1
|
Solomon LA, Witten J, Kodali G, Moser CC, Dutton PL. Tailorable Tetrahelical Bundles as a Toolkit for Redox Studies. J Phys Chem B 2022; 126:8177-8187. [PMID: 36219580 PMCID: PMC9589594 DOI: 10.1021/acs.jpcb.2c05119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oxidoreductases have evolved over millions of years to perform a variety of metabolic tasks crucial for life. Understanding how these tasks are engineered relies on delivering external electron donors or acceptors to initiate electron transfer reactions. This is a challenge. Small-molecule redox reagents can act indiscriminately, poisoning the cell. Natural redox proteins are more selective, but finding the right partner can be difficult due to the limited number of redox potentials and difficulty tuning them. De novo proteins offer an alternative path. They are robust and can withstand mutations that allow for tailorable changes. They are also devoid of evolutionary artifacts and readily bind redox cofactors. However, no reliable set of engineering principles have been developed that allow for these proteins to be fine-tuned so their redox midpoint potential (Em) can form donor/acceptor pairs with any natural oxidoreductase. This work dissects protein-cofactor interactions that can be tuned to modulate redox potentials of acceptors and donors using a mutable de novo designed tetrahelical protein platform with iron tetrapyrrole cofactors as a test case. We show a series of engineered heme b-binding de novo proteins and quantify their resulting effect on Em. By focusing on the surface charge and buried charges, as well as cofactor placement, chemical modification, and ligation of cofactors, we are able to achieve a broad range of Em values spanning a range of 330 mV. We anticipate this work will guide the design of proteinaceous tools that can interface with natural oxidoreductases inside and outside the cell while shedding light on how natural proteins modulate Em values of bound cofactors.
Collapse
Affiliation(s)
- Lee A. Solomon
- Department
of Chemistry and Biochemistry, George Mason
University, Fairfax, Virginia22030, United States,
| | - Joshua Witten
- Department
of Biology, George Mason University, Fairfax, Virginia22030, United States
| | - Goutham Kodali
- Department
of Biochemistry and Biophysics, University
of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Christopher C. Moser
- Department
of Biochemistry and Biophysics, University
of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - P. Leslie Dutton
- Department
of Biochemistry and Biophysics, University
of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
2
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Koebke KJ, Pinter TBJ, Pitts WC, Pecoraro VL. Catalysis and Electron Transfer in De Novo Designed Metalloproteins. Chem Rev 2022; 122:12046-12109. [PMID: 35763791 PMCID: PMC10735231 DOI: 10.1021/acs.chemrev.1c01025] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the hallmark advances in our understanding of metalloprotein function is showcased in our ability to design new, non-native, catalytically active protein scaffolds. This review highlights progress and milestone achievements in the field of de novo metalloprotein design focused on reports from the past decade with special emphasis on de novo designs couched within common subfields of bioinorganic study: heme binding proteins, monometal- and dimetal-containing catalytic sites, and metal-containing electron transfer sites. Within each subfield, we highlight several of what we have identified as significant and important contributions to either our understanding of that subfield or de novo metalloprotein design as a discipline. These reports are placed in context both historically and scientifically. General suggestions for future directions that we feel will be important to advance our understanding or accelerate discovery are discussed.
Collapse
Affiliation(s)
- Karl J. Koebke
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | | - Winston C. Pitts
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | |
Collapse
|
4
|
Curnow P, Anderson JLR. Expression and In Vivo Loading of De Novo Proteins with Tetrapyrrole Cofactors. Methods Mol Biol 2022; 2397:137-155. [PMID: 34813063 DOI: 10.1007/978-1-0716-1826-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tetrapyrrole cofactors such as heme and chlorophyll imprint their intrinsic reactivity and properties on a multitude of natural proteins and enzymes, and there is much interest in exploiting their functional and catalytic capabilities within minimal, de novo designed protein scaffolds. Here we describe how, using only natural biosynthetic and post-translational modification pathways, de novo designed soluble and hydrophobic proteins can be equipped with tetrapyrrole cofactors within living Escherichia coli cells. We provide strategies to achieve covalent and non-covalent heme incorporation within the de novo proteins and describe how the heme biosynthetic pathway can be co-opted to produce the light sensitive zinc protoporphyrin IX for loading into proteins in vivo. In addition, we describe the imaging of hydrophobic proteins and cofactor-rich protein droplets by electron and fluorescence microscopy, and how cofactors can be stripped from the de novo proteins to aid in vitro identification.
