1
|
Muthaffar OY, Alazhary NW, Alyazidi AS, Alsubaie MA, Bahowarth SY, Odeh NB, Bamaga AK. Clinical description and evaluation of 30 pediatric patients with ultra-rare diseases: A multicenter study with real-world data from Saudi Arabia. PLoS One 2024; 19:e0307454. [PMID: 39024300 PMCID: PMC11257271 DOI: 10.1371/journal.pone.0307454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND With the advancement of next-generation sequencing, clinicians are now able to detect ultra-rare mutations that are barely encountered by the majority of physicians. Ultra-rare and rare diseases cumulatively acquire a prevalence equivalent to type 2 diabetes with 80% being genetic in origin and more prevalent among high consanguinity communities including Saudi Arabia. The challenge of these diseases is the ability to predict their prevalence and define clear phenotypic features. METHODS This is a non-interventional retrospective multicenter study. We included pediatric patients with a pathogenic variant designated as ultra-rare according to the National Institute for Clinical Excellence's criteria. Demographic, clinical, laboratory, and radiological data of all patients were collected and analyzed using multinomial regression models. RESULTS We included 30 patients. Their mean age of diagnosis was 16.77 months (range 3-96 months) and their current age was 8.83 years (range = 2-15 years). Eleven patients were females and 19 were males. The majority were of Arab ethnicity (96.77%). Twelve patients were West-Saudis and 8 patients were South-Saudis. SCN1A mutation was reported among 19 patients. Other mutations included SZT2, ROGDI, PRF1, ATP1A3, and SHANK3. The heterozygous mutation was reported among 67.86%. Twenty-nine patients experienced seizures with GTC being the most frequently reported semiology. The mean response to ASMs was 45.50% (range 0-100%). CONCLUSION The results suggest that ultra-rare diseases must be viewed as a distinct category from rare diseases with potential demographic and clinical hallmarks. Additional objective and descriptive criteria to detect such cases are needed.
Collapse
Affiliation(s)
- Osama Y. Muthaffar
- Department of Pediatric, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noura W. Alazhary
- Department of General Pediatric, Dr. Soliman Fakeeh Hospital, Jeddah, Saudi Arabia
| | - Anas S. Alyazidi
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | - Nour B. Odeh
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ahmed K. Bamaga
- Department of Pediatric, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Xu JJ, Li HF, Wu ZY. Paroxysmal Kinesigenic Dyskinesia: Genetics and Pathophysiological Mechanisms. Neurosci Bull 2024; 40:952-962. [PMID: 38091244 PMCID: PMC11250761 DOI: 10.1007/s12264-023-01157-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/03/2023] [Indexed: 07/16/2024] Open
Abstract
Paroxysmal kinesigenic dyskinesia (PKD), the most common type of paroxysmal movement disorder, is characterized by sudden and brief attacks of choreoathetosis or dystonia triggered by sudden voluntary movements. PKD is mainly caused by mutations in the PRRT2 or TMEM151A gene. The exact pathophysiological mechanisms of PKD remain unclear, although the function of PRRT2 protein has been well characterized in the last decade. Based on abnormal ion channels and disturbed synaptic transmission in the absence of PRRT2, PKD may be channelopathy or synaptopathy, or both. In addition, the cerebellum is regarded as the key pathogenic area. Spreading depolarization in the cerebellum is tightly associated with dyskinetic episodes. Whereas, in PKD, other than the cerebellum, the role of the cerebrum including the cortex and thalamus needs to be further investigated.
Collapse
Affiliation(s)
- Jiao-Jiao Xu
- Department of Medical Genetics and Center for Rare Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Department of Neurology in the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hong-Fu Li
- Department of Medical Genetics and Center for Rare Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Department of Neurology in the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Zhi-Ying Wu
- Department of Medical Genetics and Center for Rare Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Department of Neurology in the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
3
|
Fujii F, Kanemasa H, Okuzono S, Setoyama D, Taira R, Yonemoto K, Motomura Y, Kato H, Masuda K, Kato TA, Ohga S, Sakai Y. ATP1A3 regulates protein synthesis for mitochondrial stability under heat stress. Dis Model Mech 2024; 17:dmm050574. [PMID: 38804677 PMCID: PMC11247502 DOI: 10.1242/dmm.050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Pathogenic variants in ATP1A3, the gene encoding the α3 subunit of the Na+/K+-ATPase, cause alternating hemiplegia of childhood (AHC) and related disorders. Impairments in Na+/K+-ATPase activity are associated with the clinical phenotype. However, it remains unclear whether additional mechanisms are involved in the exaggerated symptoms under stressed conditions in patients with AHC. We herein report that the intracellular loop (ICL) of ATP1A3 interacted with RNA-binding proteins, such as Eif4g (encoded by Eif4g1), Pabpc1 and Fmrp (encoded by Fmr1), in mouse Neuro2a cells. Both the siRNA-mediated depletion of Atp1a3 and ectopic expression of the p.R756C variant of human ATP1A3-ICL in Neuro2a cells resulted in excessive phosphorylation of ribosomal protein S6 (encoded by Rps6) and increased susceptibility to heat stress. In agreement with these findings, induced pluripotent stem cells (iPSCs) from a patient with the p.R756C variant were more vulnerable to heat stress than control iPSCs. Neurons established from the patient-derived iPSCs showed lower calcium influxes in responses to stimulation with ATP than those in control iPSCs. These data indicate that inefficient protein synthesis contributes to the progressive and deteriorating phenotypes in patients with the p.R756C variant among a variety of ATP1A3-related disorders.
Collapse
Affiliation(s)
- Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hikaru Kanemasa
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takahiro A. Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
4
|
Nielsen HN, Holm R, Sweazey R, Andersen JP, Artigas P, Vilsen B. Na +,K +-ATPase with Disrupted Na + Binding Sites I and III Binds Na + with Increased Affinity at Site II and Undergoes Na +-Activated Phosphorylation with ATP. Biomolecules 2024; 14:135. [PMID: 38275764 PMCID: PMC10812997 DOI: 10.3390/biom14010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
Na+,K+-ATPase actively extrudes three cytoplasmic Na+ ions in exchange for two extracellular K+ ions for each ATP hydrolyzed. The atomic structure with bound Na+ identifies three Na+ sites, named I, II, and III. It has been proposed that site III is the first to be occupied and site II last, when Na+ binds from the cytoplasmic side. It is usually assumed that the occupation of all three Na+ sites is obligatory for the activation of phosphoryl transfer from ATP. To obtain more insight into the individual roles of the ion-binding sites, we have analyzed a series of seven mutants with substitution of the critical ion-binding residue Ser777, which is a shared ligand between Na+ sites I and III. Surprisingly, mutants with large and bulky substituents expected to prevent or profoundly disturb Na+ access to sites I and III retain the ability to form a phosphoenzyme from ATP, even with increased apparent Na+ affinity. This indicates that Na+ binding solely at site II is sufficient to promote phosphorylation. These mutations appear to lock the membrane sector into an E1-like configuration, allowing Na+ but not K+ to bind at site II, while the cytoplasmic sector undergoes conformational changes uncoupled from the membrane sector.
Collapse
Affiliation(s)
- Hang N. Nielsen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Rikke Holm
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Ryan Sweazey
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA (P.A.)
| | | | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA (P.A.)
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
5
|
Kanai R, Vilsen B, Cornelius F, Toyoshima C. Crystal structures of Na + ,K + -ATPase reveal the mechanism that converts the K + -bound form to Na + -bound form and opens and closes the cytoplasmic gate. FEBS Lett 2023; 597:1957-1976. [PMID: 37357620 DOI: 10.1002/1873-3468.14689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Na+ ,K+ -ATPase (NKA) plays a pivotal role in establishing electrochemical gradients for Na+ and K+ across the cell membrane by alternating between the E1 (showing high affinity for Na+ and low affinity for K+ ) and E2 (low affinity to Na+ and high affinity to K+ ) forms. Presented here are two crystal structures of NKA in E1·Mg2+ and E1·3Na+ states at 2.9 and 2.8 Å resolution, respectively. These two E1 structures fill a gap in our description of the NKA reaction cycle based on the atomic structures. We describe how NKA converts the K+ -bound E2·2K+ form to an E1 (E1·Mg2+ ) form, which allows high-affinity Na+ binding, eventually closing the cytoplasmic gate (in E1 ~ P·ADP·3Na+ ) after binding three Na+ , while keeping the extracellular ion pathway sealed. We now understand previously unknown functional roles for several parts of NKA and that NKA uses even the lipid bilayer for gating the ion pathway.
Collapse
Affiliation(s)
- Ryuta Kanai
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Denmark
| | | | - Chikashi Toyoshima
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
6
|
Zou S, Lan YL, Gong Y, Chen Z, Xu C. The role of ATP1A3 gene in epilepsy: We need to know more. Front Cell Neurosci 2023; 17:1143956. [PMID: 36866063 PMCID: PMC9972585 DOI: 10.3389/fncel.2023.1143956] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
The ATP1A3 gene, which encodes the Na+/K+-ATPase α3 catalytic subunit, plays a crucial role in both physiological and pathological conditions in the brain, and mutations in this gene have been associated with a wide variety of neurological diseases by impacting the whole infant development stages. Cumulative clinical evidence suggests that some severe epileptic syndromes have been linked to mutations in ATP1A3, among which inactivating mutation of ATP1A3 has been intriguingly found to be a candidate pathogenesis for complex partial and generalized seizures, proposing ATP1A3 regulators as putative targets for the rational design of antiepileptic therapies. In this review, we introduced the physiological function of ATP1A3 and summarized the findings about ATP1A3 in epileptic conditions from both clinical and laboratory aspects at first. Then, some possible mechanisms of how ATP1A3 mutations result in epilepsy are provided. We think this review timely introduces the potential contribution of ATP1A3 mutations in both the genesis and progression of epilepsy. Taken that both the detailed mechanisms and therapeutic significance of ATP1A3 for epilepsy are not yet fully illustrated, we think that both in-depth mechanisms investigations and systematic intervention experiments targeting ATP1A3 are needed, and by doing so, perhaps a new light can be shed on treating ATP1A3-associated epilepsy.
Collapse
Affiliation(s)
- Shuang Zou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu-Long Lan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Yu-Long Lan ✉
| | - Yiwei Gong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China,Cenglin Xu ✉
| |
Collapse
|
7
|
Huang D, Song X, Ma J, Li X, Guo Y, Li M, Luo H, Fang Z, Yang C, Xie L, Jiang L. ATP1A3-related phenotypes in Chinese children: AHC, CAPOS, and RECA. Eur J Pediatr 2023; 182:825-836. [PMID: 36484864 DOI: 10.1007/s00431-022-04744-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
UNLABELLED The aim of this research is to study the phenotype, genotype, treatment strategies, and short-term prognosis of Chinese children with ATP1A3 (Na+/K+-ATPase alpha 3 gene)-related disorders in Southwest China. Patients with pathogenic ATP1A3 variants identified using next-generation sequencing were registered at the Children's Hospital of Chongqing Medical University from December 2015 to May 2019. We followed them as a cohort and analyzed their clinical data. Eleven patients were identified with de novo pathogenic ATP1A3 heterozygous variants. One (c.2542 + 1G > T, splicing) has not been reported. Eight patients with alternating hemiplegia of childhood (AHC), one with cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS), and two with relapsing encephalopathy with cerebellar ataxia (RECA) were included. The initial manifestations of AHC included hemiplegia, oculomotor abnormalities, and seizures, and the most common trigger was an upper respiratory tract infection without fever. All patients had paroxysmal hemiplegic attacks during their disease course. The brain MRI showed no abnormalities. Six out of eight AHC cases reached a stable disease state after treatment. The initial symptom of the patient with CAPOS was ataxia followed by developmental regression, seizures, deafness, visual impairment, and dysarthria, and the brain MRI indicated mild cerebellar atrophy. No fluctuation was noted after using Acetazolamide. The initial manifestations of the two RECA cases were dystonia and encephalopathy, respectively. One manifested a rapid-onset course of dystonia triggered by a fever followed by dysarthria and action tremors, and independent walking was impossible. The brain MRI image was normal. The other one presented with disturbance of consciousness, seizures, sleep disturbance, tremor, and dyskinesias. The EEG revealed a slow background (δ activity), and the brain MRI result was normal. No response to Flunarizine was noted for them, and it took 61 and 60 months for them to reach a stable disease state, respectively. CONCLUSION Pathogenic ATP1A3 variants play an essential role in the pathogenesis of Sodium-Potassium pump disorders, and AHC is the most common phenotype. The treatment strategies and prognosis depend on the phenotype categories caused by different variation sites and types. The correlation between the genotype and phenotype requires further exploration. WHAT IS KNOWN • Pathogenic heterozygous ATP1A3 variants cause a spectrum of neurological phenotypes, and ATP1A3-disorders are viewed as a phenotypic continuum presenting with atypical and overlapping features. • The genotype-phenotype correlation of ATP1A3-disorders remains unclear. WHAT IS NEW • In this study, the genotypes and phenotypes of ATP1A3-related disorders from Southwest of China were described. The splice-site variation c.2542+1G>T was detected for the first time in ATP1A3-related disorders. • The prognosis of twins with AHC p. Gly947Arg was more serious than AHC cases with other variants, which was inconsistent with previous reports. The phenomenon indicated the diversity of the correlation between the genotype and phenotype.
