1
|
Lin C, Mazor Y, Reppert M. Feeling the Strain: Quantifying Ligand Deformation in Photosynthesis. J Phys Chem B 2024; 128:2266-2280. [PMID: 38442033 DOI: 10.1021/acs.jpcb.3c06488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Structural distortion of protein-bound ligands can play a critical role in enzyme function by tuning the electronic and chemical properties of the ligand molecule. However, quantifying these effects is difficult due to the limited resolution of protein structures and the difficulty of generating accurate structural restraints for nonprotein ligands. Here, we seek to quantify these effects through a statistical analysis of ligand distortion in chlorophyll proteins (CP), where ring deformation is thought to play a role in energy and electron transfer. To assess the accuracy of ring-deformation estimates from available structural data, we take advantage of the C2 symmetry of photosystem II (PSII), comparing ring-deformation estimates for equivalent sites both within and between 113 distinct X-ray and cryogenic electron microscopy PSII structures. Significantly, we find that several deformation modes exhibit considerable variability in predictions, even for equivalent monomers, down to a 2 Å resolution, to an extent that probably prevents their utilization in optical calculations. We further find that refinement restraints play a critical role in determining deformation values to resolution as low as 2 Å. However, for those modes that are well-resolved in the structural data, ring deformation in PSII is strongly conserved across all species tested from cyanobacteria to algae. These results highlight both the opportunities and limitations inherent in structure-based analyses of the bioenergetic and optical properties of CPs and other protein-ligand complexes.
Collapse
Affiliation(s)
- Chientzu Lin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47920, United States
| | - Yuval Mazor
- School of Molecular Sciences, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Mike Reppert
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47920, United States
| |
Collapse
|
2
|
Krysiak S, Gotić M, Madej E, Moreno Maldonado AC, Goya GF, Spiridis N, Burda K. The effect of ultrafine WO 3 nanoparticles on the organization of thylakoids enriched in photosystem II and energy transfer in photosystem II complexes. Microsc Res Tech 2023; 86:1583-1598. [PMID: 37534550 DOI: 10.1002/jemt.24394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
In this work, a new approach to construct self-assembled hybrid systems based on natural PSII-enriched thylakoid membranes (PSII BBY) is demonstrated. Superfine m-WO3 NPs (≈1-2 nm) are introduced into PSII BBY. Transmission electron microscopy (TEM) measurements showed that even the highest concentrations of NPs used did not degrade the PSII BBY membranes. Using atomic force microscopy (AFM), it is shown that the organization of PSII BBY depends strongly on the concentration of NPs applied. This proved that the superfine NPs can easily penetrate the thylakoid membrane and interact with its components. These changes are also related to the modified energy transfer between the external light-harvesting antennas and the PSII reaction center, shown by absorption and fluorescence experiments. The biohybrid system shows stability at pH 6.5, the native operating environment of PSII, so a high rate of O2 evolution is expected. In addition, the light-induced water-splitting process can be further stimulated by the direct interaction of superfine WO3 NPs with the donor and acceptor sides of PSII. The water-splitting activity and stability of this colloidal system are under investigation. RESEARCH HIGHLIGHTS: The phenomenon of the self-organization of a biohybrid system composed of thylakoid membranes enriched in photosystem II and superfine WO3 nanoparticles is studied using AFM and TEM. A strong dependence of the organization of PSII complexes within PSII BBY membranes on the concentration of NPs applied is observed. This observation turns out to be crucial to understand the complexity of the mechanism of the action of WO3 NPs on modifications of energy transfer from external antenna complexes to the PSII reaction center.
Collapse
Affiliation(s)
- S Krysiak
- Faculty of Physics and Applied Computer Science, AGH - University of Krakow, Krakow, Poland
| | - M Gotić
- Division of Materials Physics, Ruđer Bošković Institute, Zagreb, Croatia
| | - E Madej
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - A C Moreno Maldonado
- Condensed Matter Physics Department and Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - G F Goya
- Condensed Matter Physics Department and Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - N Spiridis
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - K Burda
- Faculty of Physics and Applied Computer Science, AGH - University of Krakow, Krakow, Poland
| |
Collapse
|
3
|
Abstract
Biological pigment-protein complexes (PPCs) exhibit a remarkable ability to tune the optical properties of biological excitons (bioexcitons) through specific pigment-protein interactions. While such fine-tuning allows natural systems (e.g., photosynthetic proteins) to carry out their native functions with near-optimal performance, native function itself is often suboptimal for applications such as biofuel production or quantum technology development. This perspective offers a look at near-term prospects for the rational reoptimization of PPC bioexcitons for new functions using site-directed mutagenesis. The primary focus is on the "structure-spectrum" challenge of understanding the relationships between structural features and spectroscopic properties. While recent examples demonstrate that site-directed mutagenesis can be used to tune nearly all key bioexciton parameters (e.g., site energies, interpigment couplings, and electronic-vibrational interactions), critical challenges remain before we achieve truly rational design of bioexciton properties.