Collapse
Affiliation(s)
- Paul Curnow
- School of Biochemistry, University of Bristol, University Walk, Bristol, UK
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Bristol, UK
| | - J L Ross Anderson
- School of Biochemistry, University of Bristol, University Walk, Bristol, UK.
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Bristol, UK.
| |
Collapse
|
5
|
Abstract
Natural metalloproteins perform many functions - ranging from sensing to electron transfer and catalysis - in which the position and property of each ligand and metal, is dictated by protein structure. De novo protein design aims to define an amino acid sequence that encodes a specific structure and function, providing a critical test of the hypothetical inner workings of (metallo)proteins. To date, de novo metalloproteins have used simple, symmetric tertiary structures - uncomplicated by the large size and evolutionary marks of natural proteins - to interrogate structure-function hypotheses. In this Review, we discuss de novo design applications, such as proteins that induce complex, increasingly asymmetric ligand geometries to achieve function, as well as the use of more canonical ligand geometries to achieve stability. De novo design has been used to explore how proteins fine-tune redox potentials and catalyse both oxidative and hydrolytic reactions. With an increased understanding of structure-function relationships, functional proteins including O2-dependent oxidases, fast hydrolases, and multi-proton/multi-electron reductases, have been created. In addition, proteins can now be designed using xeno-biological metals or cofactors and principles from inorganic chemistry to derive new-to-nature functions. These results and the advances in computational protein design suggest a bright future for the de novo design of diverse, functional metalloproteins.
Collapse
Affiliation(s)
- Matthew J. Chalkley
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| | - Samuel I. Mann
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| |
Collapse
|
6
|
Delinois LJ, De León-Vélez O, Vázquez-Medina A, Vélez-Cabrera A, Marrero-Sánchez A, Nieves-Escobar C, Alfonso-Cano D, Caraballo-Rodríguez D, Rodriguez-Ortiz J, Acosta-Mercado J, Benjamín-Rivera JA, González-González K, Fernández-Adorno K, Santiago-Pagán L, Delgado-Vergara R, Torres-Ávila X, Maser-Figueroa A, Grajales-Avilés G, Miranda Méndez GI, Santiago-Pagán J, Nieves-Santiago M, Álvarez-Carrillo V, Griebenow K, Tinoco AD. Cytochrome c: Using Biological Insight toward Engineering an Optimized Anticancer Biodrug. INORGANICS 2021; 9:83. [PMID: 35978717 PMCID: PMC9380692 DOI: 10.3390/inorganics9110083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The heme protein cytochrome c (Cyt c) plays pivotal roles in cellular life and death processes. In the respiratory chain of mitochondria, it serves as an electron transfer protein, contributing to the proliferation of healthy cells. In the cell cytoplasm, it activates intrinsic apoptosis to terminate damaged cells. Insight into these mechanisms and the associated physicochemical properties and biomolecular interactions of Cyt c informs on the anticancer therapeutic potential of the protein, especially in its ability to subvert the current limitations of small molecule-based chemotherapy. In this review, we explore the development of Cyt c as an anticancer drug by identifying cancer types that would be receptive to the cytotoxicity of the protein and factors that can be finetuned to enhance its apoptotic potency. To this end, some information is obtained by characterizing known drugs that operate, in part, by triggering Cyt c induced apoptosis. The application of different smart drug delivery systems is surveyed to highlight important features for maintaining Cyt c stability and activity and improving its specificity for cancer cells and high drug payload release while recognizing the continuing limitations. This work serves to elucidate on the optimization of the strategies to translate Cyt c to the clinical market.