Collapse
Affiliation(s)
- Dishu Huang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Xiaojie Song
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Jiannan Ma
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Xiujuan Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Yi Guo
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Mei Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Hanyu Luo
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Zhixu Fang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Chen Yang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Lingling Xie
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China. .,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China. .,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China. .,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China.
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China. .,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China. .,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China. .,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China.
| |
Collapse
|
8
|
Arystarkhova E, Toustrup-Jensen MS, Holm R, Ko JK, Lee KE, Feschenko P, Ozelius LJ, Brashear A, Vilsen B, Sweadner KJ. Temperature instability of a mutation at a multidomain junction in Na,K-ATPase isoform ATP1A3 (p.Arg756His) produces a fever-induced neurological syndrome. J Biol Chem 2023; 299:102758. [PMID: 36462665 PMCID: PMC9860391 DOI: 10.1016/j.jbc.2022.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 12/02/2022] Open
Abstract
ATP1A3 encodes the α3 isoform of Na,K-ATPase. In the brain, it is expressed only in neurons. Human ATP1A3 mutations produce a wide spectrum of phenotypes, but particular syndromes are associated with unique substitutions. For arginine 756, at the junction of membrane and cytoplasmic domains, mutations produce encephalopathy during febrile infections. Here we tested the pathogenicity of p.Arg756His (R756H) in isogenic mammalian cells. R756H protein had sufficient transport activity to support cells when endogenous ATP1A1 was inhibited. It had half the turnover rate of wildtype, reduced affinity for Na+, and increased affinity for K+. There was modest endoplasmic reticulum retention during biosynthesis at 37 °C but little benefit from the folding drug phenylbutyrate (4-PBA), suggesting a tolerated level of misfolding. When cells were incubated at just 39 °C, however, α3 protein level dropped without loss of β subunit, paralleled by an increase of endogenous α1. Elevated temperature resulted in internalization of α3 from the surface along with some β subunit, accompanied by cytoplasmic redistribution of a marker of lysosomes and endosomes, lysosomal-associated membrane protein 1. After return to 37 °C, α3 protein levels recovered with cycloheximide-sensitive new protein synthesis. Heating in vitro showed activity loss at a rate 20- to 30-fold faster than wildtype, indicating a temperature-dependent destabilization of protein structure. Arg756 appears to confer thermal resistance as an anchor, forming hydrogen bonds among four linearly distant parts of the Na,K-ATPase structure. Taken together, our observations are consistent with fever-induced symptoms in patients.
Collapse
Affiliation(s)
- Elena Arystarkhova
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | | | - Rikke Holm
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Jae-Kyun Ko
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kyung Eun Lee
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Polina Feschenko
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Allison Brashear
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Kathleen J Sweadner
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
9
|
Homareda H, Suga K, Yamamoto-Hijikata S, Eishi Y, Ushimaru M, Hara Y. β subunit affects Na+ and K+ affinities of Na+/K+-ATPase: Na+ and K+ affinities of a hybrid Na+/K+-ATPase composed of insect α and mammalian β subunits. Biochem Biophys Rep 2022; 32:101347. [PMID: 36131851 PMCID: PMC9483571 DOI: 10.1016/j.bbrep.2022.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
The affinity for K+ of silkworm Na+/K+-ATPase, which is composed of α and β subunits, is remarkably lower than that of mammalian Na+/K+-ATPase, with a slightly higher affinity for Na+. Because the α subunit had more than 70% identity to the mammalian α subunit in the amino acid sequence, whereas the β subunit, a glycosylated protein, had less than 30% identity to the mammalian β subunit, it was suggested that the β subunit was involved in the affinities for Na+ and K+ of Na+/K+-ATPase. To confirm this hypothesis, we examined whether replacing the silkworm β subunit with the mammalian β subunit affected the affinities for Na+ and K+ of Na+/K+-ATPase. Cloned silkworm α and cloned rat β1 were co-expressed in BM-N cells, a cultured silkworm ovary-derived cell lacking endogenous Na+/K+-ATPase, to construct a hybrid Na+/K+-ATPase, in which the silkworm β subunit was replaced with the rat β1 subunit. The hybrid Na+/K+-ATPase increased the affinity for K+ by 4.1-fold and for Na+ by 0.65-fold compared to the wild-type one. Deglycosylation of the silkworm β subunit did not affect the K+ affinity. These results support the involvement of the β subunit in the Na+ and K+ affinities of Na+/K+-ATPase. Silkworm Na+/K+-ATPase has much lower affinity for K+ than mammalian Na+/K+-ATPase with a slightly higher affinity for Na+. Silkworm Na+/K+-ATPase β subunit has less than 30% identity to the mammalian β subunit in the amino acid sequence. Replacement of the silkworm β with the rat β increased K+ affinity and decreased Na+ affinity of Na+/K+-ATPase. β subunit is involved in Na+ and K+ affinities of Na+/K+-ATPase.
Collapse
Affiliation(s)
- Haruo Homareda
- Department of Chemistry, Faculty of Medicine, Kyorin University, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
- Corresponding author.
| | - Kei Suga
- Department of Chemistry, Faculty of Medicine, Kyorin University, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Sachiko Yamamoto-Hijikata
- Department of Chemistry, Faculty of Medicine, Kyorin University, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Yoshinobu Eishi
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Makoto Ushimaru
- Department of Chemistry, Faculty of Medicine, Kyorin University, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Yukichi Hara
- Department of Chemistry, Faculty of Medicine, Kyorin University, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| |
Collapse
|
10
|
Lacombe D, Van-Gils J, Lebrun M, Trimouille A, Michaud V, Cabet S, Chateil JF, Pedespan JM, Bar C, Lesca G. Hemidystonia with polymicrogyria is part of ATP1A3-related disorders. Brain Dev 2022; 44:567-570. [PMID: 35623960 DOI: 10.1016/j.braindev.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Pathogenic variants in ATP1A3 cause various phenotypes of neurological disorders, including alternating hemiplegia of childhood 2, CAPOS syndrome (cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss) and rapid-onset dystonia-parkinsonism (RDP). Early developmental and epileptic encephalopathy has also been reported. Polymicrogyria has recently been added to the phenotypic spectrum of ATP1A3-related disorders. CASE REPORT We report here a male patient with early developmental delay who at 12 months presented dystonia of the right arm which evolved into hemidystonia at the age of 2. A cerebral MRI showed bilateral perisylvian polymicrogyria with intact basal ganglia. Whole-exome and whole-genome sequencing analyses identified a de novo new ATP1A3 missense variant (p.Arg914Lys) predicted pathogenic. Hemidystonia was thought not to be due to polymicrogyria, but rather a consequence of this variant. CONCLUSION This case expands the phenotypic spectrum of ATP1A3-related disorders with a new variant associated with hemidystonia and polymicrogyria and thereby, suggests a clinical continuum between the different phenotypes of this condition.
Collapse
Affiliation(s)
- Didier Lacombe
- Université de Bordeaux, Bordeaux, France; INSERM U1211, France; CHU de Bordeaux, Department of Medical Genetics, Bordeaux, France.
| | - Julien Van-Gils
- Université de Bordeaux, Bordeaux, France; INSERM U1211, France
| | - Marine Lebrun
- Department of Medical Genetics, Saint-Etienne University Hospital, LBMMS AURAGEN, France
| | | | - Vincent Michaud
- Université de Bordeaux, Bordeaux, France; INSERM U1211, France; CHU de Bordeaux, Department of Medical Genetics, Bordeaux, France
| | - Sara Cabet
- Department of Pediatric Imaging, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, France
| | | | | | - Claire Bar
- Université de Bordeaux, Bordeaux, France; Department of Pediatric Neurology, CHU Bordeaux, France
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital, LBMMS AURAGEN, Lyon, France
| |
Collapse
|
11
|
Spontarelli K, Infield DT, Nielsen HN, Holm R, Young VC, Galpin JD, Ahern CA, Vilsen B, Artigas P. Role of a conserved ion-binding site tyrosine in ion selectivity of the Na+/K+ pump. J Gen Physiol 2022; 154:e202113039. [PMID: 35657726 PMCID: PMC9171065 DOI: 10.1085/jgp.202113039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 01/07/2023] Open
Abstract
The essential transmembrane Na+ and K+ gradients in animal cells are established by the Na+/K+ pump, a P-type ATPase that exports three Na+ and imports two K+ per ATP hydrolyzed. The mechanism by which the Na+/K+ pump distinguishes between Na+ and K+ at the two membrane sides is poorly understood. Crystal structures identify two sites (sites I and II) that bind Na+ or K+ and a third (site III) specific for Na+. The side chain of a conserved tyrosine at site III of the catalytic α-subunit (Xenopus-α1 Y780) has been proposed to contribute to Na+ binding by cation-π interaction. We substituted Y780 with natural and unnatural amino acids, expressed the mutants in Xenopus oocytes and COS-1 cells, and used electrophysiology and biochemistry to evaluate their function. Substitutions disrupting H-bonds impaired Na+ interaction, while Y780Q strengthened it, likely by H-bond formation. Utilizing the non-sense suppression method previously used to incorporate unnatural derivatives in ion channels, we were able to analyze Na+/K+ pumps with fluorinated tyrosine or phenylalanine derivatives inserted at position 780 to diminish cation-π interaction strength. In line with the results of the analysis of mutants with natural amino acid substitutions, the results with the fluorinated derivatives indicate that Na+-π interaction with the phenol ring at position 780 contributes minimally, if at all, to the binding of Na+. All Y780 substitutions decreased K+ apparent affinity, highlighting that a state-dependent H-bond network is essential for the selectivity switch at sites I and II when the pump changes conformational state.
Collapse
Affiliation(s)
- Kerri Spontarelli
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Daniel T. Infield
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Hang N. Nielsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Rikke Holm
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Victoria C. Young
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Jason D. Galpin
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Christopher A. Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
12
|
Protective Effect of Trimetazidine on Potassium Ion Homeostasis in Myocardial Tissue in Mice with Heart Failure. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2387860. [PMID: 35097112 PMCID: PMC8791749 DOI: 10.1155/2022/2387860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022]
Abstract
The occurrence of heart failure (HF) is closely correlated with the disturbance of mitochondrial energy metabolism, and trimetazidine (TMZ) has been regarded as an effective agent in treating HF. Intracellular potassium ion (K+) homeostasis, which is modulated by K+ channels and transporters, is crucial for maintaining normal myocardial function and can be disrupted by HF. This study is aimed at exploring the protective effect of TMZ on K+ homeostasis within myocardial tissue in mice with HF. We observed the pathological changes of myocardial tissue under microscopes and further measured the content of adenosine triphosphate (ATP), the activity of Na+-K+ ATPase, and the expression of ATP1α1 at the mRNA and protein levels. Moreover, we also analyzed the changes in K+ flux across the myocardial tissue in mice. As a result, we found that there was a large amount of myocardial fiber lysis and fracture in HF myocardial tissue. Meanwhile, the potassium flux of mice with HF was reduced, and the expression of ATP1α1, the activity of Na+-K+ ATPase, and the supply and delivery of ATP were also decreased. In contrast, TMZ can effectively treat HF by restoring K+ homeostasis in the local microenvironment of myocardial tissues.
Collapse
|
13
|
Ng HWY, Ogbeta JA, Clapcote SJ. Genetically altered animal models for ATP1A3-related disorders. Dis Model Mech 2021; 14:272403. [PMID: 34612482 PMCID: PMC8503543 DOI: 10.1242/dmm.048938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within the past 20 years, particularly with the advent of exome sequencing technologies, autosomal dominant and de novo mutations in the gene encoding the neurone-specific α3 subunit of the Na+,K+-ATPase (NKA α3) pump, ATP1A3, have been identified as the cause of a phenotypic continuum of rare neurological disorders. These allelic disorders of ATP1A3 include (in approximate order of severity/disability and onset in childhood development): polymicrogyria; alternating hemiplegia of childhood; cerebellar ataxia, areflexia, pes cavus, optic atrophy and sensorineural hearing loss syndrome; relapsing encephalopathy with cerebellar ataxia; and rapid-onset dystonia-parkinsonism. Some patients present intermediate, atypical or combined phenotypes. As these disorders are currently difficult to treat, there is an unmet need for more effective therapies. The molecular mechanisms through which mutations in ATP1A3 result in a broad range of neurological symptoms are poorly understood. However, in vivo comparative studies using genetically altered model organisms can provide insight into the biological consequences of the disease-causing mutations in NKA α3. Herein, we review the existing mouse, zebrafish, Drosophila and Caenorhabditis elegans models used to study ATP1A3-related disorders, and discuss their potential contribution towards the understanding of disease mechanisms and development of novel therapeutics.
