F m post-flash fluorescence yield F f was related to oxidized tyrosine Z. The transient J peak was associated with equal rates of electron arrival to and departure from QA and requires that electron transfer from QA- to QB be slower than that from QA- to QB-. Strong quenching by oxidized P680 caused the dip D. Reduced plastoquinone, a competitive product inhibitor of PSII, blocked electron transport proportionally with its concentration. Electron transport rate indicated by fluorescence quenching was faster than the rate indicated by O2 evolution, because oxidized donor side carriers quench fluorescence but do not transport electrons. The thermal phase of the fluorescence rise beyond the J phase was caused by a progressive increase in the fraction of PSII with reduced QA and reduced donor side.
Collapse
Affiliation(s)
- Agu Laisk
- Institute of Technology, University of Tartu, Nooruse St. 1, Tartu, 50411, Estonia.
| | - Vello Oja
- Institute of Technology, University of Tartu, Nooruse St. 1, Tartu, 50411, Estonia
| |
Collapse
|
10
|
Noridomi M, Nakamura S, Tsuyama M, Futamura N, Vladkova R. Opposite domination of cyclic and pseudocyclic electron flows in short-illuminated dark-adapted leaves of angiosperms and gymnosperms. PHOTOSYNTHESIS RESEARCH 2017; 134:149-164. [PMID: 28689227 DOI: 10.1007/s11120-017-0419-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
The present work was aimed to explain the recently reported higher O2-dependent electron flow capacity in gymnosperms than in angiosperms and to search for other differences in the electron transport processes by simultaneous characterization of the relative capacities of pseudocyclic (direct or Flavodiiron proteins (Flv)-mediated O2-reduction, Mehler(-like) reactions) and cyclic electron flows around photosystem I (CEF-PSI). To this end, a comparative multicomponent analysis was performed on the fluorescence decay curves of dark-adapted leaves after illumination with a 1-s saturating light pulse. In both gymnosperms and angiosperms, two or three exponential decay components were resolved: fast (t 1/21 ~ 170-260 ms), middle (~1.0-2.3 s), and slow (>4.2 s). The sensitivity of the decay parameters (amplitudes A1-3, halftimes t 1/2 1-3) to the alternative electron flows was assessed using Arabidopsis pgr5 and ndhM mutants, defective in CEF-PSI, Synechocystis sp. PCC 6803 Δflv1 mutant, defective in Flv-mediated O2-photoreduction, different O2 concentrations, and methyl viologen treatment. A1 reflected the part of electrons involved in linear and O2-photoreduction pathways after PSI. The middle component appeared in pgr5 (but not in ndhM), in gymnosperms under low O2, and in Δflv1, and reflected limitations at the PSI acceptor side. The slow component was sensitive to CEF-PSI. The comparison of decay parameters provided evidence that Flv mediate O2-photoreduction in gymnosperms, which explains their higher O2-dependent electron flow capacity. The concomitant quantification of relative electrons branching in O2-photoreduction and CEF-PSI pathways under the applied non-steady-state photosynthetic conditions reveals that CEF-PSI capacity significantly exceeds that of O2-photoreduction in angiosperms while the opposite occurs in gymnosperms.
Collapse
Affiliation(s)
- Mari Noridomi
- Department of Agriculture, Forest and Forest Products Sciences, Plant Metabolic Physiology, Kyushu University, Fukuoka, 812-8581, Japan
| | - Shouta Nakamura
- Department of Agriculture, Forest and Forest Products Sciences, Plant Metabolic Physiology, Kyushu University, Fukuoka, 812-8581, Japan
| | - Michito Tsuyama
- Department of Agriculture, Forest and Forest Products Sciences, Plant Metabolic Physiology, Kyushu University, Fukuoka, 812-8581, Japan.
| | - Norihiro Futamura
- Department of Molecular and Cell Biology, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Radka Vladkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev St. 21, 1113, Sofia, Bulgaria
| |
Collapse
|
11
|
Røkke G, Melø TB, Hohmann-Marriott MF. The plastoquinone pool of Nannochloropsis oceanica is not completely reduced during bright light pulses. PLoS One 2017; 12:e0175184. [PMID: 28403199 PMCID: PMC5389811 DOI: 10.1371/journal.pone.0175184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/21/2017] [Indexed: 11/18/2022] Open
Abstract
The lipid-producing model alga Nannochloropsis oceanica has a distinct photosynthetic machinery. This organism possesses chlorophyll a as its only chlorophyll species, and has a high ratio of PSI to PSII. This high ratio of PSI to PSII may affect the redox state of the plastoquinone pool during exposure to light, and consequently may play a role in activating photoprotection mechanisms. We utilized pulse-amplitude modulated fluorometry to investigate the redox state of the plastoquinone pool during and after bright light pulses. Our data indicate that even very intense (5910 μmol photons s-1m-2 of blue light having a wavelength of 440 nm) light pulses of 0.8 second duration are not sufficient to completely reduce the plastoquinone pool in Nannochloropsis. In order to achieve extensive reduction of the plastoquinone pool by bright light pulses, anaerobic conditions or an inhibitor of the photosynthetic electron transport chain has to be utilized. The implication of this finding for the application of the widely used saturating pulse method in algae is discussed.