Collapse
Affiliation(s)
- Mike Reppert
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Mohamed A, Nishi S, Kawakami K, Shen JR, Itoh S, Fukumura H, Shibata Y. Exciton quenching by oxidized chlorophyll Z across the two adjacent monomers in a photosystem II core dimer. PHOTOSYNTHESIS RESEARCH 2022; 154:277-289. [PMID: 35976595 DOI: 10.1007/s11120-022-00948-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to clarify (1) which pigment in a photosystem II (PSII) core complex is responsible for the 695-nm emission at 77 K and (2) the molecular basis for the oxidation-induced fluorescence quenching in PSII. Picosecond time-resolved fluorescence dynamics was compared between the dimeric and monomeric PSII with and without addition of an oxidant. The results indicated that the excitation-energy flow to the 695-nm-emitting chlorophyll (Chl) at 36 K and 77 K was hindered upon monomerization, clearly demonstrating significant exciton migration from the Chls on one monomer to the 695-nm-emitting pigment on the adjacent monomer. Oxidation of the redox-active Chl, which is named ChlZ caused almost equal quenching of the 684-nm and 695-nm emission bands in the dimer, and lower quenching of the 695-nm band in the monomer. These results suggested two possible scenarios responsible for the 695-nm emission band: (A) Chl11-13 pair and the oxidized ChlZD1 work as the 695-nm emitting Chl and the quenching site, respectively, and (B) Chl29 and the oxidized ChlZD2 work as the 695-nm emitting Chl and the quenching site, respectively.
Collapse
Affiliation(s)
- Ahmed Mohamed
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki Aza Aoba, Aoba-Ku, Sendai, 980-8578, Japan
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, Boul. Lionel-Boulet, Varennes, QC, J3X 1S2, Canada
| | - Shunsuke Nishi
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Keisuke Kawakami
- Biostructural Mechanism Laboratory, RIKEN Spring-8 Center, Hyogo, 679-5148, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Shigeru Itoh
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Hiroshi Fukumura
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki Aza Aoba, Aoba-Ku, Sendai, 980-8578, Japan
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki Aza Aoba, Aoba-Ku, Sendai, 980-8578, Japan.
| |
Collapse
|
5
|
From antenna to reaction center: Pathways of ultrafast energy and charge transfer in photosystem II. Proc Natl Acad Sci U S A 2022; 119:e2208033119. [PMID: 36215463 PMCID: PMC9586314 DOI: 10.1073/pnas.2208033119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The photosystem II core complex (PSII-CC) is a photosynthetic complex that contains antenna proteins, which collect energy from sunlight, and a reaction center, which converts the collected energy to redox potential. Understanding the interplay between the antenna proteins and the reaction center will facilitate the development of more efficient solar energy conversion technologies. Here, we study the sub-100-ps dynamics of PSII-CC with two-dimensional electronic-vibrational spectroscopy, which connects energy flows with physical space, allowing a direct mapping of energy transfer pathways. Our results reveal a complex dynamical scheme which includes a specific pathway that connects CP43 to the reaction center. Resolving this pathway experimentally provides insights into the energy conversion processes in natural photosynthesis. The photosystem II core complex (PSII-CC) is the smallest subunit of the oxygenic photosynthetic apparatus that contains core antennas and a reaction center, which together allow for rapid energy transfer and charge separation, ultimately leading to efficient solar energy conversion. However, there is a lack of consensus on the interplay between the energy transfer and charge separation dynamics of the core complex. Here, we report the application of two-dimensional electronic-vibrational (2DEV) spectroscopy to the spinach PSII-CC at 77 K. The simultaneous temporal and spectral resolution afforded by 2DEV spectroscopy facilitates the separation and direct assignment of coexisting dynamical processes. Our results show that the dominant dynamics of the PSII-CC are distinct in different excitation energy regions. By separating the excitation regions, we are able to distinguish the intraprotein dynamics and interprotein energy transfer. Additionally, with the improved resolution, we are able to identify the key pigments involved in the pathways, allowing for a direct connection between dynamical and structural information. Specifically, we show that C505 in CP43 and the peripheral chlorophyll ChlzD1 in the reaction center are most likely responsible for energy transfer from CP43 to the reaction center.
Collapse
|
6
|
Lazar D, Stirbet A, Björn L, Govindjee G. Light quality, oxygenic photosynthesis and more. PHOTOSYNTHETICA 2022; 60:25-28. [PMID: 39648998 PMCID: PMC11559484 DOI: 10.32615/ps.2021.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/10/2024]
Abstract
Oxygenic photosynthesis takes place in thylakoid membranes (TM) of cyanobacteria, algae, and higher plants. It begins with light absorption by pigments in large (modular) assemblies of pigment-binding proteins, which then transfer excitation energy to the photosynthetic reaction centers of photosystem (PS) I and PSII. In green algae and plants, these light-harvesting protein complexes contain chlorophylls (Chls) and carotenoids (Cars). However, cyanobacteria, red algae, and glaucophytes contain, in addition, phycobiliproteins in phycobilisomes that are attached to the stromal surface of TM, and transfer excitation energy to the reaction centers via the Chl a molecules in the inner antennas of PSI and PSII. The color and the intensity of the light to which these photosynthetic organisms are exposed in their environment have a great influence on the composition and the structure of the light-harvesting complexes (the antenna) as well as the rest of the photosynthetic apparatus, thus affecting the photosynthetic process and even the entire organism. We present here a perspective on 'Light Quality and Oxygenic Photosynthesis', in memory of George Christos Papageorgiou (9 May 1933-21 November 2020; see notes a and b). Our review includes (1) the influence of the solar spectrum on the antenna composition, and the special significance of Chl a; (2) the effects of light quality on photosynthesis, measured using Chl a fluorescence; and (3) the importance of light quality, intensity, and its duration for the optimal growth of photosynthetic organisms.