Collapse
Affiliation(s)
- Hannah W Y Ng
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jennifer A Ogbeta
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Steven J Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.,European Network for Research on Alternating Hemiplegia (ENRAH), 1120 Vienna, Austria
| |
Collapse
|
14
|
Moya-Mendez ME, Ogbonna C, Ezekian JE, Rosamilia MB, Prange L, de la Uz C, Kim JJ, Howard T, Garcia J, Nussbaum R, Truty R, Callis TE, Funk E, Heyes M, Dear GDL, Carboni MP, Idriss SF, Mikati MA, Landstrom AP. ATP1A3-Encoded Sodium-Potassium ATPase Subunit Alpha 3 D801N Variant Is Associated With Shortened QT Interval and Predisposition to Ventricular Fibrillation Preceded by Bradycardia. J Am Heart Assoc 2021; 10:e019887. [PMID: 34459253 PMCID: PMC8649289 DOI: 10.1161/jaha.120.019887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Pathogenic variation in the ATP1A3‐encoded sodium‐potassium ATPase, ATP1A3, is responsible for alternating hemiplegia of childhood (AHC). Although these patients experience a high rate of sudden unexpected death in epilepsy, the pathophysiologic basis for this risk remains unknown. The objective was to determine the role of ATP1A3 genetic variants on cardiac outcomes as determined by QT and corrected QT (QTc) measurements. Methods and Results We analyzed 12‐lead ECG recordings from 62 patients (male subjects=31, female subjects=31) referred for AHC evaluation. Patients were grouped according to AHC presentation (typical versus atypical), ATP1A3 variant status (positive versus negative), and ATP1A3 variant (D801N versus other variants). Manual remeasurements of QT intervals and QTc calculations were performed by 2 pediatric electrophysiologists. QTc measurements were significantly shorter in patients with positive ATP1A3 variant status (P<0.001) than in patients with genotype‐negative status, and significantly shorter in patients with the ATP1A3‐D801N variant than patients with other variants (P<0.001). The mean QTc for ATP1A3‐D801N was 344.9 milliseconds, which varied little with age, and remained <370 milliseconds throughout adulthood. ATP1A3 genotype status was significantly associated with shortened QTc by multivariant regression analysis. Two patients with the ATP1A3‐D801N variant experienced ventricular fibrillation, resulting in death in 1 patient. Rare variants in ATP1A3 were identified in a large cohort of genotype‐negative patients referred for arrhythmia and sudden unexplained death. Conclusions Patients with AHC who carry the ATP1A3‐D801N variant have significantly shorter QTc intervals and an increased likelihood of experiencing bradycardia associated with life‐threatening arrhythmias. ATP1A3 variants may represent an independent cause of sudden unexplained death. Patients with AHC should be evaluated to identify risk of sudden death.
Collapse
Affiliation(s)
- Mary E Moya-Mendez
- Department of Pediatrics Division of Pediatric Cardiology Duke University School of Medicine Durham NC
| | - Chiagoziem Ogbonna
- Department of Pediatrics Division of Pediatric Cardiology Duke University School of Medicine Durham NC
| | - Jordan E Ezekian
- Department of Pediatrics Division of Pediatric Cardiology Duke University School of Medicine Durham NC
| | - Michael B Rosamilia
- Department of Pediatrics Division of Pediatric Cardiology Duke University School of Medicine Durham NC
| | - Lyndsey Prange
- Department of Pediatrics Division of Neurology Duke University School of Medicine Durham NC
| | - Caridad de la Uz
- Department of Pediatrics Division of Cardiology Johns Hopkins School of Medicine Baltimore MD
| | - Jeffrey J Kim
- Department of Pediatrics Section of Cardiology Baylor College of Medicine Houston TX
| | - Taylor Howard
- Department of Pediatrics Section of Cardiology Baylor College of Medicine Houston TX
| | | | | | | | | | - Emily Funk
- Duke University School of NursingAssistant Clinical ProfessorDuke University Durham NC
| | - Matthew Heyes
- Duke University School of NursingAssistant Clinical ProfessorDuke University Durham NC
| | - Guy de Lisle Dear
- Department of Anesthesia Duke University School of Medicine Durham NC
| | - Michael P Carboni
- Department of Pediatrics Division of Pediatric Cardiology Duke University School of Medicine Durham NC
| | - Salim F Idriss
- Department of Pediatrics Division of Pediatric Cardiology Duke University School of Medicine Durham NC
| | - Mohamad A Mikati
- Department of Pediatrics Division of Neurology Duke University School of Medicine Durham NC
| | - Andrew P Landstrom
- Department of Pediatrics Division of Pediatric Cardiology Duke University School of Medicine Durham NC.,Department of Cell Biology Duke University School of Medicine Durham NC
| |
Collapse
|
15
|
Li Y, Tang W, Kang L, Kong S, Dong Z, Zhao D, Liu R, Yu S. Functional correlation of ATP1A2 mutations with phenotypic spectrum: from pure hemiplegic migraine to its variant forms. J Headache Pain 2021; 22:92. [PMID: 34384358 PMCID: PMC8359390 DOI: 10.1186/s10194-021-01309-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Background Mutations in ATP1A2, the gene encoding the α2 subunit of Na+/K+-ATPase, are the main cause of familial hemiplegic migraine type 2 (FHM2). The clinical presentation of FHM2 with mutations in the same gene varies from pure FHM to severe forms with epilepsy and intellectual disability, but the correlation of these symptoms with different ATP1A2 mutations is still unclear. Methods Ten ATP1A2 missense mutations were selected according to different phenotypes of FHM patients. They caused pure FHM (FHM: R65W, R202Q, R593W, G762S), FHM with epilepsy (FHME: R548C, E825K, R938P), or FHM with epilepsy and intellectual disability (FHMEI: T378N, G615R, D718N). After ouabain resistance and fluorescence modification, plasmids carrying those mutations were transiently transfected into HEK293T and HeLa cells. The biochemical functions were studied including cell survival assays, membrane protein extraction, western blotting, and Na+/K+-ATPase activity tests. The electrophysiological functions of G762S, R938P, and G615R mutations were investigated in HEK293T cells using whole-cell patch-clamp. Homology modeling was performed to determine the locational distribution of ATP1A2 mutations. Results Compared with wild-type pumps, all mutations showed a similar level of protein expression and decreased cell viability in the presence of 1 µM ouabain, and there was no significant difference among the mutant groups. The changes in Na+/K+-ATPase activity were correlated with the severity of FHM phenotypes. In the presence of 100 µM ouabain, the Na+/K+-ATPase activity was FHM > FHME > FHMEI. The ouabain-sensitive Na+/K+-ATPase activity of each mutant was significantly lower than that of the wild-type protein, and there was no significant difference among all mutant groups. Whole-cell voltage-clamp recordings in HEK293T cells showed that the ouabain-sensitive pump currents of G615R were significantly reduced, while those of G762S and R938P were comparable to those of the wild-type strain. Conclusions ATP1A2 mutations cause phenotypes ranging from pure FHM to FHM with epilepsy and intellectual disability due to varying degrees of deficits in biochemical and electrophysiological properties of Na+/K+-ATPase. Mutations associated with intellectual disability presented with severe impairment of Na+/K+-ATPase. Whether epilepsy is accompanied, or the type of epilepsy did not seem to affect the degree of impairment of pump function. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-021-01309-4.
Collapse
Affiliation(s)
- Yingji Li
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, 100853, Beijing, China
| | - Wenjing Tang
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, 100853, Beijing, China
| | - Li Kang
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, 100853, Beijing, China.,School of Medicine, Nankai University, 300071, Tianjin, China
| | - Shanshan Kong
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, 100853, Beijing, China
| | - Zhao Dong
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, 100853, Beijing, China
| | - Dengfa Zhao
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, 100853, Beijing, China
| | - Ruozhuo Liu
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, 100853, Beijing, China
| | - Shengyuan Yu
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, 100853, Beijing, China.
| |
Collapse
|
16
|
Abstract
By evaluating children with a malformed cerebral cortex, we identified an ATPase pump (ATP1A3) with an early role in brain development. The ATP1A3 pump maintains the physiological concentration of sodium and potassium ions in cells, a process critical for osmotic equilibrium and membrane potential across several developing cell populations. We employed single-cell sequencing approaches to identify key enrichments for ATP1A3 expression during human cortex development. Unravelling this early cell-type–specific pathophysiology in the developing brain offers a potential basis for the treatment of ATP1A3-related diseases affecting prenatal and early childhood development. Osmotic equilibrium and membrane potential in animal cells depend on concentration gradients of sodium (Na+) and potassium (K+) ions across the plasma membrane, a function catalyzed by the Na+,K+-ATPase α-subunit. Here, we describe ATP1A3 variants encoding dysfunctional α3-subunits in children affected by polymicrogyria, a developmental malformation of the cerebral cortex characterized by abnormal folding and laminar organization. To gain cell-biological insights into the spatiotemporal dynamics of prenatal ATP1A3 expression, we built an ATP1A3 transcriptional atlas of fetal cortical development using mRNA in situ hybridization and transcriptomic profiling of ∼125,000 individual cells with single-cell RNA sequencing (Drop-seq) from 11 areas of the midgestational human neocortex. We found that fetal expression of ATP1A3 is most abundant to a subset of excitatory neurons carrying transcriptional signatures of the developing subplate, yet also maintains expression in nonneuronal cell populations. Moving forward a year in human development, we profiled ∼52,000 nuclei from four areas of an infant neocortex and show that ATP1A3 expression persists throughout early postnatal development, most predominantly in inhibitory neurons, including parvalbumin interneurons in the frontal cortex. Finally, we discovered the heteromeric Na+,K+-ATPase pump complex may form nonredundant cell-type–specific α-β isoform combinations, including α3-β1 in excitatory neurons and α3-β2 in inhibitory neurons. Together, the developmental malformation phenotype of affected individuals and single-cell ATP1A3 expression patterns point to a key role for α3 in human cortex development, as well as a cell-type basis for pre- and postnatal ATP1A3-associated diseases.
Collapse
|
17
|
Vetro A, Nielsen HN, Holm R, Hevner RF, Parrini E, Powis Z, Møller RS, Bellan C, Simonati A, Lesca G, Helbig KL, Palmer EE, Mei D, Ballardini E, Van Haeringen A, Syrbe S, Leuzzi V, Cioni G, Curry CJ, Costain G, Santucci M, Chong K, Mancini GMS, Clayton-Smith J, Bigoni S, Scheffer IE, Dobyns WB, Vilsen B, Guerrini R. ATP1A2- and ATP1A3-associated early profound epileptic encephalopathy and polymicrogyria. Brain 2021; 144:1435-1450. [PMID: 33880529 DOI: 10.1093/brain/awab052] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/20/2023] Open
Abstract
Constitutional heterozygous mutations of ATP1A2 and ATP1A3, encoding for two distinct isoforms of the Na+/K+-ATPase (NKA) alpha-subunit, have been associated with familial hemiplegic migraine (ATP1A2), alternating hemiplegia of childhood (ATP1A2/A3), rapid-onset dystonia-parkinsonism, cerebellar ataxia-areflexia-progressive optic atrophy, and relapsing encephalopathy with cerebellar ataxia (all ATP1A3). A few reports have described single individuals with heterozygous mutations of ATP1A2/A3 associated with severe childhood epilepsies. Early lethal hydrops fetalis, arthrogryposis, microcephaly, and polymicrogyria have been associated with homozygous truncating mutations in ATP1A2. We investigated the genetic causes of developmental and epileptic encephalopathies variably associated with malformations of cortical development in a large cohort and identified 22 patients with de novo or inherited heterozygous ATP1A2/A3 mutations. We characterized clinical, neuroimaging and neuropathological findings, performed in silico and in vitro assays of the mutations' effects on the NKA-pump function, and studied genotype-phenotype correlations. Twenty-two patients harboured 19 distinct heterozygous mutations of ATP1A2 (six patients, five mutations) and ATP1A3 (16 patients, 14 mutations, including a mosaic individual). Polymicrogyria occurred in 10 (45%) patients, showing a mainly bilateral perisylvian pattern. Most patients manifested early, often neonatal, onset seizures with a multifocal or migrating pattern. A distinctive, 'profound' phenotype, featuring polymicrogyria or progressive brain atrophy and epilepsy, resulted in early lethality in seven patients (32%). In silico evaluation predicted all mutations to be detrimental. We tested 14 mutations in transfected COS-1 cells and demonstrated impaired NKA-pump activity, consistent with severe loss of function. Genotype-phenotype analysis suggested a link between the most severe phenotypes and lack of COS-1 cell survival, and also revealed a wide continuum of severity distributed across mutations that variably impair NKA-pump activity. We performed neuropathological analysis of the whole brain in two individuals with polymicrogyria respectively related to a heterozygous ATP1A3 mutation and a homozygous ATP1A2 mutation and found close similarities with findings suggesting a mainly neural pathogenesis, compounded by vascular and leptomeningeal abnormalities. Combining our report with other studies, we estimate that ∼5% of mutations in ATP1A2 and 12% in ATP1A3 can be associated with the severe and novel phenotypes that we describe here. Notably, a few of these mutations were associated with more than one phenotype. These findings assign novel, 'profound' and early lethal phenotypes of developmental and epileptic encephalopathies and polymicrogyria to the phenotypic spectrum associated with heterozygous ATP1A2/A3 mutations and indicate that severely impaired NKA pump function can disrupt brain morphogenesis.
