1
|
Kraus A, Hess WR. How Small Proteins Adjust the Metabolism of Cyanobacteria Under Stress: The Role of Small Proteins in Cyanobacterial Stress Responses. Bioessays 2024:e202400245. [PMID: 39668401 DOI: 10.1002/bies.202400245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Several recently discovered small proteins of less than 100 amino acids control important, but sometimes surprising, steps in the metabolism of cyanobacteria. There is mounting evidence that a large number of small protein genes have also been overlooked in the genome annotation of many other microorganisms. Although too short for enzymatic activity, their functional characterization has frequently revealed the involvement in processes such as signaling and sensing, interspecies communication, stress responses, metabolism, regulation of transcription and translation, and in the formation of multisubunit protein complexes. Cyanobacteria are the only prokaryotes that perform oxygenic photosynthesis. They thrive under a wide variety of conditions as long as there is light and must cope with dynamic changes in the environment. To acclimate to these fluctuations, frequently small regulatory proteins become expressed that target key enzymes and metabolic processes. The consequences of their actions are profound and can even impact the surrounding microbiome. This review highlights the diverse functions of recently discovered small proteins that control cyanobacterial metabolism. It also addresses why many of these proteins have been overlooked so far and explores the potential for implementing metabolic engineering strategies to improve the use of cyanobacteria in biotechnological applications.
Collapse
Affiliation(s)
- Alexander Kraus
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Li B, Zhang C, Ma Y, Zhou Y, Gao L, He D, Li M. Physiological and transcriptome level responses of Microcystis aeruginosa and M. viridis to environmental concentrations of triclosan. CHEMOSPHERE 2024; 363:142822. [PMID: 38986778 DOI: 10.1016/j.chemosphere.2024.142822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
The toxicity of triclosan (TCS) to various aquatic organisms has been demonstrated at environmental concentrations. However, the effects and mechanisms of TCS on toxic cyanobacteria remains largely unexplored. This study investigated the physiological and molecular variations in two representative toxic Microcystis species (M. aeruginosa and M. viridis) under exposure to TCS for 12 d. Our findings demonstrated that the median effective concentration (EC50) of TCS for both Microcystis species were close to the levels detected in the environment (M. aeruginosa: 9.62 μg L-1; M. viridis: 27.56 μg L-1). An increased level of reactive oxygen species (ROS) was observed in Microcystis, resulting in oxidative damage when exposed to TCS at concentrations ranging from 10 μg L-1 to 50 μg L-1. The photosynthetic activity of Microcystis had a certain degree of recovery capability at low concentrations of TCS. Compared to M. aeruginosa, the higher recovery capability of the photosynthetic system in M. viridis would be mainly attributed to the increased ability for PSII repair and phycobilisome synthesis. Additionally, the synthesis of microcystins in the two species and the release rate in M. viridis significantly increased under 10-50 μg L-1 TCS. At the molecular level, exposure to TCS at EC50 for 12 d induced the dysregulation of genes associated with photosynthesis and antioxidant system. The upregulation of genes associated with microcystin synthesis and nitrogen metabolism further increased the potential risk of microcystin release. Our results revealed the aquatic toxicity and secondary ecological risks of TCS at environmental concentrations, and provided theoretical data with practical reference value for TCS monitoring.
Collapse
Affiliation(s)
- Bingcong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Chengying Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yuxuan Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yun Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Li Gao
- Institute for Sustainable Industries and Liveable Cities, Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia
| | - Ding He
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong SAR, PR China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
3
|
Si L, Zhang S, Su X, Li M. Structural basis for the distinct core-antenna assembly of cryptophyte photosystem II. Nat Commun 2024; 15:6812. [PMID: 39122741 PMCID: PMC11316039 DOI: 10.1038/s41467-024-51206-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Photosystem II (PSII) catalyzes the light-driven charge separation and water oxidation reactions of photosynthesis. Eukaryotic PSII core is usually associated with membrane-embedded light-harvesting antennae, which greatly increase the absorbance cross-section of the core. The peripheral antennae in different phototrophs vary considerably in protein composition and arrangement. Photosynthetic cryptophytes possess chlorophyll a/c binding proteins (CACs) that serve as their antennae. How these CACs assemble with the PSII core remains unclear. Here, we report the 2.57-Å resolution structure of cryptophyte PSII-CAC purified from cells at nitrogen-limited stationary growth phase. We show that each monomer of the PSII homodimer contains a core complex, six chlorophyll a/c binding proteins (CACs) and a previously unseen chlorophyll-binding protein (termed CAL-II). Six CACs are arranged as a double-layered arc-shaped non-parallel belt, and two such belts attach to the dimeric core from opposite sides. The CAL-II simultaneously interacts with a number of core subunits and five CACs. The distinct organization of CACs and the presence of CAL-II may play a critical role in stabilizing the dimeric PSII-CAC complex under stress conditions. Our study provides mechanistic insights into the assembly and function of the PSII-CAC complex as well as the possible adaptation of cryptophytes in response to environmental stresses.
Collapse
Affiliation(s)
- Long Si
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shumeng Zhang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Su
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Lübben MK, Klingl A, Nickelsen J, Ostermeier M. CLEM, a universal tool for analyzing structural organization in thylakoid membranes. PHYSIOLOGIA PLANTARUM 2024; 176:e14417. [PMID: 38945684 DOI: 10.1111/ppl.14417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/15/2024] [Indexed: 07/02/2024]
Abstract
Chlorophyll (Chl) plays a crucial role in photosynthesis, functioning as a photosensitizer. As an integral component of this process, energy absorbed by this pigment is partly emitted as red fluorescence. This signal can be readily imaged by fluorescence microscopy and provides a visualization of photosynthetic activity. However, due to limited resolution, signals cannot be assigned to specific subcellular/organellar membrane structures. By correlating fluorescence micrographs with transmission electron microscopy, researchers can identify sub-cellular compartments and membranes, enabling the monitoring of Chl distribution within thylakoid membrane substructures in cyanobacteria, algae, and higher plant single cells. Here, we describe a simple and effective protocol for correlative light-electron microscopy (CLEM) based on the autofluorescence of Chl and demonstrate its application to selected photosynthetic model organisms. Our findings illustrate the potential of this technique to identify areas of high Chl concentration and photochemical activity, such as grana regions in vascular plants, by mapping stacked thylakoids.
Collapse
Affiliation(s)
- Maximilian K Lübben
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, Germany
| | - Andreas Klingl
- Plant Development, LMU Munich, Planegg-Martinsried, Germany
| | - Jörg Nickelsen
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, Germany
| | - Matthias Ostermeier
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
5
|
Dai GZ, Song WY, Xu HF, Tu M, Yu C, Li ZK, Shang JL, Jin CL, Ding CS, Zuo LZ, Liu YR, Yan WW, Zang SS, Liu K, Zhang Z, Bock R, Qiu BS. Hypothetical chloroplast reading frame 51 encodes a photosystem I assembly factor in cyanobacteria. THE PLANT CELL 2024; 36:1844-1867. [PMID: 38146915 PMCID: PMC11062458 DOI: 10.1093/plcell/koad330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/29/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Hypothetical chloroplast open reading frames (ycfs) are putative genes in the plastid genomes of photosynthetic eukaryotes. Many ycfs are also conserved in the genomes of cyanobacteria, the presumptive ancestors of present-day chloroplasts. The functions of many ycfs are still unknown. Here, we generated knock-out mutants for ycf51 (sll1702) in the cyanobacterium Synechocystis sp. PCC 6803. The mutants showed reduced photoautotrophic growth due to impaired electron transport between photosystem II (PSII) and PSI. This phenotype results from greatly reduced PSI content in the ycf51 mutant. The ycf51 disruption had little effect on the transcription of genes encoding photosynthetic complex components and the stabilization of the PSI complex. In vitro and in vivo analyses demonstrated that Ycf51 cooperates with PSI assembly factor Ycf3 to mediate PSI assembly. Furthermore, Ycf51 interacts with the PSI subunit PsaC. Together with its specific localization in the thylakoid membrane and the stromal exposure of its hydrophilic region, our data suggest that Ycf51 is involved in PSI complex assembly. Ycf51 is conserved in all sequenced cyanobacteria, including the earliest branching cyanobacteria of the Gloeobacter genus, and is also present in the plastid genomes of glaucophytes. However, Ycf51 has been lost from other photosynthetic eukaryotic lineages. Thus, Ycf51 is a PSI assembly factor that has been functionally replaced during the evolution of oxygenic photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Guo-Zheng Dai
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Wei-Yu Song
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Hai-Feng Xu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Miao Tu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Chen Yu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Zheng-Ke Li
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Jin-Long Shang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Chun-Lei Jin
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Chao-Shun Ding
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Ling-Zi Zuo
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Yan-Ru Liu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Wei-Wei Yan
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Sha-Sha Zang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Ke Liu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Zheng Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Ralph Bock
- Department III, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| |
Collapse
|
6
|
Skotnicová P, Srivastava A, Aggarwal D, Talbot J, Karlínová I, Moos M, Mareš J, Bučinská L, Koník P, Šimek P, Tichý M, Sobotka R. A thylakoid biogenesis BtpA protein is required for the initial step of tetrapyrrole biosynthesis in cyanobacteria. THE NEW PHYTOLOGIST 2024; 241:1236-1249. [PMID: 37986097 DOI: 10.1111/nph.19397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023]
Abstract
Biogenesis of the photosynthetic apparatus requires complicated molecular machinery, individual components of which are either poorly characterized or unknown. The BtpA protein has been described as a factor required for the stability of photosystem I (PSI) in cyanobacteria; however, how the BtpA stabilized PSI remains unexplained. To clarify the role of BtpA, we constructed and characterized the btpA-null mutant (ΔbtpA) in the cyanobacterium Synechocystis sp. PCC 6803. The mutant contained only c. 1% of chlorophyll and nearly no thylakoid membranes. However, this strain, growing only in the presence of glucose, was genetically unstable and readily generated suppressor mutations that restore the photoautotrophy. Two suppressor mutations were mapped into the hemA gene encoding glutamyl-tRNA reductase (GluTR) - the first enzyme of tetrapyrrole biosynthesis. Indeed, the GluTR was not detectable in the ΔbtpA mutant and the suppressor mutations restored biosynthesis of tetrapyrroles and photoautotrophy by increased GluTR expression or by improved GluTR stability/processivity. We further demonstrated that GluTR associates with a large BtpA oligomer and that BtpA is required for the stability of GluTR. Our results show that the BtpA protein is involved in the biogenesis of photosystems at the level of regulation of tetrapyrrole biosynthesis.