Collapse
Affiliation(s)
- Louis J. Delinois
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Omar De León-Vélez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Adriana Vázquez-Medina
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Alondra Vélez-Cabrera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Amanda Marrero-Sánchez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Daniela Alfonso-Cano
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Jael Rodriguez-Ortiz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Jemily Acosta-Mercado
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Josué A. Benjamín-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Kiara González-González
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Kysha Fernández-Adorno
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Lisby Santiago-Pagán
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Rafael Delgado-Vergara
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Xaiomy Torres-Ávila
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Andrea Maser-Figueroa
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | | | - Javier Santiago-Pagán
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Miguel Nieves-Santiago
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Vanessa Álvarez-Carrillo
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Kai Griebenow
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| |
Collapse
|
7
|
Hamley IW. Biocatalysts Based on Peptide and Peptide Conjugate Nanostructures. Biomacromolecules 2021; 22:1835-1855. [PMID: 33843196 PMCID: PMC8154259 DOI: 10.1021/acs.biomac.1c00240] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Peptides and their conjugates (to lipids, bulky N-terminals, or other groups) can self-assemble into nanostructures such as fibrils, nanotubes, coiled coil bundles, and micelles, and these can be used as platforms to present functional residues in order to catalyze a diversity of reactions. Peptide structures can be used to template catalytic sites inspired by those present in natural enzymes as well as simpler constructs using individual catalytic amino acids, especially proline and histidine. The literature on the use of peptide (and peptide conjugate) α-helical and β-sheet structures as well as turn or disordered peptides in the biocatalysis of a range of organic reactions including hydrolysis and a variety of coupling reactions (e.g., aldol reactions) is reviewed. The simpler design rules for peptide structures compared to those of folded proteins permit ready ab initio design (minimalist approach) of effective catalytic structures that mimic the binding pockets of natural enzymes or which simply present catalytic motifs at high density on nanostructure scaffolds. Research on these topics is summarized, along with a discussion of metal nanoparticle catalysts templated by peptide nanostructures, especially fibrils. Research showing the high activities of different classes of peptides in catalyzing many reactions is highlighted. Advances in peptide design and synthesis methods mean they hold great potential for future developments of effective bioinspired and biocompatible catalysts.
Collapse
Affiliation(s)
- Ian W. Hamley
- Department of Chemistry, University of Reading, RG6 6AD Reading, United Kingdom
| |
Collapse
|
8
|
Abstract
The field of de novo protein design has met with considerable success over the past few decades. Heme, a cofactor, has often been introduced to impart a diverse array of functions to a protein, ranging from electron transport to respiration. In nature, heme is found to occur predominantly in α-helical structures over β-sheets, which has resulted in significant designs of heme proteins utilizing coiled-coil helices. By contrast, there are only a few known β-sheet proteins that bind heme and designs of β-sheets frequently result in amyloid-like aggregates. This review reflects on our success in designing a series of multistranded β-sheet heme binding peptides that are well folded in both aqueous and membrane-like environments. Initially, we designed a β-hairpin peptide that self-assembles to bind heme and performs peroxidase activity in membrane. The β-hairpin was optimized further to accommodate a heme binding pocket within multistranded β-sheets for catalysis and electron transfer in membranes. Furthermore, we de novo designed and characterized β-sheet peptides and miniproteins that are soluble in an aqueous environment capable of binding single and multiple hemes with high affinity and stability. Collectively, these studies highlight the substantial progress made toward the design of functional β-sheets.