Collapse
Affiliation(s)
- Annalisa Vetro
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Hang N Nielsen
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Rikke Holm
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Robert F Hevner
- Department of Pathology, University of California San Diego, San Diego, CA, USA
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Zoe Powis
- Ambry Genetics, Aliso Viejo, CA, USA
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine Danish Epilepsy Centre, Filadelfia, Denmark.,Department of Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Cristina Bellan
- Department of Neonatal Intensive Care Unit, Bolognini Hospital, ASST-Bergamo Est, Seriate, Italy
| | - Alessandro Simonati
- Neurology (Child Neurology and Neuropathology), Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Gaétan Lesca
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon, Lyon, France
| | - Katherine L Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth E Palmer
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia.,School of Women's and Children's Health, University of New South Wales, Randwick, NSW, Australia
| | - Davide Mei
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Elisa Ballardini
- Neonatal Intensive Care Unit, Pediatric Section, Department of Medical Sciences, Ferrara University, Ferrara, Italy
| | - Arie Van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Steffen Syrbe
- Division of Pediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University, Rome, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Cynthia J Curry
- Genetic Medicine, Department of Pediatrics, University of California, San Francisco/Fresno, CA, USA
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Margherita Santucci
- Child Neuropsychiatry Unit, IRCCS, Institute of Neurological Sciences, Bellaria Hospital, Bologna, Italy.,DIBINEM, University of Bologna, Bologna, Italy
| | - Karen Chong
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, University of Manchester, St Mary's Hospital, Manchester, UK
| | - Stefania Bigoni
- Medical Genetics Unit, Department of Mother and Child, Ferrara University Hospital, Ferrara, Italy
| | - Ingrid E Scheffer
- University of Melbourne, Austin Health and Royal Children's Hospital, Florey and Murdoch Institutes, Melbourne, Australia
| | - William B Dobyns
- Department of Pediatrics (Genetics), University of Minnesota, Minneapolis, MN, USA
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | | |
Collapse
|
18
|
An interaction between PRRT2 and Na +/K + ATPase contributes to the control of neuronal excitability. Cell Death Dis 2021; 12:292. [PMID: 33731672 PMCID: PMC7969623 DOI: 10.1038/s41419-021-03569-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 02/05/2023]
Abstract
Mutations in PRoline Rich Transmembrane protein 2 (PRRT2) cause pleiotropic syndromes including benign infantile epilepsy, paroxysmal kinesigenic dyskinesia, episodic ataxia, that share the paroxysmal character of the clinical manifestations. PRRT2 is a neuronal protein that plays multiple roles in the regulation of neuronal development, excitability, and neurotransmitter release. To better understand the physiopathology of these clinical phenotypes, we investigated PRRT2 interactome in mouse brain by a pulldown-based proteomic approach and identified α1 and α3 Na+/K+ ATPase (NKA) pumps as major PRRT2-binding proteins. We confirmed PRRT2 and NKA interaction by biochemical approaches and showed their colocalization at neuronal plasma membrane. The acute or constitutive inactivation of PRRT2 had a functional impact on NKA. While PRRT2-deficiency did not modify NKA expression and surface exposure, it caused an increased clustering of α3-NKA on the plasma membrane. Electrophysiological recordings showed that PRRT2-deficiency in primary neurons impaired NKA function during neuronal stimulation without affecting pump activity under resting conditions. Both phenotypes were fully normalized by re-expression of PRRT2 in PRRT2-deficient neurons. In addition, the NKA-dependent afterhyperpolarization that follows high-frequency firing was also reduced in PRRT2-silenced neurons. Taken together, these results demonstrate that PRRT2 is a physiological modulator of NKA function and suggest that an impaired NKA activity contributes to the hyperexcitability phenotype caused by PRRT2 deficiency.
Collapse
|
19
|
Hoshino K, Sweadner KJ, Kawarai T, Saute JA, Freitas J, Damásio J, Donis KC, Kimura K, Fukuda H, Hayashi M, Higuchi T, Ikeda Y, Ozelius LJ, Kaji R. Rapid-Onset Dystonia-Parkinsonism Phenotype Consistency for a Novel Variant of ATP1A3 in Patients Across 3 Global Populations. NEUROLOGY-GENETICS 2021; 7:e562. [PMID: 33977143 PMCID: PMC8105889 DOI: 10.1212/nxg.0000000000000562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Kyoko Hoshino
- Segawa Memorial Neurological Clinic for Children (K.H., K.K., H.F., M.H.), Tokyo, Japan; Department of Neurosurgery (K.J.S.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Clinical Neuroscience (T.K., R.K.), Institute of Biomedical Sciences, Tokushima University, Japan; Medical Genetics Division (J.A.S., K.C.D.) and Neurology Division (J.A.S.), Hospital de Clínicas de Porto Alegre (HCPA); Graduate Program in Medicine: Medical Sciences and Internal Medicine Department (J.A.S.), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Neurophysiology Division (J.F., J.D.), Hospital de Santo António, Centro Hospitalar Universitário do Porto; UniGene (J.F., J.D.), Instituto de Biologia Molecular e Celular, i3s Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Department of Diagnostic Radiology and Nuclear Medicine (T.H.), Gunma University Graduate School of Medicine, Japan; Department of Neurology (Y.I.), Gunma University Graduate School of Medicine, Japan; and Department of Neurology (L.J.O.), Massachusetts General Hospital, Charlestown
| | - Kathleen J Sweadner
- Segawa Memorial Neurological Clinic for Children (K.H., K.K., H.F., M.H.), Tokyo, Japan; Department of Neurosurgery (K.J.S.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Clinical Neuroscience (T.K., R.K.), Institute of Biomedical Sciences, Tokushima University, Japan; Medical Genetics Division (J.A.S., K.C.D.) and Neurology Division (J.A.S.), Hospital de Clínicas de Porto Alegre (HCPA); Graduate Program in Medicine: Medical Sciences and Internal Medicine Department (J.A.S.), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Neurophysiology Division (J.F., J.D.), Hospital de Santo António, Centro Hospitalar Universitário do Porto; UniGene (J.F., J.D.), Instituto de Biologia Molecular e Celular, i3s Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Department of Diagnostic Radiology and Nuclear Medicine (T.H.), Gunma University Graduate School of Medicine, Japan; Department of Neurology (Y.I.), Gunma University Graduate School of Medicine, Japan; and Department of Neurology (L.J.O.), Massachusetts General Hospital, Charlestown
| | - Toshitaka Kawarai
- Segawa Memorial Neurological Clinic for Children (K.H., K.K., H.F., M.H.), Tokyo, Japan; Department of Neurosurgery (K.J.S.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Clinical Neuroscience (T.K., R.K.), Institute of Biomedical Sciences, Tokushima University, Japan; Medical Genetics Division (J.A.S., K.C.D.) and Neurology Division (J.A.S.), Hospital de Clínicas de Porto Alegre (HCPA); Graduate Program in Medicine: Medical Sciences and Internal Medicine Department (J.A.S.), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Neurophysiology Division (J.F., J.D.), Hospital de Santo António, Centro Hospitalar Universitário do Porto; UniGene (J.F., J.D.), Instituto de Biologia Molecular e Celular, i3s Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Department of Diagnostic Radiology and Nuclear Medicine (T.H.), Gunma University Graduate School of Medicine, Japan; Department of Neurology (Y.I.), Gunma University Graduate School of Medicine, Japan; and Department of Neurology (L.J.O.), Massachusetts General Hospital, Charlestown
| | - Jonas Alex Saute
- Segawa Memorial Neurological Clinic for Children (K.H., K.K., H.F., M.H.), Tokyo, Japan; Department of Neurosurgery (K.J.S.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Clinical Neuroscience (T.K., R.K.), Institute of Biomedical Sciences, Tokushima University, Japan; Medical Genetics Division (J.A.S., K.C.D.) and Neurology Division (J.A.S.), Hospital de Clínicas de Porto Alegre (HCPA); Graduate Program in Medicine: Medical Sciences and Internal Medicine Department (J.A.S.), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Neurophysiology Division (J.F., J.D.), Hospital de Santo António, Centro Hospitalar Universitário do Porto; UniGene (J.F., J.D.), Instituto de Biologia Molecular e Celular, i3s Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Department of Diagnostic Radiology and Nuclear Medicine (T.H.), Gunma University Graduate School of Medicine, Japan; Department of Neurology (Y.I.), Gunma University Graduate School of Medicine, Japan; and Department of Neurology (L.J.O.), Massachusetts General Hospital, Charlestown
| | - Joel Freitas
- Segawa Memorial Neurological Clinic for Children (K.H., K.K., H.F., M.H.), Tokyo, Japan; Department of Neurosurgery (K.J.S.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Clinical Neuroscience (T.K., R.K.), Institute of Biomedical Sciences, Tokushima University, Japan; Medical Genetics Division (J.A.S., K.C.D.) and Neurology Division (J.A.S.), Hospital de Clínicas de Porto Alegre (HCPA); Graduate Program in Medicine: Medical Sciences and Internal Medicine Department (J.A.S.), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Neurophysiology Division (J.F., J.D.), Hospital de Santo António, Centro Hospitalar Universitário do Porto; UniGene (J.F., J.D.), Instituto de Biologia Molecular e Celular, i3s Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Department of Diagnostic Radiology and Nuclear Medicine (T.H.), Gunma University Graduate School of Medicine, Japan; Department of Neurology (Y.I.), Gunma University Graduate School of Medicine, Japan; and Department of Neurology (L.J.O.), Massachusetts General Hospital, Charlestown
| | - Joana Damásio
- Segawa Memorial Neurological Clinic for Children (K.H., K.K., H.F., M.H.), Tokyo, Japan; Department of Neurosurgery (K.J.S.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Clinical Neuroscience (T.K., R.K.), Institute of Biomedical Sciences, Tokushima University, Japan; Medical Genetics Division (J.A.S., K.C.D.) and Neurology Division (J.A.S.), Hospital de Clínicas de Porto Alegre (HCPA); Graduate Program in Medicine: Medical Sciences and Internal Medicine Department (J.A.S.), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Neurophysiology Division (J.F., J.D.), Hospital de Santo António, Centro Hospitalar Universitário do Porto; UniGene (J.F., J.D.), Instituto de Biologia Molecular e Celular, i3s Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Department of Diagnostic Radiology and Nuclear Medicine (T.H.), Gunma University Graduate School of Medicine, Japan; Department of Neurology (Y.I.), Gunma University Graduate School of Medicine, Japan; and Department of Neurology (L.J.O.), Massachusetts General Hospital, Charlestown
| | - Karina C Donis
- Segawa Memorial Neurological Clinic for Children (K.H., K.K., H.F., M.H.), Tokyo, Japan; Department of Neurosurgery (K.J.S.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Clinical Neuroscience (T.K., R.K.), Institute of Biomedical Sciences, Tokushima University, Japan; Medical Genetics Division (J.A.S., K.C.D.) and Neurology Division (J.A.S.), Hospital de Clínicas de Porto Alegre (HCPA); Graduate Program in Medicine: Medical Sciences and Internal Medicine Department (J.A.S.), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Neurophysiology Division (J.F., J.D.), Hospital de Santo António, Centro Hospitalar Universitário do Porto; UniGene (J.F., J.D.), Instituto de Biologia Molecular e Celular, i3s Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Department of Diagnostic Radiology and Nuclear Medicine (T.H.), Gunma University Graduate School of Medicine, Japan; Department of Neurology (Y.I.), Gunma University Graduate School of Medicine, Japan; and Department of Neurology (L.J.O.), Massachusetts General Hospital, Charlestown
| | - Kazue Kimura
- Segawa Memorial Neurological Clinic for Children (K.H., K.K., H.F., M.H.), Tokyo, Japan; Department of Neurosurgery (K.J.S.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Clinical Neuroscience (T.K., R.K.), Institute of Biomedical Sciences, Tokushima University, Japan; Medical Genetics Division (J.A.S., K.C.D.) and Neurology Division (J.A.S.), Hospital de Clínicas de Porto Alegre (HCPA); Graduate Program in Medicine: Medical Sciences and Internal Medicine Department (J.A.S.), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Neurophysiology Division (J.F., J.D.), Hospital de Santo António, Centro Hospitalar Universitário do Porto; UniGene (J.F., J.D.), Instituto de Biologia Molecular e Celular, i3s Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Department of Diagnostic Radiology and Nuclear Medicine (T.H.), Gunma University Graduate School of Medicine, Japan; Department of Neurology (Y.I.), Gunma University Graduate School of Medicine, Japan; and Department of Neurology (L.J.O.), Massachusetts General Hospital, Charlestown
| | - Hideki Fukuda