Collapse
Affiliation(s)
- Petra Skotnicová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Amit Srivastava
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
- Department of Biological and Environmental Science, Nanoscience Centre, University of Jyväskylä, Jyväskylä, 40014, Finland
| | - Divya Aggarwal
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Jana Talbot
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tas., 7005, Australia
| | - Iva Karlínová
- Biology Centre of the Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Martin Moos
- Biology Centre of the Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Jan Mareš
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
- Biology Centre of the Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Lenka Bučinská
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
| | - Peter Koník
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Petr Šimek
- Biology Centre of the Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Martin Tichý
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| |
Collapse
|
7
|
Wang F, Dischinger K, Westrich LD, Meindl I, Egidi F, Trösch R, Sommer F, Johnson X, Schroda M, Nickelsen J, Willmund F, Vallon O, Bohne AV. One-helix protein 2 is not required for the synthesis of photosystem II subunit D1 in Chlamydomonas. PLANT PHYSIOLOGY 2023; 191:1612-1633. [PMID: 36649171 PMCID: PMC10022639 DOI: 10.1093/plphys/kiad015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In land plants and cyanobacteria, co-translational association of chlorophyll (Chl) to the nascent D1 polypeptide, a reaction center protein of photosystem II (PSII), requires a Chl binding complex consisting of a short-chain dehydrogenase (high chlorophyll fluorescence 244 [HCF244]/uncharacterized protein 39 [Ycf39]) and one-helix proteins (OHP1 and OHP2 in chloroplasts) of the light-harvesting antenna complex superfamily. Here, we show that an ohp2 mutant of the green alga Chlamydomonas (Chlamydomonas reinhardtii) fails to accumulate core PSII subunits, in particular D1 (encoded by the psbA mRNA). Extragenic suppressors arose at high frequency, suggesting the existence of another route for Chl association to PSII. The ohp2 mutant was complemented by the Arabidopsis (Arabidopsis thaliana) ortholog. In contrast to land plants, where psbA translation is prevented in the absence of OHP2, ribosome profiling experiments showed that the Chlamydomonas mutant translates the psbA transcript over its full length. Pulse labeling suggested that D1 is degraded during or immediately after translation. The translation of other PSII subunits was affected by assembly-controlled translational regulation. Proteomics showed that HCF244, a translation factor which associates with and is stabilized by OHP2 in land plants, still partly accumulates in the Chlamydomonas ohp2 mutant, explaining the persistence of psbA translation. Several Chl biosynthesis enzymes overaccumulate in the mutant membranes. Partial inactivation of a D1-degrading protease restored a low level of PSII activity in an ohp2 background, but not photoautotrophy. Taken together, our data suggest that OHP2 is not required for psbA translation in Chlamydomonas, but is necessary for D1 stabilization.
Collapse
Affiliation(s)
- Fei Wang
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
- UMR 7141, Centre National de la Recherche Scientifique/Sorbonne Université, Institut de Biologie Physico-Chimique, Paris 75005, France
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | | | - Lisa Désirée Westrich
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Irene Meindl
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Felix Egidi
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Raphael Trösch
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Xenie Johnson
- UMR 7141, Centre National de la Recherche Scientifique/Sorbonne Université, Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Joerg Nickelsen
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Olivier Vallon
- UMR 7141, Centre National de la Recherche Scientifique/Sorbonne Université, Institut de Biologie Physico-Chimique, Paris 75005, France
| | | |
Collapse
|
8
|
Jackson PJ, Hitchcock A, Brindley AA, Dickman MJ, Hunter CN. Absolute quantification of cellular levels of photosynthesis-related proteins in Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2023; 155:219-245. [PMID: 36542271 PMCID: PMC9958174 DOI: 10.1007/s11120-022-00990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Quantifying cellular components is a basic and important step for understanding how a cell works, how it responds to environmental changes, and for re-engineering cells to produce valuable metabolites and increased biomass. We quantified proteins in the model cyanobacterium Synechocystis sp. PCC 6803 given the general importance of cyanobacteria for global photosynthesis, for synthetic biology and biotechnology research, and their ancestral relationship to the chloroplasts of plants. Four mass spectrometry methods were used to quantify cellular components involved in the biosynthesis of chlorophyll, carotenoid and bilin pigments, membrane assembly, the light reactions of photosynthesis, fixation of carbon dioxide and nitrogen, and hydrogen and sulfur metabolism. Components of biosynthetic pathways, such as those for chlorophyll or for photosystem II assembly, range between 1000 and 10,000 copies per cell, but can be tenfold higher for CO2 fixation enzymes. The most abundant subunits are those for photosystem I, with around 100,000 copies per cell, approximately 2 to fivefold higher than for photosystem II and ATP synthase, and 5-20 fold more than for the cytochrome b6f complex. Disparities between numbers of pathway enzymes, between components of electron transfer chains, and between subunits within complexes indicate possible control points for biosynthetic processes, bioenergetic reactions and for the assembly of multisubunit complexes.
Collapse
Affiliation(s)
- Philip J Jackson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK.
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Amanda A Brindley
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - C Neil Hunter
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
9
|
Li W, Guo J, Han X, Da X, Wang K, Zhao H, Huang ST, Li B, He H, Jiang R, Zhou S, Yan P, Chen T, He Y, Xu J, Liu Y, Wu Y, Shou H, Wu Z, Mao C, Mo X. A novel protein domain is important for photosystem II complex assembly and photoautotrophic growth in angiosperms. MOLECULAR PLANT 2023; 16:374-392. [PMID: 36566350 DOI: 10.1016/j.molp.2022.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/24/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Photosystem II (PSII) is a multi-subunit protein complex of the photosynthetic electron transport chain that is vital to photosynthesis. Although the structure, composition, and function of PSII have been extensively studied, its biogenesis mechanism remains less understood. Thylakoid rhodanese-like (TROL) provides an anchor for leaf-type ferredoxin:NADP+ oxidoreductase. Here, we report the chacterizaton of a second type of TROL protein, TROL2, encoded by seed plant genomes whose function has not previously been reported. We show that TROL2 is a PSII assembly cofactor with essential roles in the establishment of photoautotrophy. TROL2 contains a 45-amino-acid domain, termed the chlorotic lethal seedling (CLS) domain, that is both necessary and sufficient for TROL2 function in PSII assembly and photoautotrophic growth. Phylogenetic analyses suggest that TROL2 may have arisen from ancestral TROL1 via gene duplication before the emergence of seed plants and acquired the CLS domain via evolution of the sequence encoding its N-terminal portion. We further reveal that TROL2 (or CLS) forms an assembly cofactor complex with the intrinsic thylakoid membrane protein LOW PSII ACCUMULATION2 and interacts with small PSII subunits to facilitate PSII complex assembly. Collectively, our study not only shows that TROL2 (CLS) is essential for photoautotrophy in angiosperms but also reveals its mechanistic role in PSII complex assembly, shedding light on the molecular and evolutionary mechanisms of photosynthetic complex assemblyin angiosperms.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Plant Environmental Resilience, College of Life Science, Zhejiang University, Hangzhou 310058, PR China
| | - Jiangfan Guo
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, PR China
| | - Xue Han
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Xiaowen Da
- State Key Laboratory of Plant Environmental Resilience, College of Life Science, Zhejiang University, Hangzhou 310058, PR China
| | - Kai Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Science, Zhejiang University, Hangzhou 310058, PR China
| | - Hongfei Zhao
- College of Urban Construction, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Shi-Tang Huang
- School of Life Sciences, Peking University, Beijing 100871, PR China
| | - Bosheng Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Hang He
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Ruirui Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Life Science, Zhejiang University, Hangzhou 310058, PR China
| | - Shichen Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Life Science, Zhejiang University, Hangzhou 310058, PR China
| | - Peng Yan
- State Key Laboratory of Plant Environmental Resilience, College of Life Science, Zhejiang University, Hangzhou 310058, PR China
| | - Tao Chen
- State Key Laboratory of Plant Environmental Resilience, College of Life Science, Zhejiang University, Hangzhou 310058, PR China
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, PR China
| | - Jiming Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Science, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Science, Zhejiang University, Hangzhou 310058, PR China
| | - Yunrong Wu
- State Key Laboratory of Plant Environmental Resilience, College of Life Science, Zhejiang University, Hangzhou 310058, PR China
| | - Huixia Shou
- State Key Laboratory of Plant Environmental Resilience, College of Life Science, Zhejiang University, Hangzhou 310058, PR China
| | - Zhongchang Wu
- State Key Laboratory of Plant Environmental Resilience, College of Life Science, Zhejiang University, Hangzhou 310058, PR China
| | - Chuanzao Mao
- State Key Laboratory of Plant Environmental Resilience, College of Life Science, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaorong Mo
- State Key Laboratory of Plant Environmental Resilience, College of Life Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
10
|
Gisriel CJ, Shen G, Flesher DA, Kurashov V, Golbeck JH, Brudvig GW, Amin M, Bryant DA. Structure of a dimeric photosystem II complex from a cyanobacterium acclimated to far-red light. J Biol Chem 2023; 299:102815. [PMID: 36549647 PMCID: PMC9843442 DOI: 10.1016/j.jbc.2022.102815] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Photosystem II (PSII) is the water-splitting enzyme central to oxygenic photosynthesis. To drive water oxidation, light is harvested by accessory pigments, mostly chlorophyll (Chl) a molecules, which absorb visible light (400-700 nm). Some cyanobacteria facultatively acclimate to shaded environments by altering their photosynthetic machinery to additionally absorb far-red light (FRL, 700-800 nm), a process termed far-red light photoacclimation or FaRLiP. During far-red light photoacclimation, FRL-PSII is assembled with FRL-specific isoforms of the subunits PsbA, PsbB, PsbC, PsbD, and PsbH, and some Chl-binding sites contain Chls d or f instead of the usual Chl a. The structure of an apo-FRL-PSII monomer lacking the FRL-specific PsbH subunit has previously been determined, but visualization of the dimeric complex has remained elusive. Here, we report the cryo-EM structure of a dimeric FRL-PSII complex. The site assignments for Chls d and f are consistent with those assigned in the previous apo-FRL-PSII monomeric structure. All sites that bind Chl d or Chl f at high occupancy exhibit a FRL-specific interaction of the formyl moiety of the Chl d or Chl f with the protein environment, which in some cases involves a phenylalanine sidechain. The structure retains the FRL-specific PsbH2 subunit, which appears to alter the energetic landscape of FRL-PSII, redirecting energy transfer from the phycobiliprotein complex to a Chl f molecule bound by PsbB2 that acts as a bridge for energy transfer to the electron transfer chain. Collectively, these observations extend our previous understanding of the structure-function relationship that allows PSII to function using lower energy FRL.
Collapse
Affiliation(s)
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Muhamed Amin
- Department of Sciences, University College Groningen, University of Groningen, Groningen, the Netherlands; Rijksuniversiteit Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
11
|
Wang J, Liu J, Gisriel CJ, Wu S, Maschietto F, Flesher DA, Lolis E, Lisi GP, Brudvig GW, Xiong Y, Batista VS. How to correct relative voxel scale factors for calculations of vector-difference Fourier maps in cryo-EM. J Struct Biol 2022; 214:107902. [PMID: 36202310 DOI: 10.1016/j.jsb.2022.107902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022]
Abstract
The atomic coordinates derived from cryo-electron microscopy (cryo-EM) maps can be inaccurate when the voxel scaling factors are not properly calibrated. Here, we describe a method for correcting relative voxel scaling factors between pairs of cryo-EM maps for the same or similar structures that are expanded or contracted relative to each other. We find that the correction of scaling factors reduces the amplitude differences of Fourier-inverted structure factors from voxel-rescaled maps by up to 20-30%, as shown by two cryo-EM maps of the SARS-CoV-2 spike protein measured at pH 4.0 and pH 8.0. This allows for the calculation of the difference map after properly scaling, revealing differences between the two structures for individual amino acid residues. Unexpectedly, the analysis uncovers two previously overlooked differences of amino acid residues in structures and their local structural changes. Furthermore, we demonstrate the method as applied to two cryo-EM maps of monomeric apo-photosystem II from the cyanobacteria Synechocystis sp. PCC 6803 and Thermosynechococcus elongatus. The resulting difference maps reveal many changes in the peripheral transmembrane PsbX subunit between the two species.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536, USA.