Collapse
Affiliation(s)
- Areetha D'Souza
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
9
|
Stenner R, Anderson JLR. Chemoselective N−H insertion catalyzed by ade novocarbene transferase. Biotechnol Appl Biochem 2020; 67:527-535. [DOI: 10.1002/bab.1924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/18/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Richard Stenner
- School of Biochemistry University of Bristol Bristol UK
- Bristol Centre for Functional Nanomaterials HH Wills Physics Laboratory, University of Bristol Bristol UK
| | - John Leslie Ross Anderson
- School of Biochemistry University of Bristol Bristol UK
- BrisSynBio Synthetic Biology Research Centre University of Bristol Bristol UK
| |
Collapse
|
10
|
Grayson KJ, Anderson JLR. Designed for life: biocompatible de novo designed proteins and components. J R Soc Interface 2019; 15:rsif.2018.0472. [PMID: 30158186 PMCID: PMC6127164 DOI: 10.1098/rsif.2018.0472] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/01/2018] [Indexed: 12/30/2022] Open
Abstract
A principal goal of synthetic biology is the de novo design or redesign of biomolecular components. In addition to revealing fundamentally important information regarding natural biomolecular engineering and biochemistry, functional building blocks will ultimately be provided for applications including the manufacture of valuable products and therapeutics. To fully realize this ambitious goal, the designed components must be biocompatible, working in concert with natural biochemical processes and pathways, while not adversely affecting cellular function. For example, de novo protein design has provided us with a wide repertoire of structures and functions, including those that can be assembled and function in vivo. Here we discuss such biocompatible designs, as well as others that have the potential to become biocompatible, including non-protein molecules, and routes to achieving full biological integration.
Collapse
Affiliation(s)
- Katie J Grayson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - J L Ross Anderson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK .,BrisSynBio Synthetic Biology Research Centre, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
11
|
Towards functional de novo designed proteins. Curr Opin Chem Biol 2019; 52:102-111. [DOI: 10.1016/j.cbpa.2019.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/25/2019] [Accepted: 06/06/2019] [Indexed: 12/31/2022]
|
12
|
Lalaurie CJ, Dufour V, Meletiou A, Ratcliffe S, Harland A, Wilson O, Vamasiri C, Shoemark DK, Williams C, Arthur CJ, Sessions RB, Crump MP, Anderson JLR, Curnow P. The de novo design of a biocompatible and functional integral membrane protein using minimal sequence complexity. Sci Rep 2018; 8:14564. [PMID: 30275547 PMCID: PMC6167376 DOI: 10.1038/s41598-018-31964-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/26/2018] [Indexed: 12/30/2022] Open
Abstract
The de novo design of integral membrane proteins remains a major challenge in protein chemistry. Here, we describe the bottom-up design of a genetically-encoded synthetic membrane protein comprising only four amino acids (L, S, G and W) in the transmembrane domains. This artificial sequence, which we call REAMP for recombinantly expressed artificial membrane protein, is a single chain of 133 residues arranged into four antiparallel membrane-spanning α-helices. REAMP was overexpressed in Escherichia coli and localized to the cytoplasmic membrane with the intended transmembrane topology. Recombinant REAMP could be extracted from the cell membrane in detergent micelles and was robust and stable in vitro, containing helical secondary structure consistent with the original design. Engineered mono- and bis-histidine residues in the membrane domain of REAMP were able to coordinate heme in vitro, in a manner reminiscent of natural b-type cytochromes. This binding shifted the electrochemical potential of the cofactor, producing a synthetic hemoprotein capable of nascent redox catalysis. These results show that a highly reduced set of amino acids is sufficient to mimic some key properties of natural proteins, and that cellular biosynthesis is a viable route for the production of minimal de novo membrane sequences.