- Segawa Memorial Neurological Clinic for Children (K.H., K.K., H.F., M.H.), Tokyo, Japan; Department of Neurosurgery (K.J.S.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Clinical Neuroscience (T.K., R.K.), Institute of Biomedical Sciences, Tokushima University, Japan; Medical Genetics Division (J.A.S., K.C.D.) and Neurology Division (J.A.S.), Hospital de Clínicas de Porto Alegre (HCPA); Graduate Program in Medicine: Medical Sciences and Internal Medicine Department (J.A.S.), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Neurophysiology Division (J.F., J.D.), Hospital de Santo António, Centro Hospitalar Universitário do Porto; UniGene (J.F., J.D.), Instituto de Biologia Molecular e Celular, i3s Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Department of Diagnostic Radiology and Nuclear Medicine (T.H.), Gunma University Graduate School of Medicine, Japan; Department of Neurology (Y.I.), Gunma University Graduate School of Medicine, Japan; and Department of Neurology (L.J.O.), Massachusetts General Hospital, Charlestown
| | - Masaharu Hayashi
- Segawa Memorial Neurological Clinic for Children (K.H., K.K., H.F., M.H.), Tokyo, Japan; Department of Neurosurgery (K.J.S.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Clinical Neuroscience (T.K., R.K.), Institute of Biomedical Sciences, Tokushima University, Japan; Medical Genetics Division (J.A.S., K.C.D.) and Neurology Division (J.A.S.), Hospital de Clínicas de Porto Alegre (HCPA); Graduate Program in Medicine: Medical Sciences and Internal Medicine Department (J.A.S.), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Neurophysiology Division (J.F., J.D.), Hospital de Santo António, Centro Hospitalar Universitário do Porto; UniGene (J.F., J.D.), Instituto de Biologia Molecular e Celular, i3s Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Department of Diagnostic Radiology and Nuclear Medicine (T.H.), Gunma University Graduate School of Medicine, Japan; Department of Neurology (Y.I.), Gunma University Graduate School of Medicine, Japan; and Department of Neurology (L.J.O.), Massachusetts General Hospital, Charlestown
| | - Tetsuya Higuchi
- Segawa Memorial Neurological Clinic for Children (K.H., K.K., H.F., M.H.), Tokyo, Japan; Department of Neurosurgery (K.J.S.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Clinical Neuroscience (T.K., R.K.), Institute of Biomedical Sciences, Tokushima University, Japan; Medical Genetics Division (J.A.S., K.C.D.) and Neurology Division (J.A.S.), Hospital de Clínicas de Porto Alegre (HCPA); Graduate Program in Medicine: Medical Sciences and Internal Medicine Department (J.A.S.), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Neurophysiology Division (J.F., J.D.), Hospital de Santo António, Centro Hospitalar Universitário do Porto; UniGene (J.F., J.D.), Instituto de Biologia Molecular e Celular, i3s Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Department of Diagnostic Radiology and Nuclear Medicine (T.H.), Gunma University Graduate School of Medicine, Japan; Department of Neurology (Y.I.), Gunma University Graduate School of Medicine, Japan; and Department of Neurology (L.J.O.), Massachusetts General Hospital, Charlestown
| | - Yoshio Ikeda
- Segawa Memorial Neurological Clinic for Children (K.H., K.K., H.F., M.H.), Tokyo, Japan; Department of Neurosurgery (K.J.S.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Clinical Neuroscience (T.K., R.K.), Institute of Biomedical Sciences, Tokushima University, Japan; Medical Genetics Division (J.A.S., K.C.D.) and Neurology Division (J.A.S.), Hospital de Clínicas de Porto Alegre (HCPA); Graduate Program in Medicine: Medical Sciences and Internal Medicine Department (J.A.S.), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Neurophysiology Division (J.F., J.D.), Hospital de Santo António, Centro Hospitalar Universitário do Porto; UniGene (J.F., J.D.), Instituto de Biologia Molecular e Celular, i3s Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Department of Diagnostic Radiology and Nuclear Medicine (T.H.), Gunma University Graduate School of Medicine, Japan; Department of Neurology (Y.I.), Gunma University Graduate School of Medicine, Japan; and Department of Neurology (L.J.O.), Massachusetts General Hospital, Charlestown
| | - Laurie J Ozelius
- Segawa Memorial Neurological Clinic for Children (K.H., K.K., H.F., M.H.), Tokyo, Japan; Department of Neurosurgery (K.J.S.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Clinical Neuroscience (T.K., R.K.), Institute of Biomedical Sciences, Tokushima University, Japan; Medical Genetics Division (J.A.S., K.C.D.) and Neurology Division (J.A.S.), Hospital de Clínicas de Porto Alegre (HCPA); Graduate Program in Medicine: Medical Sciences and Internal Medicine Department (J.A.S.), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Neurophysiology Division (J.F., J.D.), Hospital de Santo António, Centro Hospitalar Universitário do Porto; UniGene (J.F., J.D.), Instituto de Biologia Molecular e Celular, i3s Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Department of Diagnostic Radiology and Nuclear Medicine (T.H.), Gunma University Graduate School of Medicine, Japan; Department of Neurology (Y.I.), Gunma University Graduate School of Medicine, Japan; and Department of Neurology (L.J.O.), Massachusetts General Hospital, Charlestown
| | - Ryuji Kaji
- Segawa Memorial Neurological Clinic for Children (K.H., K.K., H.F., M.H.), Tokyo, Japan; Department of Neurosurgery (K.J.S.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Clinical Neuroscience (T.K., R.K.), Institute of Biomedical Sciences, Tokushima University, Japan; Medical Genetics Division (J.A.S., K.C.D.) and Neurology Division (J.A.S.), Hospital de Clínicas de Porto Alegre (HCPA); Graduate Program in Medicine: Medical Sciences and Internal Medicine Department (J.A.S.), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Neurophysiology Division (J.F., J.D.), Hospital de Santo António, Centro Hospitalar Universitário do Porto; UniGene (J.F., J.D.), Instituto de Biologia Molecular e Celular, i3s Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Department of Diagnostic Radiology and Nuclear Medicine (T.H.), Gunma University Graduate School of Medicine, Japan; Department of Neurology (Y.I.), Gunma University Graduate School of Medicine, Japan; and Department of Neurology (L.J.O.), Massachusetts General Hospital, Charlestown
| |
Collapse
|
20
|
Miyatake S, Kato M, Kumamoto T, Hirose T, Koshimizu E, Matsui T, Takeuchi H, Doi H, Hamada K, Nakashima M, Sasaki K, Yamashita A, Takata A, Hamanaka K, Satoh M, Miyama T, Sonoda Y, Sasazuki M, Torisu H, Hara T, Sakai Y, Noguchi Y, Miura M, Nishimura Y, Nakamura K, Asai H, Hinokuma N, Miya F, Tsunoda T, Togawa M, Ikeda Y, Kimura N, Amemiya K, Horino A, Fukuoka M, Ikeda H, Merhav G, Ekhilevitch N, Miura M, Mizuguchi T, Miyake N, Suzuki A, Ohga S, Saitsu H, Takahashi H, Tanaka F, Ogata K, Ohtaka-Maruyama C, Matsumoto N. De novo ATP1A3 variants cause polymicrogyria. SCIENCE ADVANCES 2021; 7:7/13/eabd2368. [PMID: 33762331 PMCID: PMC7990330 DOI: 10.1126/sciadv.abd2368] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Polymicrogyria is a common malformation of cortical development whose etiology remains elusive. We conducted whole-exome sequencing for 124 patients with polymicrogyria and identified de novo ATP1A3 variants in eight patients. Mutated ATP1A3 causes functional brain diseases, including alternating hemiplegia of childhood (AHC), rapid-onset dystonia parkinsonism (RDP), and cerebellar ataxia, areflexia, pes cavus, optic nerve atrophy, and sensorineural deafness (CAPOS). However, our patients showed no clinical features of AHC, RDP, or CAPOS and had a completely different phenotype: a severe form of polymicrogyria with epilepsy and developmental delay. Detected variants had different locations in ATP1A3 and different functional properties compared with AHC-, RDP-, or CAPOS-associated variants. In the developing cerebral cortex of mice, radial neuronal migration was impaired in neurons overexpressing the ATP1A3 variant of the most severe patients, suggesting that this variant is involved in cortical malformation pathogenesis. We propose a previously unidentified category of polymicrogyria associated with ATP1A3 abnormalities.
Collapse
Affiliation(s)
- Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa 236-0004, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Takuma Kumamoto
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Takaaki Matsui
- Gene Regulation Research, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Mitsuko Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Department of Biochemistry, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Kazunori Sasaki
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Mai Satoh
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Takabumi Miyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Yuri Sonoda
- Department of Pediatrics, Kyushu University, Fukuoka 812-8582, Japan
| | - Momoko Sasazuki
- Department of Pediatrics, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Torisu
- Department of Pediatrics, Kyushu University, Fukuoka 812-8582, Japan
- Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Toshiro Hara
- Department of Pediatrics, Kyushu University, Fukuoka 812-8582, Japan
- Fukuoka Children's Hospital, Fukuoka 813-0017, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Kyushu University, Fukuoka 812-8582, Japan
| | - Yushi Noguchi
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Mazumi Miura
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Yoko Nishimura
- Division of Child Neurology, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Kazuyuki Nakamura
- Department of Pediatrics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Hideyuki Asai
- Department of Pediatrics, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Nodoka Hinokuma
- Department of Pediatrics, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masami Togawa
- Department of Pediatrics, Tottori Prefectural Central Hospital, Tottori 680-0901, Japan
| | - Yukihiro Ikeda
- Department of Neonatology, Japanese Red Cross Otsu Hospital, Otsu, Shiga 520-8511, Japan
| | - Nobusuke Kimura
- Department of Pediatrics, Naniwa Ikuno Hospital, Osaka, Shiga 556-0014, Japan
| | - Kaoru Amemiya
- Department of Pediatrics, Saiwai Kodomo Clinic, Tachikawa 190-0002, Japan
| | - Asako Horino
- Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka 420-8688, Japan
| | - Masataka Fukuoka
- Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka 420-8688, Japan
| | - Hiroko Ikeda
- Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka 420-8688, Japan
| | - Goni Merhav
- Radiology Department, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Nina Ekhilevitch
- The Genetics Institute, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Masaki Miura
- Department of Pediatrics, Nagaoka Red Cross Hospital, Nagaoka, Niigata 940-2085, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Atsushi Suzuki
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, Yokohama, Kanagawa 236-0004, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Kyushu University, Fukuoka 812-8582, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Department of Biochemistry, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Chiaki Ohtaka-Maruyama
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan.
| |
Collapse
|
21
|
Koh NYT, Lim JYX, Kam S, Visruthan NK, Koh AL, Lee JH, Thomas T. Alternating hemiplegia of childhood presenting as recurrent apnoea in a term newborn infant. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2021; 50:174-176. [PMID: 33733261 DOI: 10.47102/annals-acadmedsg.2020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|
22
|
Arystarkhova E, Ozelius LJ, Brashear A, Sweadner KJ. Misfolding, altered membrane distributions, and the unfolded protein response contribute to pathogenicity differences in Na,K-ATPase ATP1A3 mutations. J Biol Chem 2021; 296:100019. [PMID: 33144327 PMCID: PMC7949067 DOI: 10.1074/jbc.ra120.015271] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Missense mutations in ATP1A3, the α3 isoform of Na,K-ATPase, cause neurological phenotypes that differ greatly in symptoms and severity. A mechanistic basis for differences is lacking, but reduction of activity alone cannot explain them. Isogenic cell lines with endogenous α1 and inducible exogenous α3 were constructed to compare mutation properties. Na,K-ATPase is made in the endoplasmic reticulum (ER), but the glycan-free catalytic α subunit complexes with glycosylated β subunit in the ER to proceed through Golgi and post-Golgi trafficking. We previously observed classic evidence of protein misfolding in mutations with severe phenotypes: differences in ER retention of endogenous β1 subunit, impaired trafficking of α3, and cytopathology, suggesting that they misfold during biosynthesis. Here we tested two mutations associated with different phenotypes: D923N, which has a median age of onset of hypotonia or dystonia at 3 years, and L924P, with severe infantile epilepsy and profound impairment. Misfolding during biosynthesis in the ER activates the unfolded protein response, a multiarmed program that enhances protein folding capacity, and if that fails, triggers apoptosis. L924P showed more nascent protein retention in ER than D923N; more ER-associated degradation of α3 (ERAD); larger differences in Na,K-ATPase subunit distributions among subcellular fractions; and greater inactivation of eIF2α, a major defensive step of the unfolded protein response. In L924P there was also altered subcellular distribution of endogenous α1 subunit, analogous to a dominant negative effect. Both mutations showed pro-apoptotic sensitization by reduced phosphorylation of BAD. Encouragingly, however, 4-phenylbutyrate, a pharmacological corrector, reduced L924P ER retention, increased α3 expression, and restored morphology.