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536, USA
| | | | - Shenping Wu
- Department of Pharmacology, Yale University, New Haven, CT 06520-8066, USA
| | | | - David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536, USA
| | - Elias Lolis
- Department of Pharmacology, Yale University, New Haven, CT 06520-8066, USA
| | - George P Lisi
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Gary W Brudvig
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536, USA; Department of Chemistry, Yale University, New Haven, CT 06511-8499, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06511-8499, USA
| |
Collapse
|
12
|
Kim SM, Bae EH, Kim JY, Kang JS, Choi YE. Mixotrophic Cultivation of a Native Cyanobacterium, Pseudanabaena mucicola GO0704, to Produce Phycobiliprotein and Biodiesel. J Microbiol Biotechnol 2022; 32:1325-1334. [PMID: 36224760 PMCID: PMC9668097 DOI: 10.4014/jmb.2207.07008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022]
Abstract
Global warming has accelerated in recent decades due to the continuous consumption of petroleum-based fuels. Cyanobacteria-derived biofuels are a promising carbon-neutral alternative to fossil fuels that may help achieve a cleaner environment. Here, we propose an effective strategy based on the large-scale cultivation of a newly isolated cyanobacterial strain to produce phycobiliprotein and biodiesel, thus demonstrating the potential commercial applicability of the isolated microalgal strain. A native cyanobacterium was isolated from Goryeong, Korea, and identified as Pseudanabaena mucicola GO0704 through 16s RNA analysis. The potential exploitation of P. mucicola GO0704 was explored by analyzing several parameters for mixotrophic culture, and optimal growth was achieved through the addition of sodium acetate (1 g/l) to the BG-11 medium. Next, the cultures were scaled up to a stirred-tank bioreactor in mixotrophic conditions to maximize the productivity of biomass and metabolites. The biomass, phycobiliprotein, and fatty acids concentrations in sodium acetate-treated cells were enhanced, and the highest biodiesel productivity (8.1 mg/l/d) was achieved at 96 h. Finally, the properties of the fuel derived from P. mucicola GO0704 were estimated with converted biodiesels according to the composition of fatty acids. Most of the characteristics of the final product, except for the cloud point, were compliant with international biodiesel standards [ASTM 6761 (US) and EN 14214 (Europe)].
Collapse
Affiliation(s)
- Shin Myung Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Eun Hee Bae
- Research Division of Microorganisms, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Jee Young Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Shin Kang
- Research Division of Microorganisms, National Institute of Biological Resources, Incheon 22689, Republic of Korea,Research Division of Plants, National Institute of Biological Resources, Incheon, Republic of Korea (present address),Corresponding authors J.S. Kang Phone: +82-2-3290-3042 Fax: +82-2-3290-3040 E-mail:
| | - Yoon-E Choi
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea,
Y.E. Choi E-mail:
| |
Collapse
|
13
|
Xu C, Wang B, Yang L, Zhongming Hu L, Yi L, Wang Y, Chen S, Emili A, Wan C. Global Landscape of Native Protein Complexes in Synechocystis sp. PCC 6803. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:715-727. [PMID: 33636367 PMCID: PMC9880817 DOI: 10.1016/j.gpb.2020.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 04/04/2020] [Accepted: 06/12/2020] [Indexed: 01/31/2023]
Abstract
Synechocystis sp. PCC 6803 (hereafter: Synechocystis) is a model organism for studying photosynthesis, energy metabolism, and environmental stress. Although known as the first fully sequenced phototrophic organism, Synechocystis still has almost half of its proteome without functional annotations. In this study, by using co-fractionation coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS), we define 291 multi-protein complexes, encompassing 24,092 protein-protein interactions (PPIs) among 2062 distinct gene products. This information not only reveals the roles of photosynthesis in metabolism, cell motility, DNA repair, cell division, and other physiological processes, but also shows how protein functions vary from bacteria to higher plants due to changes in interaction partners. It also allows us to uncover the functions of hypothetical proteins, such as Sll0445, Sll0446, and Sll0447 involved in photosynthesis and cell motility, and Sll1334 involved in regulation of fatty acid biogenesis. Here we present the most extensive PPI data for Synechocystis so far, which provide critical insights into fundamental molecular mechanisms in cyanobacteria.
Collapse
Affiliation(s)
- Chen Xu
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Bing Wang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Lin Yang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Lucas Zhongming Hu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 2E8, Canada
| | - Lanxing Yi
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Yaxuan Wang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Shenglan Chen
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Andrew Emili
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 2E8, Canada,Departments of Biochemistry and Biology, Boston University, Boston, MA 02215, USA
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China,Corresponding author.
| |
Collapse
|
14
|
Macromolecular conformational changes in photosystem II: interaction between structure and function. Biophys Rev 2022; 14:871-886. [DOI: 10.1007/s12551-022-00979-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/02/2022] [Indexed: 01/08/2023] Open
|
15
|
Lambertz J, Liauw P, Whitelegge JP, Nowaczyk MM. Mass spectrometry analysis of the photosystem II assembly factor Psb27 revealed variations in its lipid modification. PHOTOSYNTHESIS RESEARCH 2022; 152:305-316. [PMID: 34910272 PMCID: PMC9458691 DOI: 10.1007/s11120-021-00891-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The assembly of large, multi-cofactor membrane protein complexes like photosystem II (PSII) requires a high level of coordination. The process is facilitated by a large network of auxiliary proteins that bind transiently to unassembled subunits, preassembled modules or intermediate states of PSII, which are comprised of a subset of subunits. However, analysis of these immature, partially assembled PSII complexes is hampered by their low abundance and intrinsic instability. In this study, PSII was purified from the thermophilic cyanobacterium Thermosynechococcus elongatus via Twin-Strep-tagged CP43 and further separated by ion exchange chromatography into mature and immature complexes. Mass spectrometry analysis of the immature Psb27-PSII intermediate revealed six different Psb27 proteoforms with distinct lipid modifications. The maturation and functional role of thylakoid localized lipoproteins are discussed.
Collapse
Affiliation(s)
- Jan Lambertz
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Pasqual Liauw
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, 90095, USA
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
16
|
Knoppová J, Sobotka R, Yu J, Bečková M, Pilný J, Trinugroho JP, Csefalvay L, Bína D, Nixon PJ, Komenda J. Assembly of D1/D2 complexes of photosystem II: Binding of pigments and a network of auxiliary proteins. PLANT PHYSIOLOGY 2022; 189:790-804. [PMID: 35134246 PMCID: PMC9157124 DOI: 10.1093/plphys/kiac045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Photosystem II (PSII) is the multi-subunit light-driven oxidoreductase that drives photosynthetic electron transport using electrons extracted from water. To investigate the initial steps of PSII assembly, we used strains of the cyanobacterium Synechocystis sp. PCC 6803 arrested at early stages of PSII biogenesis and expressing affinity-tagged PSII subunits to isolate PSII reaction center assembly (RCII) complexes and their precursor D1 and D2 modules (D1mod and D2mod). RCII preparations isolated using either a His-tagged D2 or a FLAG-tagged PsbI subunit contained the previously described RCIIa and RCII* complexes that differ with respect to the presence of the Ycf39 assembly factor and high light-inducible proteins (Hlips) and a larger complex consisting of RCIIa bound to monomeric PSI. All RCII complexes contained the PSII subunits D1, D2, PsbI, PsbE, and PsbF and the assembly factors rubredoxin A and Ycf48, but we also detected PsbN, Slr1470, and the Slr0575 proteins, which all have plant homologs. The RCII preparations also contained prohibitins/stomatins (Phbs) of unknown function and FtsH protease subunits. RCII complexes were active in light-induced primary charge separation and bound chlorophylls (Chls), pheophytins, beta-carotenes, and heme. The isolated D1mod consisted of D1/PsbI/Ycf48 with some Ycf39 and Phb3, while D2mod contained D2/cytochrome b559 with co-purifying PsbY, Phb1, Phb3, FtsH2/FtsH3, CyanoP, and Slr1470. As stably bound, Chl was detected in D1mod but not D2mod, formation of RCII appears to be important for stable binding of most of the Chls and both pheophytins. We suggest that Chl can be delivered to RCII from either monomeric Photosystem I or Ycf39/Hlips complexes.
Collapse
Affiliation(s)
- Jana Knoppová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Jianfeng Yu
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Martina Bečková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Jan Pilný
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Joko P Trinugroho
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ladislav Csefalvay
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - David Bína
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice 370 05, Czech Republic
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Josef Komenda
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| |
Collapse
|
17
|
Oliver N, Avramov AP, Nürnberg DJ, Dau H, Burnap RL. From manganese oxidation to water oxidation: assembly and evolution of the water-splitting complex in photosystem II. PHOTOSYNTHESIS RESEARCH 2022; 152:107-133. [PMID: 35397059 DOI: 10.1007/s11120-022-00912-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The manganese cluster of photosystem II has been the focus of intense research aiming to understand the mechanism of H2O-oxidation. Great effort has also been applied to investigating its oxidative photoassembly process, termed photoactivation that involves the light-driven incorporation of metal ions into the active Mn4CaO5 cluster. The knowledge gained on these topics has fundamental scientific significance, but may also provide the blueprints for the development of biomimetic devices capable of splitting water for solar energy applications. Accordingly, synthetic chemical approaches inspired by the native Mn cluster are actively being explored, for which the native catalyst is a useful benchmark. For both the natural and artificial catalysts, the assembly process of incorporating Mn ions into catalytically active Mn oxide complexes is an oxidative process. In both cases this process appears to share certain chemical features, such as producing an optimal fraction of open coordination sites on the metals to facilitate the binding of substrate water, as well as the involvement of alkali metals (e.g., Ca2+) to facilitate assembly and activate water-splitting catalysis. This review discusses the structure and formation of the metal cluster of the PSII H2O-oxidizing complex in the context of what is known about the formation and chemical properties of different Mn oxides. Additionally, the evolutionary origin of the Mn4CaO5 is considered in light of hypotheses that soluble Mn2+ was an ancient source of reductant for some early photosynthetic reaction centers ('photomanganotrophy'), and recent evidence that PSII can form Mn oxides with structural resemblance to the geologically abundant birnessite class of minerals. A new functional role for Ca2+ to facilitate sustained Mn2+ oxidation during photomanganotrophy is proposed, which may explain proposed physiological intermediates during the likely evolutionary transition from anoxygenic to oxygenic photosynthesis.