Collapse
Affiliation(s)
- D. Lazar
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - A. Stirbet
- Anne Burras Lane, Newport News, 23606 Virginia, USA
| | - L.O. Björn
- Department of Biology, Molecular Cell Biology, Lund University, Sölvegatan 35, SE-22462 Lund, Sweden
| | - G. Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
7
|
Kondo T, Shibata Y. Recent advances in single-molecule spectroscopy studies on light-harvesting processes in oxygenic photosynthesis. Biophys Physicobiol 2022. [PMCID: PMC9173860 DOI: 10.2142/biophysico.bppb-v19.0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Photosynthetic light-harvesting complexes (LHCs) play a crucial role in concentrating the photon energy from the sun that otherwise excites a typical pigment molecule, such as chlorophyll-a, only several times a second. Densely packed pigments in the complexes ensure efficient energy transfer to the reaction center. At the same time, LHCs have the ability to switch to an energy-quenching state and thus play a photoprotective role under excessive light conditions. Photoprotection is especially important for oxygenic photosynthetic organisms because toxic reactive oxygen species can be generated through photochemistry under aerobic conditions. Because of the extreme complexity of the systems in which various types of pigment molecules strongly interact with each other and with the surrounding protein matrixes, there has been long-standing difficulty in understanding the molecular mechanisms underlying the flexible switching between the light-harvesting and quenching states. Single-molecule spectroscopy studies are suitable to reveal the conformational dynamics of LHCs reflected in the fluorescence properties that are obscured in ordinary ensemble measurements. Recent advanced single-molecule spectroscopy studies have revealed the dynamical fluctuations of LHCs in their fluorescence peak position, intensity, and lifetime. The observed dynamics seem relevant to the conformational plasticity required for the flexible activations of photoprotective energy quenching. In this review, we survey recent advances in the single-molecule spectroscopy study of the light-harvesting systems of oxygenic photosynthesis.
Collapse
Affiliation(s)
- Toru Kondo
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Science, Tohoku University
| |
Collapse
|
8
|
Ara AM, Ahmed MK, D'Haene S, van Roon H, Ilioaia C, van Grondelle R, Wahadoszamen M. Absence of far-red emission band in aggregated core antenna complexes. Biophys J 2021; 120:1680-1691. [PMID: 33675767 DOI: 10.1016/j.bpj.2021.02.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/31/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022] Open
Abstract
Reported herein is a Stark fluorescence spectroscopy study performed on photosystem II core antenna complexes CP43 and CP47 in their native and aggregated states. The systematic mathematical modeling of the Stark fluorescence spectra with the aid of conventional Liptay formalism revealed that induction of aggregation in both the core antenna complexes via detergent removal results in a single quenched species characterized by a remarkably broad and inhomogenously broadened emission lineshape peaking around 700 nm. The quenched species possesses a fairly large magnitude of charge-transfer character. From the analogy with the results from aggregated peripheral antenna complexes, the quenched species is thought to originate from the enhanced chlorophyll-chlorophyll interaction due to aggregation. However, in contrast, aggregation of both core antenna complexes did not produce a far-red emission band at ∼730 nm, which was identified in most of the aggregated peripheral antenna complexes. The 730-nm emission band of the aggregated peripheral antenna complexes was attributed to the enhanced chlorophyll-carotenoid (lutein1) interaction in the terminal emitter locus. Therefore, it is very likely that the no occurrence of the far-red band in the aggregated core antenna complexes is directly related to the absence of lutein1 in their structures. The absence of the far-red band also suggests the possibility that aggregation-induced conformational change of the core antenna complexes does not yield a chlorophyll-carotenoid interaction associated energy dissipation channel.