Collapse
Affiliation(s)
- Elena Arystarkhova
- Laboratory of Membrane Biology, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Allison Brashear
- Department of Medicine, University of California at Davis Medical School, Sacramento, California, USA
| | - Kathleen J Sweadner
- Laboratory of Membrane Biology, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
23
|
Weissbach A, Saranza G, Domingo A. Combined dystonias: clinical and genetic updates. J Neural Transm (Vienna) 2020; 128:417-429. [PMID: 33099685 DOI: 10.1007/s00702-020-02269-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/09/2020] [Indexed: 12/28/2022]
Abstract
The genetic combined dystonias are a clinically and genetically heterogeneous group of neurologic disorders defined by the overlap of dystonia and other movement disorders such as parkinsonism or myoclonus. The number of genes associated with combined dystonia syndromes has been increasing due to the wider recognition of clinical features and broader use of genetic testing. Nevertheless, these diseases are still rare and represent only a small subgroup among all dystonias. Dopa-responsive dystonia (DYT/PARK-GCH1), rapid-onset dystonia-parkinsonism (DYT/PARK-ATP1A3), X-linked dystonia-parkinsonism (XDP, DYT/PARK-TAF1), and young-onset dystonia-parkinsonism (DYT/PARK-PRKRA) are monogenic combined dystonias accompanied by parkinsonian features. Meanwhile, MYC/DYT-SGCE and MYC/DYT-KCTD17 are characterized by dystonia in combination with myoclonus. In the past, common molecular pathways between these syndromes were the center of interest. Although the encoded proteins rather affect diverse cellular functions, recent neurophysiological evidence suggests similarities in the underlying mechanism in a subset. This review summarizes recent developments in the combined dystonias, focusing on clinico-genetic features and neurophysiologic findings. Disease-modifying therapies remain unavailable to date; an overview of symptomatic therapies for these disorders is also presented.
Collapse
Affiliation(s)
- Anne Weissbach
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Gerard Saranza
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Aloysius Domingo
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA. .,Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
24
|
Jing L, Wu N, He L, Shao J, Ma H. Establishment of an experimental rat model of high altitude cerebral edema by hypobaric hypoxia combined with temperature fluctuation. Brain Res Bull 2020; 165:253-262. [PMID: 33141074 DOI: 10.1016/j.brainresbull.2020.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
High altitude cerebral edema (HACE) is a kind of life threat disease encountered at high altitude, but the precise pathogenesis of it is far more understood. Hypobaic hypoxia (HH) and cold are conditions characteristic of high altitude environment. HH is always considered as the central causative factor for the development of HACE, but the effect of cold stress on HACE has been rarely investigated. The purpose of this study was to investigate the potential role of cold stress in the development of HACE and establish a stable experimental animal model. Male SPF Wistar rats were randomly divided into five groups for this experiment, control group (altitude, 1400 m, temperature, 25 ℃), NC + 2 ℃ group (altitude, 1400 m, temperature, 2 ℃), HH group (altitude, 6000 m, temperature, 25 ℃), HH+2 ℃ group (altitude, 6000 m, temperature, 2 ℃) and HH + 12/2 ℃ (altitude, 6000 m, temperature, 12 ℃/2 ℃ light/dark cycle). After exposure for 72 h, the blood and brain tissues were collected. Brain water content (BWC) and Evans Blue dye extravasation were used to assess the brain edema and blood-brain barrier (BBB) permeability, respectively. The levels of pro-inflammatory cytokines in serum were assessed via enzyme-linked immunosorbent assay. Oxidative stress markers and ATPase activity were determined using commercial kits. Western blotting was used to detect the expression of related proteins. Compared to control, HH+2 ℃ could significantly increase the BWC and BBB permeability, and these changes were further exacerbated by HH + 12/2 ℃. Furthermore, HH+2 ℃ and HH + 12/2 ℃ markedly increased the levels of H2O2 and MDA, restrained SOD and GSH levels and decreased Na+/K+-ATPase activitie compared with the control group. In addition, HH+2 ℃ and HH + 12/2 ℃ enhanced the levels of pro-inflammatory cytokines IL-1β, TNF-α and IL-6 in serum and significantly increased the expression of VEGF in brain compared with the control group, but only HH + 12/2 ℃ could increase the expression of AQP4. However, compared with control group, no significant differences in these parameters were observed in HH and NC+2 ℃groups. These results demonstrated that HH or cold stress alone did not successfully induce brain damage, while HH+2 ℃ could induce the onset of HACE via provoking injury caused by HH. HH + 12/2 ℃ was more obvious and efficient. Collectively, we firstly suggest that cold stress may promote the formation of HACE by aggravating the brain injury induced by HH exposure and supply an effective and reliable experimental rat model of HACE via HH combined with temperature fluctuation.
Collapse
Affiliation(s)
- Linlin Jing
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force, Lanzhou, Gansu, 730050, People's Republic of China
| | - Ningzi Wu
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force, Lanzhou, Gansu, 730050, People's Republic of China
| | - Lei He
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force, Lanzhou, Gansu, 730050, People's Republic of China
| | - Jin Shao
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force, Lanzhou, Gansu, 730050, People's Republic of China
| | - Huiping Ma
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force, Lanzhou, Gansu, 730050, People's Republic of China.
| |
Collapse
|
25
|
Prange L, Pratt M, Herman K, Schiffmann R, Mueller DM, McLean M, Mendez MM, Walley N, Heinzen EL, Goldstein D, Shashi V, Hunanyan A, Pagadala V, Mikati MA. D-DEMØ, a distinct phenotype caused by ATP1A3 mutations. NEUROLOGY-GENETICS 2020; 6:e466. [PMID: 32802951 PMCID: PMC7413631 DOI: 10.1212/nxg.0000000000000466] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/18/2020] [Indexed: 11/15/2022]
Abstract
Objective To describe a phenotype caused by ATP1A3 mutations, which manifests as dystonia, dysmorphism of the face, encephalopathy with developmental delay, brain MRI abnormalities always including cerebellar hypoplasia, no hemiplegia (Ø) (D-DEMØ), and neonatal onset. Methods Review and analysis of clinical and genetic data. Results Patients shared the above traits and had whole-exome sequencing that showed de novo variants of the ATP1A3 gene, predicted to be disease causing and occurring in regions of the protein critical for pump function. Patient 1 (c.1079C>G, p.Thr360Arg), an 8-year-old girl, presented on day 1 of life with episodic dystonia, complex partial seizures, and facial dysmorphism. MRI of the brain revealed cerebellar hypoplasia. Patient 2 (c.420G>T, p.Gln140His), an 18-year-old man, presented on day 1 of life with hypotonia, tremor, and facial dysmorphism. He later developed dystonia. MRI of the brain revealed cerebellar hypoplasia and, later, further cerebellar volume loss (atrophy). Patient 3 (c.974G>A, Gly325Asp), a 13-year-old girl, presented on day 1 of life with tremor, episodic dystonia, and facial dysmorphism. MRI of the brain showed severe cerebellar hypoplasia. Patient 4 (c.971A>G, p.Glu324Gly), a 14-year-old boy, presented on day 1 of life with tremor, hypotonia, dystonia, nystagmus, facial dysmorphism, and later seizures. MRI of the brain revealed moderate cerebellar hypoplasia. Conclusions D-DEMØ represents an ATP1A3-related phenotype, the observation of which should trigger investigation for ATP1A3 mutations. Our findings, and the presence of multiple distinct ATP1A3-related phenotypes, support the possibility that there are differences in the underlying mechanisms.
Collapse
Affiliation(s)
- Lyndsey Prange
- Duke University (L.P., M.P., M.M.M., N.W., V.S., A.H., M.A.M.), Durham, NC; UC Davis Health (K.H.), Sacramento; Baylor Scott & White Health (R.S.), Dallas, TX; Rosalind Franklin University of Medicine and Science (D.M.M.), Chicago, IL; University of North Carolina at Chapel Hill (E.L.H.); Columbia University (D.G.), New York City, NY; and Glycan Therapeutics, LLC (V.P.), Chapel Hill, NC
| | - Milton Pratt
- Duke University (L.P., M.P., M.M.M., N.W., V.S., A.H., M.A.M.), Durham, NC; UC Davis Health (K.H.), Sacramento; Baylor Scott & White Health (R.S.), Dallas, TX; Rosalind Franklin University of Medicine and Science (D.M.M.), Chicago, IL; University of North Carolina at Chapel Hill (E.L.H.); Columbia University (D.G.), New York City, NY; and Glycan Therapeutics, LLC (V.P.), Chapel Hill, NC
| | - Kristin Herman
- Duke University (L.P., M.P., M.M.M., N.W., V.S., A.H., M.A.M.), Durham, NC; UC Davis Health (K.H.), Sacramento; Baylor Scott & White Health (R.S.), Dallas, TX; Rosalind Franklin University of Medicine and Science (D.M.M.), Chicago, IL; University of North Carolina at Chapel Hill (E.L.H.); Columbia University (D.G.), New York City, NY; and Glycan Therapeutics, LLC (V.P.), Chapel Hill, NC
| | - Raphael Schiffmann
- Duke University (L.P., M.P., M.M.M., N.W., V.S., A.H., M.A.M.), Durham, NC; UC Davis Health (K.H.), Sacramento; Baylor Scott & White Health (R.S.), Dallas, TX; Rosalind Franklin University of Medicine and Science (D.M.M.), Chicago, IL; University of North Carolina at Chapel Hill (E.L.H.); Columbia University (D.G.), New York City, NY; and Glycan Therapeutics, LLC (V.P.), Chapel Hill, NC
| | - David M Mueller
- Duke University (L.P., M.P., M.M.M., N.W., V.S., A.H., M.A.M.), Durham, NC; UC Davis Health (K.H.), Sacramento; Baylor Scott & White Health (R.S.), Dallas, TX; Rosalind Franklin University of Medicine and Science (D.M.M.), Chicago, IL; University of North Carolina at Chapel Hill (E.L.H.); Columbia University (D.G.), New York City, NY; and Glycan Therapeutics, LLC (V.P.), Chapel Hill, NC
| | - Melissa McLean
- Duke University (L.P., M.P., M.M.M., N.W., V.S., A.H., M.A.M.), Durham, NC; UC Davis Health (K.H.), Sacramento; Baylor Scott & White Health (R.S.), Dallas, TX; Rosalind Franklin University of Medicine and Science (D.M.M.), Chicago, IL; University of North Carolina at Chapel Hill (E.L.H.); Columbia University (D.G.), New York City, NY; and Glycan Therapeutics, LLC (V.P.), Chapel Hill, NC
| | - Mary Moya Mendez
- Duke University (L.P., M.P., M.M.M., N.W., V.S., A.H., M.A.M.), Durham, NC; UC Davis Health (K.H.), Sacramento; Baylor Scott & White Health (R.S.), Dallas, TX; Rosalind Franklin University of Medicine and Science (D.M.M.), Chicago, IL; University of North Carolina at Chapel Hill (E.L.H.); Columbia University (D.G.), New York City, NY; and Glycan Therapeutics, LLC (V.P.), Chapel Hill, NC
| | - Nicole Walley
- Duke University (L.P., M.P., M.M.M., N.W., V.S., A.H., M.A.M.), Durham, NC; UC Davis Health (K.H.), Sacramento; Baylor Scott & White Health (R.S.), Dallas, TX; Rosalind Franklin University of Medicine and Science (D.M.M.), Chicago, IL; University of North Carolina at Chapel Hill (E.L.H.); Columbia University (D.G.), New York City, NY; and Glycan Therapeutics, LLC (V.P.), Chapel Hill, NC
| | - Erin L Heinzen
- Duke University (L.P., M.P., M.M.M., N.W., V.S., A.H., M.A.M.), Durham, NC; UC Davis Health (K.H.), Sacramento; Baylor Scott & White Health (R.S.), Dallas, TX; Rosalind Franklin University of Medicine and Science (D.M.M.), Chicago, IL; University of North Carolina at Chapel Hill (E.L.H.); Columbia University (D.G.), New York City, NY; and Glycan Therapeutics, LLC (V.P.), Chapel Hill, NC
| | - David Goldstein
- Duke University (L.P., M.P., M.M.M., N.W., V.S., A.H., M.A.M.), Durham, NC; UC Davis Health (K.H.), Sacramento; Baylor Scott & White Health (R.S.), Dallas, TX; Rosalind Franklin University of Medicine and Science (D.M.M.), Chicago, IL; University of North Carolina at Chapel Hill (E.L.H.); Columbia University (D.G.), New York City, NY; and Glycan Therapeutics, LLC (V.P.), Chapel Hill, NC
| | - Vandana Shashi
- Duke University (L.P., M.P., M.M.M., N.W., V.S., A.H., M.A.M.), Durham, NC; UC Davis Health (K.H.), Sacramento; Baylor Scott & White Health (R.S.), Dallas, TX; Rosalind Franklin University of Medicine and Science (D.M.M.), Chicago, IL; University of North Carolina at Chapel Hill (E.L.H.); Columbia University (D.G.), New York City, NY; and Glycan Therapeutics, LLC (V.P.), Chapel Hill, NC
| | - Arsen Hunanyan
- Duke University (L.P., M.P., M.M.M., N.W., V.S., A.H., M.A.M.), Durham, NC; UC Davis Health (K.H.), Sacramento; Baylor Scott & White Health (R.S.), Dallas, TX; Rosalind Franklin University of Medicine and Science (D.M.M.), Chicago, IL; University of North Carolina at Chapel Hill (E.L.H.); Columbia University (D.G.), New York City, NY; and Glycan Therapeutics, LLC (V.P.), Chapel Hill, NC
| | - Vijay Pagadala
- Duke University (L.P., M.P., M.M.M., N.W., V.S., A.H., M.A.M.), Durham, NC; UC Davis Health (K.H.), Sacramento; Baylor Scott & White Health (R.S.), Dallas, TX; Rosalind Franklin University of Medicine and Science (D.M.M.), Chicago, IL; University of North Carolina at Chapel Hill (E.L.H.); Columbia University (D.G.), New York City, NY; and Glycan Therapeutics, LLC (V.P.), Chapel Hill, NC
| | - Mohamad A Mikati