Collapse
Affiliation(s)
- Nicholas Oliver
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Anton P Avramov
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Dennis J Nürnberg
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Holger Dau
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Robert L Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
18
|
Gisriel CJ, Brudvig GW. Comparison of PsbQ and Psb27 in photosystem II provides insight into their roles. PHOTOSYNTHESIS RESEARCH 2022; 152:177-191. [PMID: 35001227 PMCID: PMC9271139 DOI: 10.1007/s11120-021-00888-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Photosystem II (PSII) catalyzes the oxidation of water at its active site that harbors a high-valent inorganic Mn4CaOx cluster called the oxygen-evolving complex (OEC). Extrinsic subunits generally serve to protect the OEC from reductants and stabilize the structure, but diversity in the extrinsic subunits exists between phototrophs. Recent cryo-electron microscopy experiments have provided new molecular structures of PSII with varied extrinsic subunits. We focus on the extrinsic subunit PsbQ, that binds to the mature PSII complex, and on Psb27, an extrinsic subunit involved in PSII biogenesis. PsbQ and Psb27 share a similar binding site and have a four-helix bundle tertiary structure, suggesting they are related. Here, we use sequence alignments, structural analyses, and binding simulations to compare PsbQ and Psb27 from different organisms. We find no evidence that PsbQ and Psb27 are related despite their similar structures and binding sites. Evolutionary divergence within PsbQ homologs from different lineages is high, probably due to their interactions with other extrinsic subunits that themselves exhibit vast diversity between lineages. This may result in functional variation as exemplified by large differences in their calculated binding energies. Psb27 homologs generally exhibit less divergence, which may be due to stronger evolutionary selection for certain residues that maintain its function during PSII biogenesis and this is consistent with their more similar calculated binding energies between organisms. Previous experimental inconsistencies, low confidence binding simulations, and recent structural data suggest that Psb27 is likely to exhibit flexibility that may be an important characteristic of its activity. The analysis provides insight into the functions and evolution of PsbQ and Psb27, and an unusual example of proteins with similar tertiary structures and binding sites that probably serve different roles.
Collapse
Affiliation(s)
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
19
|
Advances in the Understanding of the Lifecycle of Photosystem II. Microorganisms 2022; 10:microorganisms10050836. [PMID: 35630282 PMCID: PMC9145668 DOI: 10.3390/microorganisms10050836] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
Photosystem II is a light-driven water-plastoquinone oxidoreductase present in cyanobacteria, algae and plants. It produces molecular oxygen and protons to drive ATP synthesis, fueling life on Earth. As a multi-subunit membrane-protein-pigment complex, Photosystem II undergoes a dynamic cycle of synthesis, damage, and repair known as the Photosystem II lifecycle, to maintain a high level of photosynthetic activity at the cellular level. Cyanobacteria, oxygenic photosynthetic bacteria, are frequently used as model organisms to study oxygenic photosynthetic processes due to their ease of growth and genetic manipulation. The cyanobacterial PSII structure and function have been well-characterized, but its lifecycle is under active investigation. In this review, advances in studying the lifecycle of Photosystem II in cyanobacteria will be discussed, with a particular emphasis on new structural findings enabled by cryo-electron microscopy. These structural findings complement a rich and growing body of biochemical and molecular biology research into Photosystem II assembly and repair.
Collapse
|
20
|
Cyclophilin anaCyp40 regulates photosystem assembly and phycobilisome association in a cyanobacterium. Nat Commun 2022; 13:1690. [PMID: 35354803 PMCID: PMC8967839 DOI: 10.1038/s41467-022-29211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Cyclophilins, or immunophilins, are proteins found in many organisms including bacteria, plants and humans. Most of them display peptidyl-prolyl cis-trans isomerase activity, and play roles as chaperones or in signal transduction. Here, we show that cyclophilin anaCyp40 from the cyanobacterium Anabaena sp. PCC 7120 is enzymatically active, and seems to be involved in general stress responses and in assembly of photosynthetic complexes. The protein is associated with the thylakoid membrane and interacts with phycobilisome and photosystem components. Knockdown of anacyp40 leads to growth defects under high-salt and high-light conditions, and reduced energy transfer from phycobilisomes to photosystems. Elucidation of the anaCyp40 crystal structure at 1.2-Å resolution reveals an N-terminal helical domain with similarity to PsbQ components of plant photosystem II, and a C-terminal cyclophilin domain with a substrate-binding site. The anaCyp40 structure is distinct from that of other multi-domain cyclophilins (such as Arabidopsis thaliana Cyp38), and presents features that are absent in single-domain cyclophilins.
Collapse
|
21
|
Maeda H, Takahashi K, Ueno Y, Sakata K, Yokoyama A, Yarimizu K, Myouga F, Shinozaki K, Ozawa SI, Takahashi Y, Tanaka A, Ito H, Akimoto S, Takabayashi A, Tanaka R. Characterization of photosystem II assembly complexes containing ONE-HELIX PROTEIN1 in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2022; 135:361-376. [PMID: 35146632 DOI: 10.1007/s10265-022-01376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The assembly process of photosystem II (PSII) requires several auxiliary proteins to form assembly intermediates. In plants, early assembly intermediates comprise D1 and D2 subunits of PSII together with a few auxiliary proteins including at least ONE-HELIX PROTEIN1 (OHP1), OHP2, and HIGH-CHLOROPHYLL FLUORESCENCE 244 (HCF244) proteins. Herein, we report the basic characterization of the assembling intermediates, which we purified from Arabidopsis transgenic plants overexpressing a tagged OHP1 protein and named the OHP1 complexes. We analyzed two major forms of OHP1 complexes by mass spectrometry, which revealed that the complexes consist of OHP1, OHP2, and HCF244 in addition to the PSII subunits D1, D2, and cytochrome b559. Analysis of chlorophyll fluorescence showed that a major form of the complex binds chlorophyll a and carotenoids and performs quenching with a time constant of 420 ps. To identify the localization of the auxiliary proteins, we solubilized thylakoid membranes using a digitonin derivative, glycodiosgenin, and separated them into three fractions by ultracentrifugation, and detected these proteins in the loose pellet containing the stroma lamellae and the grana margins together with two chlorophyll biosynthesis enzymes. The results indicated that chlorophyll biosynthesis and assembly may take place in the same compartments of thylakoid membranes. Inducible suppression of the OHP2 mRNA substantially decreased the OHP2 protein in mature Arabidopsis leaves without a significant reduction in the maximum quantum yield of PSII under low-light conditions, but it compromised the yields under high-light conditions. This implies that the auxiliary protein is required for acclimation to high-light conditions.
Collapse
Affiliation(s)
- Hanaki Maeda
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Koharu Takahashi
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, 657‑8501, Japan
| | - Kei Sakata
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Akari Yokoyama
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Kozue Yarimizu
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Fumiyoshi Myouga
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Shin-Ichiro Ozawa
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657‑8501, Japan
| | - Atsushi Takabayashi
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, N19W8 Kita-ku, Sapporo, 060-0819, Japan.
| |
Collapse
|
22
|
Biswas S, Eaton-Rye JJ. PsbX maintains efficient electron transport in Photosystem II and reduces susceptibility to high light in Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148519. [PMID: 34890576 DOI: 10.1016/j.bbabio.2021.148519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022]
Abstract
PsbX is a 4.1 kDa intrinsic Photosystem II (PS II) protein, found together with the low-molecular-weight proteins, PsbY and PsbJ, in proximity to cytochrome b559. The function of PsbX is not yet fully characterized but PsbX may play a role in the exchange of the secondary plastoquinone electron acceptor QB with the quinone pool in the thylakoid membrane. To study the role of PsbX, we have constructed a PsbX-lacking strain of Synechocystis sp. PCC 6803. Our studies indicate that the absence of PsbX causes sensitivity to high light and impairs electron transport within PS II. In addition to a change in the QB-binding pocket, PsbX-lacking cells exhibited sensitivity to sodium formate, suggesting altered binding of the bicarbonate ligand to the non-heme iron between the sequential plastoquinone electron acceptors QA and QB. Experiments using 35S-methionine revealed high-light-treated PsbX-lacking cells restore PS II activity during recovery under low light by an increase in the turnover of PS II-associated core proteins. These labeling experiments indicate the recovery after exposure to high light requires both selective removal and replacement of the D1 protein and de novo PS II assembly.
Collapse
Affiliation(s)
- Sandeep Biswas
- Department of Biochemistry, University of Otago, New Zealand
| | | |
Collapse
|
23
|
Ostermeier M, Heinz S, Hamm J, Zabret J, Rast A, Klingl A, Nowaczyk MM, Nickelsen J. Thylakoid attachment to the plasma membrane in Synechocystis sp. PCC 6803 requires the AncM protein. THE PLANT CELL 2022; 34:655-678. [PMID: 34665262 PMCID: PMC8846179 DOI: 10.1093/plcell/koab253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Thylakoids are the highly specialized internal membrane systems that harbor the photosynthetic electron transport machinery in cyanobacteria and in chloroplasts. In Synechocystis sp. PCC 6803, thylakoid membranes (TMs) are arranged in peripheral sheets that occasionally converge on the plasma membrane (PM) to form thylakoid convergence membranes (TCMs). TCMs connect several thylakoid sheets and form local contact sites called thylapses between the two membrane systems, at which the early steps of photosystem II (PSII) assembly occur. The protein CurT is one of the main drivers of TCM formation known so far. Here, we identify, by whole-genome sequencing of a curT- suppressor strain, the protein anchor of convergence membranes (AncM) as a factor required for the attachment of thylakoids to the PM at thylapses. An ancM- mutant is shown to have a photosynthetic phenotype characterized by reductions in oxygen-evolution rate, PSII accumulation, and PS assembly. Moreover, the ancM- strain exhibits an altered thylakoid ultrastructure with additional sheets and TCMs detached from the PM. By combining biochemical studies with fluorescence and correlative light-electron microscopy-based approaches, we show that AncM is an integral membrane protein located in biogenic TCMs that form thylapses. These data suggest an antagonistic function of AncM and CurT in shaping TM ultrastructure.
Collapse
Affiliation(s)
- Matthias Ostermeier
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, 82152, Germany
| | - Steffen Heinz
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, 82152, Germany
| | - Julia Hamm
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, 82152, Germany
| | - Jure Zabret
- Department of Plant Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Anna Rast
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, 82152, Germany
| | - Andreas Klingl
- Department of Plant Development, LMU Munich, Planegg-Martinsried, 82152, Germany
| | - Marc M Nowaczyk
- Department of Plant Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Jörg Nickelsen
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
24
|
Choo P, Forsman JA, Hui L, Khaing EP, Summerfield TC, Eaton-Rye JJ. The PsbJ protein is required for photosystem II activity in centers lacking the PsbO and PsbV lumenal subunits. PHOTOSYNTHESIS RESEARCH 2022; 151:103-111. [PMID: 34273062 DOI: 10.1007/s11120-021-00862-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Photosystem II (PS II) of oxygenic photosynthesis is found in the thylakoid membranes of plastids and cyanobacteria. The mature PS II complex comprises a central core of four membrane proteins that bind the majority of the redox-active cofactors. In cyanobacteria the central core is surrounded by 13 low-molecular-weight (LMW) subunits which each consist of one or two transmembrane helices. Three additional hydrophilic subunits known as PsbO, PsbU and PsbV are found associated with hydrophilic loops belonging to the core proteins protruding into the thylakoid lumen. During biogenesis the majority of the LMW subunits are known to initially associate with individual pre-assembly complexes consisting of one or more of the core proteins; however, the point at which the PsbJ LMW subunit binds to PS II is not known. The majority of models for PS II biogenesis propose that the three extrinsic proteins and PsbJ bind in the final stages of PS II assembly. We have investigated the impact of creating the double mutants ∆PsbJ:∆PsbO, ∆PsbJ:∆PsbU and ∆PsbJ:∆PsbV to investigate potential cooperation between these subunits in the final stages of biogenesis. Our results indicate that PsbJ can bind to PS II in the absence of any one of the extrinsic proteins. However, unlike their respective single mutants, the ∆PsbJ:∆PsbO and ∆PsbJ:∆PsbV strains were not photoautotrophic and were unable to support oxygen evolution suggesting a functional oxygen-evolving complex could not assemble in these strains. In contrast, the PS II centers formed in the ∆PsbJ:∆PsbU strain were capable of photoautotrophic growth and could support oxygen evolution when whole-chain electron transport was supported by the addition of bicarbonate.