Collapse
Affiliation(s)
- Anjue Mane Ara
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands; Department of Physics, Jagannath University, Dhaka, Bangladesh
| | | | - Sandrine D'Haene
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Henny van Roon
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Cristian Ilioaia
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Rienk van Grondelle
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Md Wahadoszamen
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands; Department of Physics, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
9
|
Sirohiwal A, Neese F, Pantazis DA. Chlorophyll excitation energies and structural stability of the CP47 antenna of photosystem II: a case study in the first-principles simulation of light-harvesting complexes. Chem Sci 2021; 12:4463-4476. [PMID: 34163712 PMCID: PMC8179452 DOI: 10.1039/d0sc06616h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Natural photosynthesis relies on light harvesting and excitation energy transfer by specialized pigment-protein complexes. Their structure and the electronic properties of the embedded chromophores define the mechanisms of energy transfer. An important example of a pigment-protein complex is CP47, one of the integral antennae of the oxygen-evolving photosystem II (PSII) that is responsible for efficient excitation energy transfer to the PSII reaction center. The charge-transfer excitation induced among coupled reaction center chromophores resolves into charge separation that initiates the electron transfer cascade driving oxygenic photosynthesis. Mapping the distribution of site energies among the 16 chlorophyll molecules of CP47 is essential for understanding excitation energy transfer and overall antenna function. In this work, we demonstrate a multiscale quantum mechanics/molecular mechanics (QM/MM) approach utilizing full time-dependent density functional theory with modern range-separated functionals to compute for the first time the excitation energies of all CP47 chlorophylls in a complete membrane-embedded cyanobacterial PSII dimer. The results quantify the electrostatic effect of the protein on the site energies of CP47 chlorophylls, providing a high-level quantum chemical excitation profile of CP47 within a complete computational model of "near-native" cyanobacterial PSII. The ranking of site energies and the identity of the most red-shifted chlorophylls (B3, followed by B1) differ from previous hypotheses in the literature and provide an alternative basis for evaluating past approaches and semiempirically fitted sets. Given that a lot of experimental studies on CP47 and other light-harvesting complexes utilize extracted samples, we employ molecular dynamics simulations of isolated CP47 to identify which parts of the polypeptide are most destabilized and which pigments are most perturbed when the antenna complex is extracted from PSII. We demonstrate that large parts of the isolated complex rapidly refold to non-native conformations and that certain pigments (such as chlorophyll B1 and β-carotene h1) are so destabilized that they are probably lost upon extraction of CP47 from PSII. The results suggest that the properties of isolated CP47 are not representative of the native complexed antenna. The insights obtained from CP47 are generalizable, with important implications for the information content of experimental studies on biological light-harvesting antenna systems.
Collapse
Affiliation(s)
- Abhishek Sirohiwal
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany.,Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum 44780 Bochum Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
10
|
Wu L, Zhang L, Tu W, Sun R, Li F, Lin Y, Zhang Y, Liu C, Yang C. Photosynthetic inner antenna CP47 plays important roles in ephemeral plants in adapting to high light stress. JOURNAL OF PLANT PHYSIOLOGY 2020; 251:153189. [PMID: 32526555 DOI: 10.1016/j.jplph.2020.153189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Throughout 3.5 billion years of evolution, photosynthesis of land plants has developed a complicated antenna system to cope with the ever-changing environments. The antenna system of photosystem (PS) II includes the outer antennae and inner antennae. The inner antennae CP43 and CP47, located in the closest peripheral of PSII reaction center (RC), play important roles in facilitating excitation energy transport from the outer antennae to the PSII RC. Although PSII RC is the last station of energy transport, it is the inner antenna CP47, not the RC, which possesses the lowest energy level in PSII. Berteroa incana (B. incana), which is a vascular plant grown in the Gobi region, can sustain very high photosynthesis capacity under very high light conditions. It has been discovered that the thylakoid membrane of B. incana possesses a unique low fluorescence emission spectrum because the fluorescence emission of CP47 (695 nm) is the main fluorescence emission peak of PSII. In this paper, the thylakoid membrane, isolated from B. incana grown under a light condition of 100 μM photons m-2 s-1 and subjected to high light treatment (1600 μM photons m-2 s-1 for 1.5 h or 3 h) was employed for the research. It has been found that the high fluorescence emission of CP47 decreased remarkably upon exposure to the high light treatment. Further observation revealed that the drastic changes in the CP47 fluorescence emission were accompanied by a slight reduction in the amount of CP47 and an enhancement of the CP29-LHCII-CP24 assembly. It is proposed that CP47 enables the functional switch between the excitation energy transfer towards PSII RC, and the overexcitation quenching in the PSII core. Together with CP43, CP47 plays important roles in regulating excitation energy distribution in PSII core complexes.
Collapse
Affiliation(s)
- Lishuan Wu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Zhang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenfeng Tu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ruixue Sun
- Qingdao Institute, Shanghai Institute of Technological Physics, Chinese Academy of Sciences, Qingdao 264000, China
| | - Fei Li
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajun Lin
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yuanming Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Cheng Liu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunhong Yang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
The primary donor of far-red photosystem II: Chl D1 or P D2? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148248. [PMID: 32565079 DOI: 10.1016/j.bbabio.2020.148248] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 11/20/2022]
Abstract
Far-red light (FRL) Photosystem II (PSII) isolated from Chroococcidiopsis thermalis is studied using parallel analyses of low-temperature absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectroscopies in conjunction with fluorescence measurements. This extends earlier studies (Nurnberg et al 2018 Science 360 (2018) 1210-1213). We confirm that the chlorophyll absorbing at 726 nm is the primary electron donor. At 1.8 K efficient photochemistry occurs when exciting at 726 nm and shorter wavelengths; but not at wavelengths longer than 726 nm. The 726 nm absorption peak exhibits a 21 ± 4 cm-1 electrochromic shift due to formation of the semiquinone anion, QA-. Modelling indicates that no other FRL pigment is located among the 6 central reaction center chlorins: PD1, PD2 ChlD1, ChlD2, PheoD1 and PheoD2. Two of these chlorins, ChlD1 and PD2, are located at a distance and orientation relative to QA- so as to account for the observed electrochromic shift. Previously, ChlD1 was taken as the most likely candidate for the primary donor based on spectroscopy, sequence analysis and mechanistic arguments. Here, a more detailed comparison of the spectroscopic data with exciton modelling of the electrochromic pattern indicates that PD2 is at least as likely as ChlD1 to be responsible for the 726 nm absorption. The correspondence in sign and magnitude of the CD observed at 726 nm with that predicted from modelling favors PD2 as the primary donor. The pros and cons of PD2 vs ChlD1 as the location of the FRL-primary donor are discussed.