Collapse
Affiliation(s)
| | - Virginie Dufour
- School of Biochemistry, University of Bristol, Bristol, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol, UK
| | - Anna Meletiou
- School of Biochemistry, University of Bristol, Bristol, UK
| | | | | | - Olivia Wilson
- School of Biochemistry, University of Bristol, Bristol, UK
| | | | - Deborah K Shoemark
- School of Biochemistry, University of Bristol, Bristol, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol, UK
| | - Christopher Williams
- School of Chemistry, University of Bristol, Bristol, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol, UK
| | | | - Richard B Sessions
- School of Biochemistry, University of Bristol, Bristol, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol, UK
| | - Matthew P Crump
- School of Chemistry, University of Bristol, Bristol, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol, UK
| | - J L Ross Anderson
- School of Biochemistry, University of Bristol, Bristol, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol, UK
| | - Paul Curnow
- School of Biochemistry, University of Bristol, Bristol, UK. .,BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol, UK.
| |
Collapse
|
13
|
Grayson KJ, Anderson JR. The ascent of man(made oxidoreductases). Curr Opin Struct Biol 2018; 51:149-155. [PMID: 29754103 PMCID: PMC6227378 DOI: 10.1016/j.sbi.2018.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/24/2018] [Indexed: 11/09/2022]
Abstract
Though established 40 years ago, the field of de novo protein design has recently come of age, with new designs exhibiting an unprecedented level of sophistication in structure and function. With respect to catalysis, de novo enzymes promise to revolutionise the industrial production of useful chemicals and materials, while providing new biomolecules as plug-and-play components in the metabolic pathways of living cells. To this end, there are now de novo metalloenzymes that are assembled in vivo, including the recently reported C45 maquette, which can catalyse a variety of substrate oxidations with efficiencies rivalling those of closely related natural enzymes. Here we explore the successful design of this de novo enzyme, which was designed to minimise the undesirable complexity of natural proteins using a minimalistic bottom-up approach.
Collapse
Affiliation(s)
- Katie J Grayson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD, UK
| | - Jl Ross Anderson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD, UK; BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
14
|
Mancini JA, Kodali G, Jiang J, Reddy KR, Lindsey JS, Bryant DA, Dutton PL, Moser CC. Multi-step excitation energy transfer engineered in genetic fusions of natural and synthetic light-harvesting proteins. J R Soc Interface 2017; 14:rsif.2016.0896. [PMID: 28179548 DOI: 10.1098/rsif.2016.0896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/16/2017] [Indexed: 11/12/2022] Open
Abstract
Synthetic proteins designed and constructed from first principles with minimal reference to the sequence of any natural protein have proven robust and extraordinarily adaptable for engineering a range of functions. Here for the first time we describe the expression and genetic fusion of a natural photosynthetic light-harvesting subunit with a synthetic protein designed for light energy capture and multi-step transfer. We demonstrate excitation energy transfer from the bilin of the CpcA subunit (phycocyanin α subunit) of the cyanobacterial photosynthetic light-harvesting phycobilisome to synthetic four-helix-bundle proteins accommodating sites that specifically bind a variety of selected photoactive tetrapyrroles positioned to enhance energy transfer by relay. The examination of combinations of different bilin, chlorin and bacteriochlorin cofactors has led to identification of the preconditions for directing energy from the bilin light-harvesting antenna into synthetic protein-cofactor constructs that can be customized for light-activated chemistry in the cell.
Collapse
Affiliation(s)
- Joshua A Mancini
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Goutham Kodali
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianbing Jiang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - P Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher C Moser
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Construction and in vivo assembly of a catalytically proficient and hyperthermostable de novo enzyme. Nat Commun 2017; 8:358. [PMID: 28842561 PMCID: PMC5572459 DOI: 10.1038/s41467-017-00541-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/07/2017] [Indexed: 11/08/2022] Open
Abstract
Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2. The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes.Catalytic mechanisms of enzymes are well understood, but achieving diverse reaction chemistries in re-engineered proteins can be difficult. Here the authors show a highly efficient and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2.
Collapse
|
16
|
Biodesign for bioenergetics –the design and engineering of electron transfer cofactors, proteins and protein networks. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:483-484. [DOI: 10.1016/j.bbabio.2016.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|