Collapse
Affiliation(s)
- Priscilla Choo
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Jack A Forsman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Liangliang Hui
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Ei Phyo Khaing
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
25
|
Gisriel CJ, Shen G, Ho MY, Kurashov V, Flesher DA, Wang J, Armstrong WH, Golbeck JH, Gunner MR, Vinyard DJ, Debus RJ, Brudvig GW, Bryant DA. Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f. J Biol Chem 2022; 298:101424. [PMID: 34801554 PMCID: PMC8689208 DOI: 10.1016/j.jbc.2021.101424] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/26/2022] Open
Abstract
Far-red light (FRL) photoacclimation in cyanobacteria provides a selective growth advantage for some terrestrial cyanobacteria by expanding the range of photosynthetically active radiation to include far-red/near-infrared light (700-800 nm). During this photoacclimation process, photosystem II (PSII), the water:plastoquinone photooxidoreductase involved in oxygenic photosynthesis, is modified. The resulting FRL-PSII is comprised of FRL-specific core subunits and binds chlorophyll (Chl) d and Chl f molecules in place of several of the Chl a molecules found when cells are grown in visible light. These new Chls effectively lower the energy canonically thought to define the "red limit" for light required to drive photochemical catalysis of water oxidation. Changes to the architecture of FRL-PSII were previously unknown, and the positions of Chl d and Chl f molecules had only been proposed from indirect evidence. Here, we describe the 2.25 Å resolution cryo-EM structure of a monomeric FRL-PSII core complex from Synechococcus sp. PCC 7335 cells that were acclimated to FRL. We identify one Chl d molecule in the ChlD1 position of the electron transfer chain and four Chl f molecules in the core antenna. We also make observations that enhance our understanding of PSII biogenesis, especially on the acceptor side of the complex where a bicarbonate molecule is replaced by a glutamate side chain in the absence of the assembly factor Psb28. In conclusion, these results provide a structural basis for the lower energy limit required to drive water oxidation, which is the gateway for most solar energy utilization on earth.
Collapse
Affiliation(s)
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ming-Yang Ho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | | | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Marilyn R Gunner
- Department of Physics, City College of New York, New York, New York, USA
| | - David J Vinyard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Richard J Debus
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
26
|
Xiao Y, Huang G, You X, Zhu Q, Wang W, Kuang T, Han G, Sui SF, Shen JR. Structural insights into cyanobacterial photosystem II intermediates associated with Psb28 and Tsl0063. NATURE PLANTS 2021; 7:1132-1142. [PMID: 34226692 DOI: 10.1038/s41477-021-00961-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/03/2021] [Indexed: 05/07/2023]
Abstract
Photosystem II (PSII) is a multisubunit pigment-protein complex and catalyses light-induced water oxidation, leading to the conversion of light energy into chemical energy and the release of dioxygen. We analysed the structures of two Psb28-bound PSII intermediates, Psb28-RC47 and Psb28-PSII, purified from a psbV-deletion strain of the thermophilic cyanobacterium Thermosynechococcus vulcanus, using cryo-electron microscopy. Both Psb28-RC47 and Psb28-PSII bind one Psb28, one Tsl0063 and an unknown subunit. Psb28 is located at the cytoplasmic surface of PSII and interacts with D1, D2 and CP47, whereas Tsl0063 is a transmembrane subunit and binds at the side of CP47/PsbH. Substantial structural perturbations are observed at the acceptor side, which result in conformational changes of the quinone (QB) and non-haem iron binding sites and thus may protect PSII from photodamage during assembly. These results provide a solid structural basis for understanding the assembly process of native PSII.
Collapse
Affiliation(s)
- Yanan Xiao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Huang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xin You
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qingjun Zhu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| |
Collapse
|
27
|
Structural insights into a dimeric Psb27-photosystem II complex from a cyanobacterium Thermosynechococcus vulcanus. Proc Natl Acad Sci U S A 2021; 118:2018053118. [PMID: 33495333 DOI: 10.1073/pnas.2018053118] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Photosystem II (PSII) is a multisubunit pigment-protein complex and catalyzes light-driven water oxidation, leading to the conversion of light energy into chemical energy and the release of molecular oxygen. Psb27 is a small thylakoid lumen-localized protein known to serve as an assembly factor for the biogenesis and repair of the PSII complex. The exact location and binding fashion of Psb27 in the intermediate PSII remain elusive. Here, we report the structure of a dimeric Psb27-PSII complex purified from a psbV deletion mutant (ΔPsbV) of the cyanobacterium Thermosynechococcus vulcanus, solved by cryo-electron microscopy. Our structure showed that Psb27 is associated with CP43 at the luminal side, with specific interactions formed between Helix 2 and Helix 3 of Psb27 and a loop region between Helix 3 and Helix 4 of CP43 (loop C) as well as the large, lumen-exposed and hydrophilic E-loop of CP43. The binding of Psb27 imposes some conflicts with the N-terminal region of PsbO and also induces some conformational changes in CP43, CP47, and D2. This makes PsbO unable to bind in the Psb27-PSII. Conformational changes also occurred in D1, PsbE, PsbF, and PsbZ; this, together with the conformational changes occurred in CP43, CP47, and D2, may prevent the binding of PsbU and induce dissociation of PsbJ. This structural information provides important insights into the regulation mechanism of Psb27 in the biogenesis and repair of PSII.
Collapse
|
28
|
Huokko T, Ni T, Dykes GF, Simpson DM, Brownridge P, Conradi FD, Beynon RJ, Nixon PJ, Mullineaux CW, Zhang P, Liu LN. Probing the biogenesis pathway and dynamics of thylakoid membranes. Nat Commun 2021; 12:3475. [PMID: 34108457 PMCID: PMC8190092 DOI: 10.1038/s41467-021-23680-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 05/11/2021] [Indexed: 01/30/2023] Open
Abstract
How thylakoid membranes are generated to form a metabolically active membrane network and how thylakoid membranes orchestrate the insertion and localization of protein complexes for efficient electron flux remain elusive. Here, we develop a method to modulate thylakoid biogenesis in the rod-shaped cyanobacterium Synechococcus elongatus PCC 7942 by modulating light intensity during cell growth, and probe the spatial-temporal stepwise biogenesis process of thylakoid membranes in cells. Our results reveal that the plasma membrane and regularly arranged concentric thylakoid layers have no physical connections. The newly synthesized thylakoid membrane fragments emerge between the plasma membrane and pre-existing thylakoids. Photosystem I monomers appear in the thylakoid membranes earlier than other mature photosystem assemblies, followed by generation of Photosystem I trimers and Photosystem II complexes. Redistribution of photosynthetic complexes during thylakoid biogenesis ensures establishment of the spatial organization of the functional thylakoid network. This study provides insights into the dynamic biogenesis process and maturation of the functional photosynthetic machinery.
Collapse
Affiliation(s)
- Tuomas Huokko
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Tao Ni
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gregory F Dykes
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Deborah M Simpson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Philip Brownridge
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Fabian D Conradi
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Robert J Beynon
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Peter J Nixon
- Department of Life Sciences, Imperial College London, London, UK
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
| |
Collapse
|
29
|
The Photosystem II Assembly Factor Ycf48 from the Cyanobacterium Synechocystis sp. PCC 6803 Is Lipidated Using an Atypical Lipobox Sequence. Int J Mol Sci 2021; 22:ijms22073733. [PMID: 33918522 PMCID: PMC8038367 DOI: 10.3390/ijms22073733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 01/24/2023] Open
Abstract
Photochemical energy conversion during oxygenic photosynthesis is performed by membrane-embedded chlorophyll-binding protein complexes. The biogenesis and maintenance of these complexes requires auxiliary protein factors that optimize the assembly process and protect nascent complexes from photodamage. In cyanobacteria, several lipoproteins contribute to the biogenesis and function of the photosystem II (PSII) complex. They include CyanoP, CyanoQ, and Psb27, which are all attached to the lumenal side of PSII complexes. Here, we show that the lumenal Ycf48 assembly factor found in the cyanobacterium Synechocystis sp. PCC 6803 is also a lipoprotein. Detailed mass spectrometric analysis of the isolated protein supported by site-directed mutagenesis experiments indicates lipidation of the N-terminal C29 residue of Ycf48 and removal of three amino acids from the C-terminus. The lipobox sequence in Ycf48 contains a cysteine residue at the -3 position compared to Leu/Val/Ile residues found in the canonical lipobox sequence. The atypical Ycf48 lipobox sequence is present in most cyanobacteria but is absent in eukaryotes. A possible role for lipoproteins in the coordinated assembly of cyanobacterial PSII is discussed.
Collapse
|
30
|
Zabret J, Bohn S, Schuller SK, Arnolds O, Möller M, Meier-Credo J, Liauw P, Chan A, Tajkhorshid E, Langer JD, Stoll R, Krieger-Liszkay A, Engel BD, Rudack T, Schuller JM, Nowaczyk MM. Structural insights into photosystem II assembly. NATURE PLANTS 2021; 7:524-538. [PMID: 33846594 PMCID: PMC8094115 DOI: 10.1038/s41477-021-00895-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/04/2021] [Indexed: 05/07/2023]
Abstract
Biogenesis of photosystem II (PSII), nature's water-splitting catalyst, is assisted by auxiliary proteins that form transient complexes with PSII components to facilitate stepwise assembly events. Using cryo-electron microscopy, we solved the structure of such a PSII assembly intermediate from Thermosynechococcus elongatus at 2.94 Å resolution. It contains three assembly factors (Psb27, Psb28 and Psb34) and provides detailed insights into their molecular function. Binding of Psb28 induces large conformational changes at the PSII acceptor side, which distort the binding pocket of the mobile quinone (QB) and replace the bicarbonate ligand of non-haem iron with glutamate, a structural motif found in reaction centres of non-oxygenic photosynthetic bacteria. These results reveal mechanisms that protect PSII from damage during biogenesis until water splitting is activated. Our structure further demonstrates how the PSII active site is prepared for the incorporation of the Mn4CaO5 cluster, which performs the unique water-splitting reaction.
Collapse
Affiliation(s)
- Jure Zabret
- Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Stefan Bohn
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sandra K Schuller
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
- CryoEM of Molecular Machines, SYNMIKRO Research Center and Department of Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Oliver Arnolds
- Biomolecular Spectroscopy and RUBiospek|NMR, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Madeline Möller
- Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | - Pasqual Liauw
- Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Aaron Chan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Julian D Langer
- Proteomics, Max Planck Institute of Biophysics, Frankfurt, Germany
- Proteomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Raphael Stoll
- Biomolecular Spectroscopy and RUBiospek|NMR, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Benjamin D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Till Rudack
- Biospectroscopy, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, Bochum, Germany.