Collapse
|
12
|
Müh F, Zouni A. Structural basis of light-harvesting in the photosystem II core complex. Protein Sci 2020; 29:1090-1119. [PMID: 32067287 PMCID: PMC7184784 DOI: 10.1002/pro.3841] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
Photosystem II (PSII) is a membrane-spanning, multi-subunit pigment-protein complex responsible for the oxidation of water and the reduction of plastoquinone in oxygenic photosynthesis. In the present review, the recent explosive increase in available structural information about the PSII core complex based on X-ray crystallography and cryo-electron microscopy is described at a level of detail that is suitable for a future structure-based analysis of light-harvesting processes. This description includes a proposal for a consistent numbering scheme of protein-bound pigment cofactors across species. The structural survey is complemented by an overview of the state of affairs in structure-based modeling of excitation energy transfer in the PSII core complex with emphasis on electrostatic computations, optical properties of the reaction center, the assignment of long-wavelength chlorophylls, and energy trapping mechanisms.
Collapse
Affiliation(s)
- Frank Müh
- Department of Theoretical Biophysics, Institute for Theoretical Physics, Johannes Kepler University Linz, Linz, Austria
| | - Athina Zouni
- Humboldt-Universität zu Berlin, Institute for Biology, Biophysics of Photosynthesis, Berlin, Germany
| |
Collapse
|
13
|
Shiraogawa T, Ehara M. Theoretical Study on the Optical Properties of Multichromophoric Systems Based on an Exciton Approach: Modification Guidelines. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Takafumi Shiraogawa
- SOKENDAIThe Graduate University for Advanced Studies Nishigonaka 38, Myodaiji Okazaki 444-8585 Japan
| | - Masahiro Ehara
- SOKENDAIThe Graduate University for Advanced Studies Nishigonaka 38, Myodaiji Okazaki 444-8585 Japan
- Institute for Molecular Science and Research Center for Computational Science Nishigonaka 38, Myodaiji Okazaki 444-8585 Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)Kyoto University Kyoto 615-8245 Japan
| |
Collapse
|
14
|
Takegawa Y, Nakamura M, Nakamura S, Noguchi T, Sellés J, Rutherford AW, Boussac A, Sugiura M. New insights on Chl D1 function in Photosystem II from site-directed mutants of D1/T179 in Thermosynechococcus elongatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:297-309. [PMID: 30703365 DOI: 10.1016/j.bbabio.2019.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/17/2018] [Accepted: 01/26/2019] [Indexed: 01/16/2023]
Abstract
The monomeric chlorophyll, ChlD1, which is located between the PD1PD2 chlorophyll pair and the pheophytin, PheoD1, is the longest wavelength chlorophyll in the heart of Photosystem II and is thought to be the primary electron donor. Its central Mg2+ is liganded to a water molecule that is H-bonded to D1/T179. Here, two site-directed mutants, D1/T179H and D1/T179V, were made in the thermophilic cyanobacterium, Thermosynechococcus elongatus, and characterized by a range of biophysical techniques. The Mn4CaO5 cluster in the water-splitting site is fully active in both mutants. Changes in thermoluminescence indicate that i) radiative recombination occurs via the repopulation of *ChlD1 itself; ii) non-radiative charge recombination reactions appeared to be faster in the T179H-PSII; and iii) the properties of PD1PD2 were unaffected by this mutation, and consequently iv) the immediate precursor state of the radiative excited state is the ChlD1+PheoD1- radical pair. Chlorophyll bleaching due to high intensity illumination correlated with the amount of 1O2 generated. Comparison of the bleaching spectra with the electrochromic shifts attributed to ChlD1 upon QA- formation, indicates that in the T179H-PSII and in the WT*3-PSII, the ChlD1 itself is the chlorophyll that is first damaged by 1O2, whereas in the T179V-PSII a more red chlorophyll is damaged, the identity of which is discussed. Thus, ChlD1 appears to be one of the primary damage site in recombination-mediated photoinhibition. Finally, changes in the absorption of ChlD1 very likely contribute to the well-known electrochromic shifts observed at ~430 nm during the S-state cycle.