Collapse
Affiliation(s)
- Gunvor Røkke
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thor Bernt Melø
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
12
|
Buapet P, Björk M. The role of O2 as an electron acceptor alternative to CO2 in photosynthesis of the common marine angiosperm Zostera marina L. PHOTOSYNTHESIS RESEARCH 2016; 129:59-69. [PMID: 27125819 DOI: 10.1007/s11120-016-0268-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
This study investigates the role of O2 as an electron acceptor alternative to CO2 in photosynthesis of the common marine angiosperm Zostera marina L. Electron transport rates (ETRs) and non-photochemical quenching (NPQ) of Z. marina were measured under saturating irradiance in synthetic seawater containing 2.2 mM DIC and no DIC with different O2 levels (air-equilibrated levels, 3 % of air equilibrium and restored air-equilibrated levels). Lowering O2 did not affect ETR when DIC was provided, while it caused a decrease in ETR and an increase in NPQ in DIC-free media, indicating that O2 acted as an alternative electron acceptor under low DIC. The ETR and NPQ as a function of irradiance were subsequently assessed in synthetic seawater containing (1) 2.2 mM DIC, air-equilibrated O2; (2) saturating CO2, no O2; and (3) no DIC, air-equilibrated O2. These treatments were combined with glycolaldehyde pre-incubation. Glycolaldehyde caused a marked decrease in ETR in DIC-free medium, indicating significant electron flow supported by photorespiration. Combining glycolaldehyde with O2 depletion completely suppressed ETR suggesting the operation of the Mehler reaction, a possibility supported by the photosynthesis-dependent superoxide production. However, no notable effect of suppressing the Mehler reaction on NPQ was observed. It is concluded that during DIC-limiting conditions, such as those frequently occurring in the habitats of Z. marina, captured light energy exceeds what is utilised for the assimilation of available carbon, and photorespiration is a major alternative electron acceptor, while the contribution of the Mehler reaction is minor.
Collapse
Affiliation(s)
- Pimchanok Buapet
- Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand.
| | - Mats Björk
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, SE-106 91, Sweden
| |
Collapse
|
13
|
Kinetics of plastoquinol oxidation by the Q-cycle in leaves. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:819-30. [DOI: 10.1016/j.bbabio.2016.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/26/2016] [Accepted: 03/31/2016] [Indexed: 11/19/2022]
|
14
|
Kaminskaya OP, Shuvalov VA. Towards an understanding of redox heterogeneity of the photosystem II cytochrome b559 in the native membrane. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:129-38. [DOI: 10.1007/s00249-015-1082-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/07/2015] [Accepted: 09/16/2015] [Indexed: 11/29/2022]
|
15
|
Simultaneous measurements of photocurrents and H2O2 evolution from solvent exposed photosystem 2 complexes. Biointerphases 2015; 11:019001. [PMID: 26700470 DOI: 10.1116/1.4938090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In plants, algae, and cyanobacteria, photosystem 2 (PS2) catalyzes the light driven oxidation of water. The main products of this reaction are protons and molecular oxygen. In vitro, however, it was demonstrated that reactive oxygen species like hydrogen peroxide are obtained as partially reduced side products. The transition from oxygen to hydrogen peroxide evolution might be induced by light triggered degradation of PS2's active center. Herein, the authors propose an analytical approach to investigate light induced bioelectrocatalytic processes such as PS2 catalyzed water splitting. By combining chronoamperometry and fluorescence microscopy, the authors can simultaneously monitor the photocurrent and the hydrogen peroxide evolution of light activated, solvent exposed PS2 complexes, which have been immobilized on a functionalized gold electrode. The authors show that under limited electron mediation PS2 displays a lower photostability that correlates with an enhanced H2O2 generation as a side product of the light induced water oxidation.
Collapse
|