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| | - Jan M Schuller
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
- CryoEM of Molecular Machines, SYNMIKRO Research Center and Department of Chemistry, Philipps University of Marburg, Marburg, Germany.
| | - Marc M Nowaczyk
- Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
31
|
Dahlgren KK, Gates C, Lee T, Cameron JC. Proximity-based proteomics reveals the thylakoid lumen proteome in the cyanobacterium Synechococcus sp. PCC 7002. PHOTOSYNTHESIS RESEARCH 2021; 147:177-195. [PMID: 33280076 PMCID: PMC7880944 DOI: 10.1007/s11120-020-00806-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Cyanobacteria possess unique intracellular organization. Many proteomic studies have examined different features of cyanobacteria to learn about the intracellular structures and their respective functions. While these studies have made great progress in understanding cyanobacterial physiology, the conventional fractionation methods used to purify cellular structures have limitations; specifically, certain regions of cells cannot be purified with existing fractionation methods. Proximity-based proteomics techniques were developed to overcome the limitations of biochemical fractionation for proteomics. Proximity-based proteomics relies on spatiotemporal protein labeling followed by mass spectrometry of the labeled proteins to determine the proteome of the region of interest. We performed proximity-based proteomics in the cyanobacterium Synechococcus sp. PCC 7002 with the APEX2 enzyme, an engineered ascorbate peroxidase. We determined the proteome of the thylakoid lumen, a region of the cell that has remained challenging to study with existing methods, using a translational fusion between APEX2 and PsbU, a lumenal subunit of photosystem II. Our results demonstrate the power of APEX2 as a tool to study the cell biology of intracellular features and processes, including photosystem II assembly in cyanobacteria, with enhanced spatiotemporal resolution.
Collapse
Affiliation(s)
- Kelsey K Dahlgren
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
- Interdisciplinary Quantitative Biology Program (IQ Biology), BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Colin Gates
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Thomas Lee
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Jeffrey C Cameron
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA.
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA.
- National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
32
|
Xie Y, Chen L, Sun T, Zhang W. Deciphering and engineering high-light tolerant cyanobacteria for efficient photosynthetic cell factories. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Abstract
Photosynthetic membranes are typically densely packed with proteins, and this is crucial for their function in efficient trapping of light energy. Despite being crowded with protein, the membranes are fluid systems in which proteins and smaller molecules can diffuse. Fluidity is also crucial for photosynthetic function, as it is essential for biogenesis, electron transport, and protein redistribution for functional regulation. All photosynthetic membranes seem to maintain a delicate balance between crowding, order, and fluidity. How does this work in phototrophic bacteria? In this review, we focus on two types of intensively studied bacterial photosynthetic membranes: the chromatophore membranes of purple bacteria and the thylakoid membranes of cyanobacteria. Both systems are distinct from the plasma membrane, and both have a distinctive protein composition that reflects their specialized roles. Chromatophores are formed from plasma membrane invaginations, while thylakoid membranes appear to be an independent intracellular membrane system. We discuss the techniques that can be applied to study the organization and dynamics of these membrane systems, including electron microscopy techniques, atomic force microscopy, and many variants of fluorescence microscopy. We go on to discuss the insights that havebeen acquired from these techniques, and the role of membrane dynamics in the physiology of photosynthetic membranes. Membrane dynamics on multiple timescales are crucial for membrane function, from electron transport on timescales of microseconds to milliseconds to regulation and biogenesis on timescales of minutes to hours. We emphasize the open questions that remain in the field.
Collapse
Affiliation(s)
- Conrad W. Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
34
|
Mahbub M, Hemm L, Yang Y, Kaur R, Carmen H, Engl C, Huokko T, Riediger M, Watanabe S, Liu LN, Wilde A, Hess WR, Mullineaux CW. mRNA localization, reaction centre biogenesis and thylakoid membrane targeting in cyanobacteria. NATURE PLANTS 2020; 6:1179-1191. [PMID: 32895528 DOI: 10.1038/s41477-020-00764-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
The thylakoid membranes of cyanobacteria form a complex intracellular membrane system with a distinctive proteome. The sites of biogenesis of thylakoid proteins remain uncertain, as do the signals that direct thylakoid membrane-integral proteins to the thylakoids rather than to the plasma membrane. Here, we address these questions by using fluorescence in situ hybridization to probe the subcellular location of messenger RNA molecules encoding core subunits of the photosystems in two cyanobacterial species. These mRNAs cluster at thylakoid surfaces mainly adjacent to the central cytoplasm and the nucleoid, in contrast to mRNAs encoding proteins with other locations. Ribosome association influences the distribution of the photosynthetic mRNAs on the thylakoid surface, but thylakoid affinity is retained in the absence of ribosome association. However, thylakoid association is disrupted in a mutant lacking two mRNA-binding proteins, which probably play roles in targeting photosynthetic proteins to the thylakoid membrane.
Collapse
Affiliation(s)
- Moontaha Mahbub
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- Department of Botany, Jagannath University, Dhaka, Bangladesh
| | - Luisa Hemm
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Yuxiao Yang
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Ramanpreet Kaur
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Helder Carmen
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Christoph Engl
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Tuomas Huokko
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Wolfgang R Hess
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
35
|
Fernandez L, Peura S, Eiler A, Linz AM, McMahon KD, Bertilsson S. Diazotroph Genomes and Their Seasonal Dynamics in a Stratified Humic Bog Lake. Front Microbiol 2020; 11:1500. [PMID: 32714313 PMCID: PMC7341956 DOI: 10.3389/fmicb.2020.01500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/09/2020] [Indexed: 12/28/2022] Open
Abstract
Aquatic N-fixation is generally associated with the growth and mass development of Cyanobacteria in nitrogen-deprived photic zones. However, sequenced genomes and environmental surveys suggest active aquatic N-fixation also by many non-cyanobacterial groups. Here, we revealed the seasonal variation and genomic diversity of potential N-fixers in a humic bog lake using metagenomic data and nif gene clusters analysis. Groups with diazotrophic operons were functionally divergent and included Cholorobi, Geobacter, Desulfobacterales, Methylococcales, and Acidobacteria. In addition to nifH (a gene that encodes the dinitrogenase reductase component of the molybdenum nitrogenase), we also identified sequences corresponding to vanadium and iron-only nitrogenase genes. Within the Chlorobi population, the nitrogenase (nifH) cluster was included in a well-structured retrotransposon. Furthermore, the presence of light-harvesting photosynthesis genes implies that anoxygenic photosynthesis may fuel nitrogen fixation under the prevailing low-irradiance conditions. The presence of rnf genes (related to the expression of H+/Na+-translocating ferredoxin: NAD+ oxidoreductase) in Methylococcales and Desulfobacterales suggests that other energy-generating processes may drive the costly N-fixation in the absence of photosynthesis. The highly reducing environment of the anoxic bottom layer of Trout Bog Lake may thus also provide a suitable niche for active N-fixers and primary producers. While future studies on the activity of these potential N-fixers are needed to clarify their role in freshwater nitrogen cycling, the metagenomic data presented here enabled an initial characterization of previously overlooked diazotrophs in freshwater biomes.
Collapse
Affiliation(s)
- Leyden Fernandez
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sari Peura
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Alexander Eiler
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Centre for Biogeochemistry in the Anthropocene, Department of Biosciences, Section for Aquatic Biology and Toxicology, University of Oslo, Oslo, Norway
| | - Alexandra M. Linz
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI, United States
| | - Katherine D. McMahon
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, WI, United States
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
36
|
Liu D, Johnson VM, Pakrasi HB. A Reversibly Induced CRISPRi System Targeting Photosystem II in the Cyanobacterium Synechocystis sp. PCC 6803. ACS Synth Biol 2020; 9:1441-1449. [PMID: 32379958 DOI: 10.1021/acssynbio.0c00106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cyanobacterium Synechocystis sp. PCC 6803 is used as a model organism to study photosynthesis, as it can utilize glucose as the sole carbon source to support its growth under heterotrophic conditions. CRISPR interference (CRISPRi) has been widely applied to repress the transcription of genes in a targeted manner in cyanobacteria. However, a robust and reversible induced CRISPRi system has not been explored in Synechocystis 6803 to knock down and recover the expression of a targeted gene. In this study, we built a tightly controlled chimeric promoter, P rhaBAD-RSW, in which a theophylline responsive riboswitch was integrated into a rhamnose-inducible promoter system. We applied this promoter to drive the expression of ddCpf1 (DNase-dead Cpf1 nuclease) in a CRISPRi system and chose the PSII reaction center gene psbD (D2 protein) to target for repression. psbD was specifically knocked down by over 95% of its native expression, leading to severely inhibited photosystem II activity and growth of Synechocystis 6803 under photoautotrophic conditions. Significantly, removal of the inducers rhamnose and theophylline reversed repression by CRISPRi. Expression of PsbD recovered following release of repression, coupled with increased photosystem II content and activity. This reversibly induced CRISPRi system in Synechocystis 6803 represents a new strategy for study of the biogenesis of photosynthetic complexes in cyanobacteria.
Collapse
Affiliation(s)
- Deng Liu
- Department of Biology, Washington University, St. Louis, Missouri 63130, United States
| | - Virginia M Johnson
- Department of Biology, Washington University, St. Louis, Missouri 63130, United States
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
37
|
Siebenaller C, Junglas B, Schneider D. Functional Implications of Multiple IM30 Oligomeric States. FRONTIERS IN PLANT SCIENCE 2019; 10:1500. [PMID: 31824532 PMCID: PMC6882379 DOI: 10.3389/fpls.2019.01500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/29/2019] [Indexed: 05/03/2023]
Abstract
The inner membrane-associated protein of 30 kDa (IM30), also known as the vesicle-inducing protein in plastids 1 (Vipp1), is essential for photo-autotrophic growth of cyanobacteria, algae and higher plants. While its exact function still remains largely elusive, it is commonly accepted that IM30 is crucially involved in thylakoid membrane biogenesis, stabilization and/or maintenance. A characteristic feature of IM30 is its intrinsic propensity to form large homo-oligomeric protein complexes. 15 years ago, it has been reported that these supercomplexes have a ring-shaped structure. However, the in vivo significance of these ring structures is not finally resolved yet and the formation of more complex assemblies has been reported. We here present and discuss research on IM30 conducted within the past 25 years with a special emphasis on the question of why we potentially need IM30 supercomplexes in vivo.