Collapse
Affiliation(s)
- Yuki Takegawa
- Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Makoto Nakamura
- Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Shin Nakamura
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Julien Sellés
- Institut de Biologie Physico-Chimique, UMR CNRS 7141 and Sorbonne Université, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Alain Boussac
- I(2)BC, UMR CNRS 9198, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | - Miwa Sugiura
- Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan; Proteo-Science Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
15
|
Hsieh ST, Zhang L, Ye DW, Huang X, Cheng YC. A theoretical study on the dynamics of light harvesting in the dimeric photosystem II core complex: regulation and robustness of energy transfer pathways. Faraday Discuss 2019; 216:94-115. [PMID: 31016302 DOI: 10.1039/c8fd00205c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Here we present our theoretical investigations into the light reaction in the dimeric photosystem II (PSII) core complex. An effective model for excitation energy transfer (EET) and primary charge separation (CS) in the PSII core complex was developed, with model parameters constructed based on molecular dynamics (MD) simulation data. Compared to experimental results, we demonstrated that this model faithfully reproduces the absorption spectra of the RC and core light-harvesting complexes (CP43 and CP47) as well as the full EET dynamics among the chromophores in the PSII core complex. We then applied master equation simulations and network analysis to investigate detailed EET plus CS dynamics in the system, allowing us to identify key EET pathways and produce a coarse-grained cluster model for the light reaction in the dimeric PSII core complex. We show that non-equilibrium energy transfer channels play important roles in the efficient light harvesting process and that multiple EET pathways exist between subunits of PSII to ensure the robustness of light harvesting in the system. Furthermore, we revealed that inter-monomer energy transfer dominated by the coupling between the two CLA625 molecules enables efficient energy exchange between two CP47s in the dimeric PSII core complex, which leads to significant energy pooling in the CP47 domain during the light reaction. Our study provides a blueprint for the design of light harvesting in the PSII core and show that a structure-based approach using molecular dynamics simulations and quantum chemistry calculations can be effectively utilized to elucidate the dynamics of light harvesting in complex photosynthetic systems.
Collapse
Affiliation(s)
- Shou-Ting Hsieh
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan.
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian CN 350002, China
| | - De-Wei Ye
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan.
| | - Xuhui Huang
- Department of Chemistry, Institute for Advance Study and School of Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| | - Yuan-Chung Cheng
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan.
| |
Collapse
|
16
|
Shibata Y, Mohamed A, Taniyama K, Kanatani K, Kosugi M, Fukumura H. Red shift in the spectrum of a chlorophyll species is essential for the drought-induced dissipation of excess light energy in a poikilohydric moss, Bryum argenteum. PHOTOSYNTHESIS RESEARCH 2018; 136:229-243. [PMID: 29124652 DOI: 10.1007/s11120-017-0461-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Some mosses are extremely tolerant of drought stress. Their high drought tolerance relies on their ability to effectively dissipate absorbed light energy to heat under dry conditions. The energy dissipation mechanism in a drought-tolerant moss, Bryum argenteum, has been investigated using low-temperature picosecond time-resolved fluorescence spectroscopy. The results are compared between moss thalli samples harvested in Antarctica and in Japan. Both samples show almost the same quenching properties, suggesting an identical drought tolerance mechanism for the same species with two completely different habitats. A global target analysis was applied to a large set of data on the fluorescence-quenching dynamics for the 430-nm (chlorophyll-a selective) and 460-nm (chlorophyll-b and carotenoid selective) excitations in the temperature region from 5 to 77 K. This analysis strongly suggested that the quencher is formed in the major peripheral antenna of photosystem II, whose emission spectrum is significantly broadened and red-shifted in its quenched form. Two emission components at around 717 and 725 nm were assigned to photosystem I (PS I). The former component at around 717 nm is mildly quenched and probably bound to the PS I core complex, while the latter at around 725 nm is probably bound to the light-harvesting complex. The dehydration treatment caused a blue shift of the PS I emission peak via reduction of the exciton energy flow to the pigment responsible for the 725 nm band.
Collapse
Affiliation(s)
- Yutaka Shibata
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki Aza Aoba, Aoba-Ku, Sendai, 980-8578, Japan.
| | - Ahmed Mohamed
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki Aza Aoba, Aoba-Ku, Sendai, 980-8578, Japan
- Institut national de la recherche scientifique (INRS-EMT), Varennes, QC, J3X 1S2, Canada
| | - Koichiro Taniyama
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki Aza Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Kentaro Kanatani
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki Aza Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Makiko Kosugi
- Department of Biological Science, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-Ku, Tokyo, 112-8551, Japan
| | - Hiroshi Fukumura
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki Aza Aoba, Aoba-Ku, Sendai, 980-8578, Japan
- National Institute of Technology, 4-16-1 Ayashi-chuo, Aoba-ku, Sendai, 989-3128, Japan
| |
Collapse
|
17
|
Lindorfer D, Renger T. Theory of Anisotropic Circular Dichroism of Excitonically Coupled Systems: Application to the Baseplate of Green Sulfur Bacteria. J Phys Chem B 2018; 122:2747-2756. [PMID: 29420888 DOI: 10.1021/acs.jpcb.7b12832] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A simple exciton theory for the description of anisotropic circular dichroism (ACD) spectra of multichromophoric systems is presented that is expected to be of general use for the analysis of structure-function relationships of molecular aggregates such as photosynthetic light-harvesting antennae. The theory is applied to the baseplate of green sulfur bacteria. It is demonstrated that only the combined analysis of ACD and circular dichroism (CD) spectra for the present baseplate bacteriochlorophyll (BChl) a dimer allows for an unambiguous determination of the parameters of the exciton Hamiltonian from experimental data. The analysis of experimental absorption and linear dichroism spectra suggests that either the NMR structure has to be refined or in addition to the dimers seen in the NMR structure and in the CD and ACD spectra, BChl a monomers are present in the baseplate carotenosome sample. A refined dimer structure is presented, explaining all four optical spectra.