- Duke University (L.P., M.P., M.M.M., N.W., V.S., A.H., M.A.M.), Durham, NC; UC Davis Health (K.H.), Sacramento; Baylor Scott & White Health (R.S.), Dallas, TX; Rosalind Franklin University of Medicine and Science (D.M.M.), Chicago, IL; University of North Carolina at Chapel Hill (E.L.H.); Columbia University (D.G.), New York City, NY; and Glycan Therapeutics, LLC (V.P.), Chapel Hill, NC
| |
Collapse
|
26
|
Lazarov E, Hillebrand M, Schröder S, Ternka K, Hofhuis J, Ohlenbusch A, Barrantes-Freer A, Pardo LA, Fruergaard MU, Nissen P, Brockmann K, Gärtner J, Rosewich H. Comparative analysis of alternating hemiplegia of childhood and rapid-onset dystonia-parkinsonism ATP1A3 mutations reveals functional deficits, which do not correlate with disease severity. Neurobiol Dis 2020; 143:105012. [PMID: 32653672 DOI: 10.1016/j.nbd.2020.105012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/12/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Heterozygous mutations in the ATP1A3 gene, coding for an alpha subunit isoform (α3) of Na+/K+-ATPase, are the primary genetic cause for rapid-onset dystonia-parkinsonism (RDP) and alternating hemiplegia of childhood (AHC). Recently, cerebellar ataxia, areflexia, pes cavus, optic atrophy and sensorineural hearing loss (CAPOS), early infantile epileptic encephalopathy (EIEE), childhood rapid onset ataxia (CROA) and relapsing encephalopathy with rapid onset ataxia (RECA) extend the clinical spectrum of ATP1A3 related disorders. AHC and RDP demonstrate distinct clinical features, with AHC symptoms being generally more severe compared to RDP. Currently, it is largely unknown what determines the disease severity, and whether severity is linked to the degree of functional impairment of the α3 subunit. Here we compared the effect of twelve different RDP and AHC specific mutations on the expression and function of the α3 Na+/K+-ATPase in transfected HEK cells and oocytes. All studied mutations led to functional impairment of the pump, as reflected by lower survival rate and reduced pump current. No difference in the extent of impairment, nor in the expression level, was found between the two phenotypes, suggesting that these measures of pump dysfunction do not exclusively determine the disease severity.
Collapse
Affiliation(s)
- Elinor Lazarov
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | - Merle Hillebrand
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | - Simone Schröder
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | - Katharina Ternka
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | - Julia Hofhuis
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | - Andreas Ohlenbusch
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | | | - Luis A Pardo
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | - Marlene U Fruergaard
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Dept. Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark.
| | - Poul Nissen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Dept. Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark.
| | - Knut Brockmann
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | - Jutta Gärtner
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | - Hendrik Rosewich
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| |
Collapse
|
27
|
Capuano A, Garone G, Tiralongo G, Graziola F. Alternating Hemiplegia of Childhood: Understanding the Genotype-Phenotype Relationship of ATP1A3 Variations. APPLICATION OF CLINICAL GENETICS 2020; 13:71-81. [PMID: 32280259 PMCID: PMC7125306 DOI: 10.2147/tacg.s210325] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Alternating hemiplegia of childhood (AHC) is a rare neurological disorder affecting children with an onset before 18 months. Diagnostic clues include transient episodes of hemiplegia alternating in the laterality or quadriparesis, nystagmus and other paroxysmal attacks as tonic and dystonic spells. Epilepsy is also a common feature. In the past, a great effort has been done to understand the genetic basis of the disease leading to the discovery of mutations in the ATP1A3 gene encoding for the alpha3 subunit of Na+/K+ATPase, a protein already related to another disease named Rapid Onset Dystonia Parkinsonism (RDP). ATP1A3 mutations account for more than 70% of cases of AHC. In particular, three hotspot mutations account for about 60% of all cases, and these data have been confirmed in large population studies. Specifically, the p.Asp801Asn variant has been found to cause 30–43% of all cases, p.Glu815Lys is responsible for 16–35% of cases and p.Gly947Arg accounts for 8–15%. These three mutations are associated with different clinical phenotype in terms of symptoms, severity and prognosis. In vitro and in vivo models reveal that a crucial role of Na+/K+ATPase pump activity emerges in maintaining a correct membrane potential, survival and homeostasis of neurons. Herein, we attempt to summarize all clinical, genetic and molecular aspects of AHC considering ATP1A3 as its primary disease-causing determinant.
Collapse
Affiliation(s)
- Alessandro Capuano
- Movement Disorders Clinic, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giacomo Garone
- Movement Disorders Clinic, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,University Hospital Pediatric Department, IRCCS Bambino Gesù Children's Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Tiralongo
- Movement Disorders Clinic, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Federica Graziola
- Movement Disorders Clinic, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
28
|
Allocco AA, Jin SC, Duy PQ, Furey CG, Zeng X, Dong W, Nelson-Williams C, Karimy JK, DeSpenza T, Hao LT, Reeves B, Haider S, Gunel M, Lifton RP, Kahle KT. Recessive Inheritance of Congenital Hydrocephalus With Other Structural Brain Abnormalities Caused by Compound Heterozygous Mutations in ATP1A3. Front Cell Neurosci 2019; 13:425. [PMID: 31616254 PMCID: PMC6775207 DOI: 10.3389/fncel.2019.00425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/04/2019] [Indexed: 11/25/2022] Open
Abstract
Background ATP1A3 encodes the α3 subunit of the Na+/K+ ATPase, a fundamental ion-transporting enzyme. Primarily expressed in neurons, ATP1A3 is mutated in several autosomal dominant neurological diseases. To our knowledge, damaging recessive genotypes in ATP1A3 have never been associated with any human disease. Atp1a3 deficiency in zebrafish results in hydrocephalus; however, no known association exists between ATP1A3 and human congenital hydrocephalus (CH). Methods We utilized whole-exome sequencing (WES), bioinformatics, and computational modeling to identify and characterize novel ATP1A3 mutations in a patient with CH. We performed immunohistochemical studies using mouse embryonic brain tissues to characterize Atp1a3 expression during brain development. Results We identified two germline mutations in ATP1A3 (p. Arg19Cys and p.Arg463Cys), each of which was inherited from one of the patient’s unaffected parents, in a single patient with severe obstructive CH due to aqueductal stenosis, along with open schizencephaly, type 1 Chiari malformation, and dysgenesis of the corpus callosum. Both mutations are predicted to be highly deleterious and impair protein stability. Immunohistochemical studies demonstrate robust Atp1a3 expression in neural stem cells (NSCs), differentiated neurons, and choroid plexus of the mouse embryonic brain. Conclusion These data provide the first evidence of a recessive human phenotype associated with mutations in ATP1A3, and implicate impaired Na+/K+ ATPase function in the pathogenesis of CH.
Collapse
Affiliation(s)
- August A Allocco
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Sheng Chih Jin
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, United States.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, United States
| | - Phan Q Duy
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Charuta G Furey
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Xue Zeng
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, United States.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, United States
| | - Weilai Dong
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, United States
| | - Carol Nelson-Williams
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, United States
| | - Jason K Karimy
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Tyrone DeSpenza
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Le T Hao
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Benjamin Reeves
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Shozeb Haider
- Department of Computational Chemistry, University College London School of Pharmacy, London, United Kingdom
| | - Murat Gunel
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States.,Department of Genetics, School of Medicine, Yale University, New Haven, CT, United States
| | - Richard P Lifton
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, United States.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, United States
| | - Kristopher T Kahle
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States.,Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, United States.,NIH-Yale Centers for Mendelian Genomics, School of Medicine, Yale University, New Haven, CT, United States.,Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
29
|
Factors in the disease severity of ATP1A3 mutations: Impairment, misfolding, and allele competition. Neurobiol Dis 2019; 132:104577. [PMID: 31425744 DOI: 10.1016/j.nbd.2019.104577] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/22/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022] Open
Abstract
Dominant mutations of ATP1A3, a neuronal Na,K-ATPase α subunit isoform, cause neurological disorders with an exceptionally wide range of severity. Several new mutations and their phenotypes are reported here (p.Asp366His, p.Asp742Tyr, p.Asp743His, p.Leu924Pro, and a VUS, p.Arg463Cys). Mutations associated with mild or severe phenotypes [rapid-onset dystonia-parkinsonism (RDP), alternating hemiplegia of childhood (AHC), or early infantile epileptic encephalopathy (EIEE)] were expressed in HEK-293 cells. Paradoxically, the severity of human symptoms did not correlate with whether there was enough residual activity to support cell survival. We hypothesized that distinct cellular consequences may result not only from pump inactivation but also from protein misfolding. Biosynthesis was investigated in four tetracycline-inducible isogenic cell lines representing different human phenotypes. Two cell biological complications were found. First, there was impaired trafficking of αβ complex to Golgi apparatus and plasma membrane, as well as changes in cell morphology, for two mutations that produced microcephaly or regions of brain atrophy in patients. Second, there was competition between exogenous mutant ATP1A3 (α3) and endogenous ATP1A1 (α1) so that their sum was constant. This predicts that in patients, the ratio of normal to mutant ATP1A3 proteins will vary when misfolding occurs. At the two extremes, the results suggest that a heterozygous mutation that only impairs Na,K-ATPase activity will produce relatively mild disease, while one that activates the unfolded protein response could produce severe disease and may result in death of neurons independently of ion pump inactivation.
Collapse
|
30
|
|
31
|
Sweadner KJ, Arystarkhova E, Penniston JT, Swoboda KJ, Brashear A, Ozelius LJ. Genotype-structure-phenotype relationships diverge in paralogs ATP1A1, ATP1A2, and ATP1A3. NEUROLOGY-GENETICS 2019; 5:e303. [PMID: 30842972 PMCID: PMC6384024 DOI: 10.1212/nxg.0000000000000303] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/08/2018] [Indexed: 11/15/2022]
Abstract
Objective We tested the assumption that closely related genes should have similar pathogenic variants by analyzing >200 pathogenic variants in a gene family with high neurologic impact and high sequence identity, the Na,K-ATPases ATP1A1, ATP1A2, and ATP1A3. Methods Data sets of disease-associated variants were compared. Their equivalent positions in protein crystal structures were used for insights into pathogenicity and correlated with the phenotype and conservation of homology. Results Relatively few mutations affected the corresponding amino acids in 2 genes. In the membrane domain of ATP1A3 (primarily expressed in neurons), variants producing milder neurologic phenotypes had different structural positions than variants producing severe phenotypes. In ATP1A2 (primarily expressed in astrocytes), membrane domain variants characteristic of severe phenotypes in ATP1A3 were absent from patient data. The known variants in ATP1A1 fell into 2 distinct groups. Sequence conservation was an imperfect indicator: it varied among structural domains, and some variants with demonstrated pathogenicity were in low conservation sites. Conclusions Pathogenic variants varied between genes despite high sequence identity, and there is a genotype-structure-phenotype relationship in ATP1A3 that correlates with neurologic outcomes. The absence of "severe" pathogenic variants in ATP1A2 patients predicts that they will manifest either in a different tissue or by death in utero and that new ATP1A1 variants will produce additional phenotypes. It is important that some variants in poorly conserved amino acids are nonetheless pathogenic and could be incorrectly predicted to be benign.