Collapse
Affiliation(s)
| | | | - Dirk Schneider
- Department of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
38
|
Chou HH, Su HY, Song XD, Chow TJ, Chen CY, Chang JS, Lee TM. Isolation and characterization of Chlorella sp. mutants with enhanced thermo- and CO 2 tolerances for CO 2 sequestration and utilization of flue gases. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:251. [PMID: 31641373 PMCID: PMC6800494 DOI: 10.1186/s13068-019-1590-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/11/2019] [Indexed: 06/07/2023]
Abstract
BACKGROUND The increasing emission of flue gas from industrial plants contributes to environmental pollution, global warming, and climate change. Microalgae have been considered excellent biological materials for flue gas removal, particularly CO2 mitigation. However, tolerance to high temperatures is also critical for outdoor microalgal mass cultivation. Therefore, flue gas- and thermo-tolerant mutants of Chlorella vulgaris ESP-31 were generated and characterized for their ability to grow under various conditions. RESULTS In this study, we obtained two CO2- and thermo-tolerant mutants of Chlorella vulgaris ESP-31, namely, 283 and 359, with enhanced CO2 tolerance and thermo-tolerance by using N-methyl-N-nitro-N-nitrosoguanidine (NTG) mutagenesis followed by screening at high temperature and under high CO2 conditions with the w-zipper pouch selection method. The two mutants exhibited higher photosynthetic activity and biomass productivity than that of the ESP-31 wild type. More importantly, the mutants were able to grow at high temperature (40 °C) and a high concentration of simulated flue gas (25% CO2, 80-90 ppm SO2, 90-100 ppm NO) and showed higher carbohydrate and lipid contents than did the ESP-31 wild type. CONCLUSIONS The two thermo- and flue gas-tolerant mutants of Chlorella vulgaris ESP-31 were useful for CO2 mitigation from flue gas under heated conditions and for the production of carbohydrates and biodiesel directly using CO2 from flue gas.
Collapse
Affiliation(s)
- Hsiang-Hui Chou
- Department of Biotechnology, Fooyin University, Kaohsiung, 83102 Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 80424 Taiwan
| | - Hsiang-Yen Su
- China-Latin America Joint Laboratory for Clean Energy and Climate Change, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808 China
| | - Xiang-Di Song
- Department of Biotechnology, Fooyin University, Kaohsiung, 83102 Taiwan
| | - Te-Jin Chow
- Department of Biotechnology, Fooyin University, Kaohsiung, 83102 Taiwan
| | - Chun-Yen Chen
- University Center of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70146 Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng-Kung University, Tainan, 70146 Taiwan
- Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, 70146 Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424 Taiwan
| |
Collapse
|
39
|
A novel chlorophyll protein complex in the repair cycle of photosystem II. Proc Natl Acad Sci U S A 2019; 116:21907-21913. [PMID: 31594847 DOI: 10.1073/pnas.1909644116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In oxygenic photosynthetic organisms, photosystem II (PSII) is a unique membrane protein complex that catalyzes light-driven oxidation of water. PSII undergoes frequent damage due to its demanding photochemistry. It must undergo a repair and reassembly process following photodamage, many facets of which remain unknown. We have discovered a PSII subcomplex that lacks 5 key PSII core reaction center polypeptides: D1, D2, PsbE, PsbF, and PsbI. This pigment-protein complex does contain the PSII core antenna proteins CP47 and CP43, as well as most of their associated low molecular mass subunits, and the assembly factor Psb27. Immunoblotting, mass spectrometry, and ultrafast spectroscopic results support the absence of a functional reaction center in this complex, which we call the "no reaction center" complex (NRC). Analytical ultracentrifugation and clear native PAGE analysis show that NRC is a stable pigment-protein complex and not a mixture of free CP47 and CP43 proteins. NRC appears in higher abundance in cells exposed to high light and impaired protein synthesis, and genetic deletion of PsbO on the PSII luminal side results in an increased NRC population, indicative that NRC forms in response to photodamage as part of the PSII repair process. Our finding challenges the current model of the PSII repair cycle and implies an alternative PSII repair strategy. Formation of this complex may maximize PSII repair economy by preserving intact PSII core antennas in a single complex available for PSII reassembly, minimizing the risk of randomly diluting multiple recycling components in the thylakoid membrane following a photodamage event.
Collapse
|
40
|
Knoppová J, Komenda J. Sequential deletions of photosystem II assembly factors Ycf48, Ycf39 and Pam68 result in progressive loss of autotrophy in the cyanobacterium Synechocystis PCC 6803. Folia Microbiol (Praha) 2019; 64:683-689. [PMID: 31359262 DOI: 10.1007/s12223-019-00736-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/15/2019] [Indexed: 01/28/2023]
Abstract
The biogenesis of the cyanobacterial photosystem II (PSII) complex requires a number of auxiliary assembly factors that improve efficiency of the process but their precise function is not well understood. To assess a possible synergic action of the Ycf48 and Ycf39 factors acting in early steps of the biogenesis via interaction with the nascent D1 subunit of PSII, we constructed and characterised a double mutant of the cyanobacterium Synechocystis PCC 6803 lacking both these proteins. In addition, we also deleted the ycf39 gene in the double mutant lacking Ycf48 and Pam68, the latter being a ribosomal factor promoting insertion of chlorophyll (Chl) into the CP47 subunit of PSII. The resulting double ΔYcf48/ΔYcf39 and triple ΔYcf48/ΔPam68/ΔYcf39 mutants were deficient in PSII and total Chl, and in contrast to the source mutants, they lost the capacity for autotrophy. Interestingly, autotrophic growth was restored in both of the new multiple mutants by enhancing Chl biosynthesis using a specific ferrochelatase inhibitor. Taking together with the weak radioactive labelling of the D1 protein, these findings can be explained by inhibition of the D1 synthesis caused by the lack and/or incorrect binding of Chl molecules. The results emphasise the key importance of the sufficient Chl supply for the PSII biogenesis and also support the existence of a so far enigmatic regulatory mechanism leading to the reduced overall Chl biosynthesis/accumulation when the PSII assembly is impaired.
Collapse
Affiliation(s)
- Jana Knoppová
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 81, Třeboň, Czech Republic.
| | - Josef Komenda
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| |
Collapse
|
41
|
Rast A, Schaffer M, Albert S, Wan W, Pfeffer S, Beck F, Plitzko JM, Nickelsen J, Engel BD. Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. NATURE PLANTS 2019; 5:436-446. [PMID: 30962530 DOI: 10.1038/s41477-019-0399-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/04/2019] [Indexed: 05/20/2023]
Abstract
Little is known about how the photosynthetic machinery is arranged in time and space during the biogenesis of thylakoid membranes. Using in situ cryo-electron tomography to image the three-dimensional architecture of the cyanobacterium Synechocystis, we observed that the tips of multiple thylakoids merge to form a substructure called the 'convergence membrane'. This high-curvature membrane comes into close contact with the plasma membrane at discrete sites. We generated subtomogram averages of 70S ribosomes and array-forming phycobilisomes, then mapped these structures onto the native membrane architecture as markers for protein synthesis and photosynthesis, respectively. This molecular localization identified two distinct biogenic regions in the thylakoid network: thylakoids facing the cytosolic interior of the cell that were associated with both marker complexes, and convergence membranes that were decorated by ribosomes but not phycobilisomes. We propose that the convergence membranes perform a specialized biogenic function, coupling the synthesis of thylakoid proteins with the integration of cofactors from the plasma membrane and the periplasmic space.
Collapse
Affiliation(s)
- Anna Rast
- Department of Molecular Plant Sciences, Ludwig-Maximilians-University Munich, Martinsried, Germany
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Miroslava Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sahradha Albert
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - William Wan
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stefan Pfeffer
- Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
| | - Florian Beck
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jörg Nickelsen
- Department of Molecular Plant Sciences, Ludwig-Maximilians-University Munich, Martinsried, Germany.
| | - Benjamin D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
42
|
Arisaka S, Sukigara H, Osanai T. Genetic manipulation to overexpress rpaA altered photosynthetic electron transport in Synechocystis sp. PCC 6803. J Biosci Bioeng 2018. [DOI: 10.1016/j.jbiosc.2018.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Ycf48 involved in the biogenesis of the oxygen-evolving photosystem II complex is a seven-bladed beta-propeller protein. Proc Natl Acad Sci U S A 2018; 115:E7824-E7833. [PMID: 30061392 DOI: 10.1073/pnas.1800609115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Robust photosynthesis in chloroplasts and cyanobacteria requires the participation of accessory proteins to facilitate the assembly and maintenance of the photosynthetic apparatus located within the thylakoid membranes. The highly conserved Ycf48 protein acts early in the biogenesis of the oxygen-evolving photosystem II (PSII) complex by binding to newly synthesized precursor D1 subunit and by promoting efficient association with the D2 protein to form a PSII reaction center (PSII RC) assembly intermediate. Ycf48 is also required for efficient replacement of damaged D1 during the repair of PSII. However, the structural features underpinning Ycf48 function remain unclear. Here we show that Ycf48 proteins encoded by the thermophilic cyanobacterium Thermosynechococcus elongatus and the red alga Cyanidioschyzon merolae form seven-bladed beta-propellers with the 19-aa insertion characteristic of eukaryotic Ycf48 located at the junction of blades 3 and 4. Knowledge of these structures has allowed us to identify a conserved "Arg patch" on the surface of Ycf48 that is important for binding of Ycf48 to PSII RCs but also to larger complexes, including trimeric photosystem I (PSI). Reduced accumulation of chlorophyll in the absence of Ycf48 and the association of Ycf48 with PSI provide evidence of a more wide-ranging role for Ycf48 in the biogenesis of the photosynthetic apparatus than previously thought. Copurification of Ycf48 with the cyanobacterial YidC protein insertase supports the involvement of Ycf48 during the cotranslational insertion of chlorophyll-binding apopolypeptides into the membrane.
Collapse
|
44
|
Kelly CL, Taylor GM, Hitchcock A, Torres-Méndez A, Heap JT. A Rhamnose-Inducible System for Precise and Temporal Control of Gene Expression in Cyanobacteria. ACS Synth Biol 2018; 7:1056-1066. [PMID: 29544054 DOI: 10.1021/acssynbio.7b00435] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyanobacteria are important for fundamental studies of photosynthesis and have great biotechnological potential. In order to better study and fully exploit these organisms, the limited repertoire of genetic tools and parts must be expanded. A small number of inducible promoters have been used in cyanobacteria, allowing dynamic external control of gene expression through the addition of specific inducer molecules. However, the inducible promoters used to date suffer from various drawbacks including toxicity of inducers, leaky expression in the absence of inducer and inducer photolability, the latter being particularly relevant to cyanobacteria, which, as photoautotrophs, are grown under light. Here we introduce the rhamnose-inducible rhaBAD promoter of Escherichia coli into the model freshwater cyanobacterium Synechocystis sp. PCC 6803 and demonstrate it has superior properties to previously reported cyanobacterial inducible promoter systems, such as a non-toxic, photostable, non-metabolizable inducer, a linear response to inducer concentration and crucially no basal transcription in the absence of inducer.
Collapse
Affiliation(s)
- Ciarán L. Kelly
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - George M. Taylor
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Andrew Hitchcock
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Antonio Torres-Méndez
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - John T. Heap
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| |
Collapse
|
45
|
Weisz DA, Gross ML, Pakrasi HB. Reactive oxygen species leave a damage trail that reveals water channels in Photosystem II. SCIENCE ADVANCES 2017; 3:eaao3013. [PMID: 29159285 PMCID: PMC5693562 DOI: 10.1126/sciadv.aao3013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/19/2017] [Indexed: 05/30/2023]
Abstract
Photosystem II (PSII), a unique membrane-bound oxidoreductase, catalyzes light-driven oxidation of water to molecular oxygen. Although high-resolution structures of PSII are known, the exact path of the substrate water molecules to the catalytic Mn4CaO5 center within the PSII complex remains poorly understood. PSII produces reactive oxygen species (ROS), responsible for the frequent damage and turnover of this megacomplex that occur under physiological conditions. Such ROS are known to specifically modify PSII proteins. Using high-resolution tandem mass spectrometry, we identified oxidative modifications on 36 amino acid residues on the lumenal side of PSII, in the core PSII proteins D1, D2, and CP43 of the cyanobacterium Synechocystis sp. PCC 6803. Remarkably, these oxidized residues clustered into three nearly continuous formations, tracking the pathways of ROS diffusion from the manganese center all the way out to the surface of PSII. We suggest that these profiles of oxidized residues reveal the locations of water channels within PSII. Our results provide the most comprehensive experimental evidence to date of physiologically relevant oxidized residues in PSII and illuminate three possible channels for water between the catalytic Mn cluster in the PSII complex and the bulk medium around it.