Collapse
Affiliation(s)
- Dominik Lindorfer
- Institut für Theoretische Physik , Johannes Kepler Universität Linz , Altenberger Str. 69 , 4040 Linz , Austria
| | - Thomas Renger
- Institut für Theoretische Physik , Johannes Kepler Universität Linz , Altenberger Str. 69 , 4040 Linz , Austria
| |
Collapse
|
18
|
Skandary S, Müh F, Ashraf I, Ibrahim M, Metzger M, Zouni A, Meixner AJ, Brecht M. Role of missing carotenoid in reducing the fluorescence of single monomeric photosystem II core complexes. Phys Chem Chem Phys 2018; 19:13189-13194. [PMID: 28489091 DOI: 10.1039/c6cp07748j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescence of monomeric photosystem II core complexes (mPSIIcc) of the cyanobacterium Thermosynechococcus elongatus, originating from redissolved crystals, is investigated by using single-molecule spectroscopy (SMS) at 1.6 K. The emission spectra of individual mPSIIcc are dominated by sharp zero-phonon lines, showing the existence of different emitters compatible with the F685, F689, and F695 bands reported formerly. The intensity of F695 is reduced in single mPSIIcc as compared to single PSIIcc-dimers (dPSIIcc). Crystal structures show that one of the β-carotene (β-Car) cofactors located at the monomer-monomer interface in dPSIIcc is missing in mPSIIcc. This β-Car in dPSIIcc is in van der Waals distance to chlorophyll (Chl) 17 in the CP47 subunit. We suggest that this Chl contributes to the F695 emitter. A loss of β-Car cofactors in mPSIIcc preparations will lead to an increased lifetime of the triplet state of Chl 17, which can explain the reduced singlet emission of F695 as observed in SMS.
Collapse
Affiliation(s)
- Sepideh Skandary
- IPTC and LISA+ Center, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Narzi D, Coccia E, Manzoli M, Guidoni L. Impact of molecular flexibility on the site energy shift of chlorophylls in Photosystem II. Biophys Chem 2017; 229:93-98. [DOI: 10.1016/j.bpc.2017.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 01/31/2023]
|
20
|
Górecki M, Zinna F, Biver T, Di Bari L. Induced circularly polarized luminescence for revealing DNA binding with fluorescent dyes. J Pharm Biomed Anal 2017; 144:6-11. [DOI: 10.1016/j.jpba.2017.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/13/2017] [Accepted: 02/04/2017] [Indexed: 11/28/2022]
|
21
|
Jassas M, Reinot T, Kell A, Jankowiak R. Toward an Understanding of the Excitonic Structure of the CP47 Antenna Protein Complex of Photosystem II Revealed via Circularly Polarized Luminescence. J Phys Chem B 2017; 121:4364-4378. [PMID: 28394609 DOI: 10.1021/acs.jpcb.7b00362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Identification of the lowest energy pigments in the photosynthetic CP47 antenna protein complex of Photosystem II (PSII) is essential for understanding its excitonic structure, as well as excitation energy pathways in the PSII core complex. Unfortunately, there is no consensus concerning the nature of the low-energy state(s), nor chlorophyll (Chl) site energies in this important photosynthetic antenna. Although we raised concerns regarding the estimations of Chl site energies obtained from modeling studies of various types of CP47 optical spectra [Reinot, T; et al., Anal. Chem. Insights 2016, 11, 35-48] recent new assignments imposed by the shape of the circularly polarized luminescence (CPL) spectrum [Hall, J.; et al., Biochim. Biophys. Acta 2016, 1857, 1580-1593] necessitate our comments. We demonstrate that other combinations of low-energy Chls provide equally good or improved simultaneous fits of various optical spectra (absorption, emission, CPL, circular dichroism, and nonresonant hole-burned spectra), but more importantly, we expose the heterogeneous nature of the recently studied complexes and argue that the published composite nature of the CPL (contributed to by CPL685, CPL691, and CPL695) does not represent an intact CP47 protein. A positive CPL695 is extracted for the intact protein, which, when simultaneously fitted with multiple other optical spectra, provides new information on the excitonic structure of intact and destabilized CP47 complexes and their lowest energy state(s).