Collapse
Affiliation(s)
- Daniel A. Weisz
- Department of Biology, Washington University, St. Louis, MO 63130, USA
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
46
|
Zhang M, Bommer M, Chatterjee R, Hussein R, Yano J, Dau H, Kern J, Dobbek H, Zouni A. Structural insights into the light-driven auto-assembly process of the water-oxidizing Mn 4CaO 5-cluster in photosystem II. eLife 2017; 6. [PMID: 28718766 PMCID: PMC5542773 DOI: 10.7554/elife.26933] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/17/2017] [Indexed: 01/11/2023] Open
Abstract
In plants, algae and cyanobacteria, Photosystem II (PSII) catalyzes the light-driven splitting of water at a protein-bound Mn4CaO5-cluster, the water-oxidizing complex (WOC). In the photosynthetic organisms, the light-driven formation of the WOC from dissolved metal ions is a key process because it is essential in both initial activation and continuous repair of PSII. Structural information is required for understanding of this chaperone-free metal-cluster assembly. For the first time, we obtained a structure of PSII from Thermosynechococcus elongatus without the Mn4CaO5-cluster. Surprisingly, cluster-removal leaves the positions of all coordinating amino acid residues and most nearby water molecules largely unaffected, resulting in a pre-organized ligand shell for kinetically competent and error-free photo-assembly of the Mn4CaO5-cluster. First experiments initiating (i) partial disassembly and (ii) partial re-assembly after complete depletion of the Mn4CaO5-cluster agree with a specific bi-manganese cluster, likely a di-µ-oxo bridged pair of Mn(III) ions, as an assembly intermediate. DOI:http://dx.doi.org/10.7554/eLife.26933.001
Collapse
Affiliation(s)
- Miao Zhang
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Bommer
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Rana Hussein
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Holger Dau
- Freie Universität Berlin, Berlin, Germany
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Holger Dobbek
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Athina Zouni
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
47
|
Gandini C, Schmidt SB, Husted S, Schneider A, Leister D. The transporter SynPAM71 is located in the plasma membrane and thylakoids, and mediates manganese tolerance in Synechocystis PCC6803. THE NEW PHYTOLOGIST 2017; 215:256-268. [PMID: 28318016 DOI: 10.1111/nph.14526] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/19/2017] [Indexed: 05/24/2023]
Abstract
Manganese (Mn) is an essential constituent of photosystem II (PSII) and therefore indispensable for oxygenic photosynthesis. Very little is known about how Mn is transported, delivered and retained in photosynthetic cells. Recently, the thylakoid-localized transporter PAM71 has been linked to chloroplast Mn homeostasis in Arabidopsis thaliana. Here, we characterize the function of its homolog in Synechocystis (SynPAM71). We used a loss-of-function line (ΔSynPAM71), wild-type (WT) cells exposed to Mn stress and strains expressing a tagged variant of SynPAM71 to characterize the role of SynPAM71 in cyanobacterial Mn homeostasis. The ΔSynPAM71 strain displays an Mn-sensitive phenotype with reduced levels of chlorophyll and PSI accumulation, defects in PSII photochemistry and intracellular Mn enrichment, particularly in the thylakoid membranes. These effects are attributable to Mn toxicity, as very similar symptoms were observed in WT cells exposed to excess Mn. Moreover, CyanoP, which is involved in the early steps of PSII assembly, is massively upregulated in ΔSynPAM71. SynPAM71 was detected in both the plasma membrane and, to a lesser extent, the thylakoid membranes. Our results suggest that SynPAM71 is involved in the maintenance of Mn homeostasis through the export of Mn from the cytoplasm into the periplasmic and luminal compartments, where it can be stored without interfering with cytoplasmic metabolic processes.
Collapse
Affiliation(s)
- Chiara Gandini
- Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, Martinsried, 82152, Germany
| | - Sidsel Birkelund Schmidt
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre (CPSC), Faculty of Science, University of Copenhagen, Frederiksberg C, 1871, Denmark
| | - Søren Husted
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre (CPSC), Faculty of Science, University of Copenhagen, Frederiksberg C, 1871, Denmark
| | - Anja Schneider
- Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, Martinsried, 82152, Germany
| | - Dario Leister
- Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, Martinsried, 82152, Germany
| |
Collapse
|
48
|
Bersanini L, Allahverdiyeva Y, Battchikova N, Heinz S, Lespinasse M, Ruohisto E, Mustila H, Nickelsen J, Vass I, Aro EM. Dissecting the Photoprotective Mechanism Encoded by the flv4-2 Operon: a Distinct Contribution of Sll0218 in Photosystem II Stabilization. PLANT, CELL & ENVIRONMENT 2017; 40:378-389. [PMID: 27928824 DOI: 10.1111/pce.12872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 06/06/2023]
Abstract
In Synechocystis sp. PCC 6803, the flv4-2 operon encodes the flavodiiron proteins Flv2 and Flv4 together with a small protein, Sll0218, providing photoprotection for Photosystem II (PSII). Here, the distinct roles of Flv2/Flv4 and Sll0218 were addressed, using a number of flv4-2 operon mutants. In the ∆sll0218 mutant, the presence of Flv2/Flv4 rescued PSII functionality as compared with ∆sll0218-flv2, where neither Sll0218 nor the Flv2/Flv4 heterodimer are expressed. Nevertheless, both the ∆sll0218 and ∆sll0218-flv2 mutants demonstrated deficiency in accumulation of PSII proteins suggesting a role for Sll0218 in PSII stabilization, which was further supported by photoinhibition experiments. Moreover, the accumulation of PSII assembly intermediates occurred in Sll0218-lacking mutants. The YFP-tagged Sll0218 protein localized in a few spots per cell at the external side of the thylakoid membrane, and biochemical membrane fractionation revealed clear enrichment of Sll0218 in the PratA-defined membranes, where the early biogenesis steps of PSII occur. Further, the characteristic antenna uncoupling feature of the ∆flv4-2 operon mutants is shown to be related to PSII destabilization in the absence of Sll0218. It is concluded that the Flv2/Flv4 heterodimer supports PSII functionality, while the Sll0218 protein assists PSII assembly and stabilization, including optimization of light harvesting.
Collapse
Affiliation(s)
- Luca Bersanini
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Yagut Allahverdiyeva
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Natalia Battchikova
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Steffen Heinz
- Molecular Plant Sciences, Ludwig-Maximillians-Universität München, Biozentrum, Grosshaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Maija Lespinasse
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Essi Ruohisto
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Henna Mustila
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Jörg Nickelsen
- Molecular Plant Sciences, Ludwig-Maximillians-Universität München, Biozentrum, Grosshaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Imre Vass
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, P.O. Box 521, H-6701, Szeged, Hungary
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
49
|
Weisz DA, Liu H, Zhang H, Thangapandian S, Tajkhorshid E, Gross ML, Pakrasi HB. Mass spectrometry-based cross-linking study shows that the Psb28 protein binds to cytochrome b559 in Photosystem II. Proc Natl Acad Sci U S A 2017; 114:2224-2229. [PMID: 28193857 PMCID: PMC5338524 DOI: 10.1073/pnas.1620360114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Photosystem II (PSII), a large pigment protein complex, undergoes rapid turnover under natural conditions. During assembly of PSII, oxidative damage to vulnerable assembly intermediate complexes must be prevented. Psb28, the only cytoplasmic extrinsic protein in PSII, protects the RC47 assembly intermediate of PSII and assists its efficient conversion into functional PSII. Its role is particularly important under stress conditions when PSII damage occurs frequently. Psb28 is not found, however, in any PSII crystal structure, and its structural location has remained unknown. In this study, we used chemical cross-linking combined with mass spectrometry to capture the transient interaction of Psb28 with PSII. We detected three cross-links between Psb28 and the α- and β-subunits of cytochrome b559, an essential component of the PSII reaction-center complex. These distance restraints enable us to position Psb28 on the cytosolic surface of PSII directly above cytochrome b559, in close proximity to the QB site. Protein-protein docking results also support Psb28 binding in this region. Determination of the Psb28 binding site and other biochemical evidence allow us to propose a mechanism by which Psb28 exerts its protective effect on the RC47 intermediate. This study also shows that isotope-encoded cross-linking with the "mass tags" selection criteria allows confident identification of more cross-linked peptides in PSII than has been previously reported. This approach thus holds promise to identify other transient protein-protein interactions in membrane protein complexes.
Collapse
Affiliation(s)
- Daniel A Weisz
- Department of Biology, Washington University, St. Louis, MO 63130
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Haijun Liu
- Department of Biology, Washington University, St. Louis, MO 63130
| | - Hao Zhang
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Sundarapandian Thangapandian
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Emad Tajkhorshid
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, MO 63130;
| | | |
Collapse
|
50
|
Morris JN, Eaton-Rye JJ, Summerfield TC. Environmental pH and the Requirement for the Extrinsic Proteins of Photosystem II in the Function of Cyanobacterial Photosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:1135. [PMID: 27555848 PMCID: PMC4977308 DOI: 10.3389/fpls.2016.01135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
In one of the final stages of cyanobacterial Photosystem II (PS II) assembly, binding of up to four extrinsic proteins to PS II stabilizes the oxygen-evolving complex (OEC). Growth of cyanobacterial mutants deficient in certain combinations of these thylakoid-lumen-associated polypeptides is sensitive to changes in environmental pH, despite the physical separation of the membrane-embedded PS II complex from the external environment. In this perspective we discuss the effect of environmental pH on OEC function and photoautotrophic growth in cyanobacteria with reference to pH-sensitive PS II mutants lacking extrinsic proteins. We consider the possibilities that, compared to pH 10.0, pH 7.5 increases susceptibility to PS II-generated reactive oxygen species (ROS) causing photoinhibition and reducing PS II assembly in some mutants, and that perturbations to channels in the lumenal regions of PS II might alter the accessibility of water to the active site as well as egress of oxygen and protons to the thylakoid lumen. Reduced levels of PS II in these mutants, and reduced OEC activity arising from the disruption of substrate/product channels, could reduce the trans-thylakoid pH gradient (ΔpH), leading to the impairment of photosynthesis. Growth of some PS II mutants at pH 7.5 can be rescued by elevating CO2 levels, suggesting that the pH-sensitive phenotype might primarily be an indirect result of back-pressure in the electron transport chain that results in heightened production of ROS by the impaired photosystem.
Collapse
Affiliation(s)
- Jaz N. Morris
- Department of Botany, University of OtagoDunedin, New Zealand
| | | | | |
Collapse
|