Collapse
Affiliation(s)
- Mahboobe Jassas
- Department of Chemistry and ‡Department of Physics, Kansas State University , Manhattan, Kansas 66506, United States
| | - Tonu Reinot
- Department of Chemistry and ‡Department of Physics, Kansas State University , Manhattan, Kansas 66506, United States
| | - Adam Kell
- Department of Chemistry and ‡Department of Physics, Kansas State University , Manhattan, Kansas 66506, United States
| | - Ryszard Jankowiak
- Department of Chemistry and ‡Department of Physics, Kansas State University , Manhattan, Kansas 66506, United States
| |
Collapse
|
22
|
Müh F, Plöckinger M, Renger T. Electrostatic Asymmetry in the Reaction Center of Photosystem II. J Phys Chem Lett 2017; 8:850-858. [PMID: 28151674 DOI: 10.1021/acs.jpclett.6b02823] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The exciton Hamiltonian of the chlorophyll (Chl) and pheophytin (Pheo) pigments in the reaction center (RC) of photosystem II is computed based on recent crystal structures by using the Poisson-Boltzmann/quantum-chemical method. Computed site energies largely confirm a previous model inferred from fits of optical spectra, in which ChlD1 has the lowest site energy, while that of PheoD1 is higher than that of PheoD2. The latter assignment has been challenged recently under reference to mutagenesis experiments. We argue that these data are not in contradiction to our results. We conclude that ChlD1 is the primary electron donor in both isolated RCs and intact core complexes at least at cryogenic temperatures. The main source of asymmetry in site energies is the charge distribution in the protein. Because many small contributions from various structural elements have to be taken into account, it can be assumed that this asymmetry was established in evolution by global optimization of the RC protein.
Collapse
Affiliation(s)
- Frank Müh
- Institute of Theoretical Physics, Department of Theoretical Biophysics, Johannes Kepler University Linz , Altenberger Strasse 69, AT-4040 Linz, Austria
| | - Melanie Plöckinger
- Institute of Theoretical Physics, Department of Theoretical Biophysics, Johannes Kepler University Linz , Altenberger Strasse 69, AT-4040 Linz, Austria
| | - Thomas Renger
- Institute of Theoretical Physics, Department of Theoretical Biophysics, Johannes Kepler University Linz , Altenberger Strasse 69, AT-4040 Linz, Austria
| |
Collapse
|
23
|
Ultrafast infrared observation of exciton equilibration from oriented single crystals of photosystem II. Nat Commun 2016; 7:13977. [PMID: 28008915 PMCID: PMC5196431 DOI: 10.1038/ncomms13977] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/14/2016] [Indexed: 11/08/2022] Open
Abstract
In oxygenic photosynthesis, two photosystems work in series. Each of them contains a reaction centre that is surrounded by light-harvesting antennae, which absorb the light and transfer the excitation energy to the reaction centre where electron transfer reactions are driven. Here we report a critical test for two contrasting models of light harvesting by photosystem II cores, known as the trap-limited and the transfer-to-the trap-limited model. Oriented single crystals of photosystem II core complexes of Synechococcus elongatus are excited by polarized visible light and the transient absorption is probed with polarized light in the infrared. The dichroic amplitudes resulting from photoselection are maintained on the 60 ps timescale that corresponds to the dominant energy transfer process providing compelling evidence for the transfer-to-the-trap limitation of the overall light-harvesting process. This finding has functional implications for the quenching of excited states allowing plants to survive under high light intensities.
Collapse
|
24
|
Zinna F, Bruhn T, Guido CA, Ahrens J, Bröring M, Di Bari L, Pescitelli G. Circularly Polarized Luminescence from Axially Chiral BODIPY DYEmers: An Experimental and Computational Study. Chemistry 2016; 22:16089-16098. [PMID: 27658919 DOI: 10.1002/chem.201602684] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Indexed: 11/10/2022]
Abstract
With our new home-built circularly polarized luminescence (CPL) instrument, we measured fluorescence and CPL spectra of the enantiomeric pairs of two quasi-isomeric BODIPY DYEmers 1 and 2, endowed with axial chirality. The electronic circular dichroism (ECD) and CPL spectra of these atropisomeric dimers are dominated by the exciton coupling between the main π-π* transitions (550-560 nm) of the two BODIPY rings. Compound 1 has strong ECD and CPL spectra (glum =4×10-3 ) well reproduced by TD-DFT and SCS-CC2 (spin-component scaled second-order approximate coupled-cluster) calculations using DFT-optimized ground- and excited-state structures. Compound 2 has weaker ECD and CPL spectra (glum =4×10-4 ), partly due to the mutual cancellation of electric-electric and electric-magnetic exciton couplings, and partly to its conformational freedom. This compound is computationally very challenging. Starting from the optimized excited-state geometries, we predicted the wrong sign for the CPL band of 2 using TD-DFT with the most recommended hybrid and range-separated functionals, whereas SCS-CC2 or a DFT functional with full exact exchange provided the correct sign.
Collapse
Affiliation(s)
- Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124, Pisa, Italy
| | - Torsten Bruhn
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ciro A Guido
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124, Pisa, Italy
| | - Johannes Ahrens
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.,Department of Organic Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Martin Bröring
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124, Pisa, Italy.
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124, Pisa, Italy.
| |
Collapse
|
25
|
Challenges facing an understanding of the nature of low-energy excited states in photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1627-1640. [PMID: 27372198 DOI: 10.1016/j.bbabio.2016.06.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 01/09/2023]
Abstract
While the majority of the photochemical states and pathways related to the biological capture of solar energy are now well understood and provide paradigms for artificial device design, additional low-energy states have been discovered in many systems with obscure origins and significance. However, as low-energy states are naively expected to be critical to function, these observations pose important challenges. A review of known properties of low energy states covering eight photochemical systems, and options for their interpretation, are presented. A concerted experimental and theoretical research strategy is suggested and outlined, this being aimed at providing a fully comprehensive understanding.
Collapse
|