Collapse
Affiliation(s)
- Kathleen J Sweadner
- Department of Neurosurgery (K.J. Sweadner, E.A., J.T.P.), Center for Human Genetics Research (K.J. Swoboda), and Department of Neurology, (K.J. Swoboda, L.J.O.) Massachusetts General Hospital, Boston; and the Department of Neurology (A.B.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Elena Arystarkhova
- Department of Neurosurgery (K.J. Sweadner, E.A., J.T.P.), Center for Human Genetics Research (K.J. Swoboda), and Department of Neurology, (K.J. Swoboda, L.J.O.) Massachusetts General Hospital, Boston; and the Department of Neurology (A.B.), Wake Forest School of Medicine, Winston-Salem, NC
| | - John T Penniston
- Department of Neurosurgery (K.J. Sweadner, E.A., J.T.P.), Center for Human Genetics Research (K.J. Swoboda), and Department of Neurology, (K.J. Swoboda, L.J.O.) Massachusetts General Hospital, Boston; and the Department of Neurology (A.B.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Kathryn J Swoboda
- Department of Neurosurgery (K.J. Sweadner, E.A., J.T.P.), Center for Human Genetics Research (K.J. Swoboda), and Department of Neurology, (K.J. Swoboda, L.J.O.) Massachusetts General Hospital, Boston; and the Department of Neurology (A.B.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Allison Brashear
- Department of Neurosurgery (K.J. Sweadner, E.A., J.T.P.), Center for Human Genetics Research (K.J. Swoboda), and Department of Neurology, (K.J. Swoboda, L.J.O.) Massachusetts General Hospital, Boston; and the Department of Neurology (A.B.), Wake Forest School of Medicine, Winston-Salem, NC
| | - Laurie J Ozelius
- Department of Neurosurgery (K.J. Sweadner, E.A., J.T.P.), Center for Human Genetics Research (K.J. Swoboda), and Department of Neurology, (K.J. Swoboda, L.J.O.) Massachusetts General Hospital, Boston; and the Department of Neurology (A.B.), Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
32
|
Shrivastava AN, Triller A, Melki R. Cell biology and dynamics of Neuronal Na +/K +-ATPase in health and diseases. Neuropharmacology 2018; 169:107461. [PMID: 30550795 DOI: 10.1016/j.neuropharm.2018.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/17/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022]
Abstract
Neuronal Na+/K+-ATPase is responsible for the maintenance of ionic gradient across plasma membrane. In doing so, in a healthy brain, Na+/K+-ATPase activity accounts for nearly half of total brain energy consumption. The α3-subunit containing Na+/K+-ATPase expression is restricted to neurons. Heterozygous mutations within α3-subunit leads to Rapid-onset Dystonia Parkinsonism, Alternating Hemiplegia of Childhood and other neurological and neuropsychiatric disorders. Additionally, proteins such as α-synuclein, amyloid-β, tau and SOD1 whose aggregation is associated to neurodegenerative diseases directly bind and impair α3-Na+/K+-ATPase activity. The review will provide a summary of neuronal α3-Na+/K+-ATPase functional properties, expression pattern, protein-protein interactions at the plasma membrane, biophysical properties (distribution and lateral diffusion). Lastly, the role of α3-Na+/K+-ATPase in neurological and neurodegenerative disorders will be discussed. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Amulya Nidhi Shrivastava
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.
| | - Antoine Triller
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, INSERM, CNRS, PSL, Research University, 46 Rue d'Ulm, 75005 Paris, France
| | - Ronald Melki
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| |
Collapse
|
33
|
Roenn CP, Li M, Schack VR, Forster IC, Holm R, Toustrup-Jensen MS, Andersen JP, Petrou S, Vilsen B. Functional consequences of the CAPOS mutation E818K of Na +,K +-ATPase. J Biol Chem 2018; 294:269-280. [PMID: 30409907 DOI: 10.1074/jbc.ra118.004591] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/04/2018] [Indexed: 11/06/2022] Open
Abstract
The cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS) syndrome is caused by the single mutation E818K of the α3-isoform of Na+,K+-ATPase. Here, using biochemical and electrophysiological approaches, we examined the functional characteristics of E818K, as well as of E818Q and E818A mutants. We found that these amino acid substitutions reduce the apparent Na+ affinity at the cytoplasmic-facing sites of the pump protein and that this effect is more pronounced for the lysine and glutamine substitutions (3-4-fold) than for the alanine substitution. The electrophysiological measurements indicated a more conspicuous, ∼30-fold reduction of apparent Na+ affinity for the extracellular-facing sites in the CAPOS mutant, which was related to an accelerated transition between the phosphoenzyme intermediates E1P and E2P. The apparent affinity for K+ activation of the ATPase activity was unaffected by these substitutions, suggesting that primarily the Na+-specific site III is affected. Furthermore, the apparent affinities for ATP and vanadate were WT-like in E818K, indicating a normal E1-E2 equilibrium of the dephosphoenzyme. Proton-leak currents were not increased in E818K. However, the CAPOS mutation caused a weaker voltage dependence of the pumping rate and a stronger inhibition by cytoplasmic K+ than the WT enzyme, which together with the reduced Na+ affinity of the cytoplasmic-facing sites precluded proper pump activation under physiological conditions. The functional deficiencies could be traced to the participation of Glu-818 in an intricate hydrogen-bonding/salt-bridge network, connecting it to key residues involved in Na+ interaction at site III.
Collapse
Affiliation(s)
- Christian P Roenn
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Melody Li
- Florey Institute of Neuroscience and Mental Health, Parkville, 3052 Victoria, Australia
| | - Vivien R Schack
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ian C Forster
- Florey Institute of Neuroscience and Mental Health, Parkville, 3052 Victoria, Australia
| | - Rikke Holm
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Jens P Andersen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, Parkville, 3052 Victoria, Australia
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
34
|
Torres A, Brownstein CA, Tembulkar SK, Graber K, Genetti C, Kleiman RJ, Sweadner KJ, Mavros C, Liu KX, Smedemark-Margulies N, Maski K, Yang E, Agrawal PB, Shi J, Beggs AH, D'Angelo E, Lincoln SH, Carroll D, Dedeoglu F, Gahl WA, Biggs CM, Swoboda KJ, Berry GT, Gonzalez-Heydrich J. De novo ATP1A3 and compound heterozygous NLRP3 mutations in a child with autism spectrum disorder, episodic fatigue and somnolence, and muckle-wells syndrome. Mol Genet Metab Rep 2018; 16:23-29. [PMID: 29922587 PMCID: PMC6005789 DOI: 10.1016/j.ymgmr.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 11/28/2022] Open
Abstract
Complex phenotypes may represent novel syndromes that are the composite interaction of several genetic and environmental factors. We describe an 9-year old male with high functioning autism spectrum disorder and Muckle-Wells syndrome who at age 5 years of age manifested perseverations that interfered with his functioning at home and at school. After age 6, he developed intermittent episodes of fatigue and somnolence lasting from hours to weeks that evolved over the course of months to more chronic hypersomnia. Whole exome sequencing showed three mutations in genes potentially involved in his clinical phenotype. The patient has a predicted pathogenic de novo heterozygous p.Ala681Thr mutation in the ATP1A3 gene (chr19:42480621C>T, GRCh37/hg19). Mutations in this gene are known to cause Alternating Hemiplegia of Childhood, Rapid Onset Dystonia Parkinsonism, and CAPOS syndrome, sometimes accompanied by autistic features. The patient also has compound heterozygosity for p.Arg490Lys/p.Val200Met mutations in the NLRP3 gene (chr1:247588214G>A and chr1:247587343G>A, respectively). NLRP3 mutations are associated in an autosomal dominant manner with clinically overlapping auto-inflammatory conditions including Muckle-Wells syndrome. The p.Arg490Lys is a known pathogenic mutation inherited from the patient's father. The p.Val200Met mutation, inherited from his mother, is a variant of unknown significance (VUS). Whether the de novoATP1A3mutation is responsible for or plays a role in the patient's episodes of fatigue and somnolence remains to be determined. The unprecedented combination of two NLRP3 mutations may be responsible for other aspects of his complex phenotype.
Collapse
Affiliation(s)
- Alcy Torres
- Department of Neurology, Boston University Medical Center, Boston, MA 02118, USA
| | - Catherine A. Brownstein
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Corresponding author at: Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Sahil K. Tembulkar
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
- Developmental Neuropsychiatry Clinic, Department of Psychiatry, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kelsey Graber
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
- Developmental Neuropsychiatry Clinic, Department of Psychiatry, Boston Children's Hospital, Boston, MA 02115, USA
| | - Casie Genetti
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Robin J. Kleiman
- Harvard Medical School, Boston, MA 02115, USA
- Translational Neuroscience Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kathleen J. Sweadner
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Chrystal Mavros
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | | | | | - Kiran Maski
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Edward Yang
- Harvard Medical School, Boston, MA 02115, USA
- Department of Radiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Pankaj B. Agrawal
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jiahai Shi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Alan H. Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Eugene D'Angelo
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Developmental Neuropsychiatry Clinic, Department of Psychiatry, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sarah Hope Lincoln
- Harvard Medical School, Boston, MA 02115, USA
- Developmental Neuropsychiatry Clinic, Department of Psychiatry, Boston Children's Hospital, Boston, MA 02115, USA
| | - Devon Carroll
- Developmental Neuropsychiatry Clinic, Department of Psychiatry, Boston Children's Hospital, Boston, MA 02115, USA
| | - Fatma Dedeoglu
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA
| | - William A. Gahl
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catherine M. Biggs
- Harvard Medical School, Boston, MA 02115, USA
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Kathryn J. Swoboda
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gerard T. Berry
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Joseph Gonzalez-Heydrich
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Corresponding author at: Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Hainque E, Caillet S, Leroy S, Flamand-Roze C, Adanyeguh I, Charbonnier-Beaupel F, Retail M, Le Toullec B, Atencio M, Rivaud-Péchoux S, Brochard V, Habarou F, Ottolenghi C, Cormier F, Méneret A, Ruiz M, Doulazmi M, Roubergue A, Corvol JC, Vidailhet M, Mochel F, Roze E. A randomized, controlled, double-blind, crossover trial of triheptanoin in alternating hemiplegia of childhood. Orphanet J Rare Dis 2017; 12:160. [PMID: 28969699 PMCID: PMC5625655 DOI: 10.1186/s13023-017-0713-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/25/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Based on the hypothesis of a brain energy deficit, we investigated the safety and efficacy of triheptanoin on paroxysmal episodes in patients with alternating hemiplegia of childhood due to ATP1A3 mutations. METHODS We conducted a randomized, double-blind, placebo-controlled crossover study of triheptanoin, at a target dose corresponding to 30% of daily calorie intake, in ten patients with alternating hemiplegia of childhood due to ATP1A3 mutations. Each treatment period consisted of a 12-week fixed-dose phase, separated by a 4-week washout period. The primary outcome was the total number of paroxysmal events. Secondary outcomes included the number of paroxysmal motor-epileptic events; a composite score taking into account the number, severity and duration of paroxysmal events; interictal neurological manifestations; the clinical global impression-improvement scale (CGI-I); and safety parameters. The paired non-parametric Wilcoxon test was used to analyze treatment effects. RESULTS In an intention-to-treat analysis, triheptanoin failed to reduce the total number of paroxysmal events (p = 0.646), including motor-epileptic events (p = 0.585), or the composite score (p = 0.059). CGI-I score did not differ between triheptanoin and placebo periods. Triheptanoin was well tolerated. CONCLUSIONS Triheptanoin does not prevent paroxysmal events in Alternating hemiplegia of childhood. We show the feasibility of a randomized placebo-controlled trial in this setting. TRIAL REGISTRATION The study has been registered with clinicaltrials.gov ( NCT002408354 ) the 03/24/2015.
Collapse
Affiliation(s)
- Elodie Hainque
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France. .,Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, 75013, Paris, France. .,INSERM, Centre d'Investigation Clinique Neurosciences, CIC-1422, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.
| | - Samantha Caillet
- Service de Diététique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | | | - Constance Flamand-Roze
- Centre Hospitalier Sud-Francilien, Université Paris Sud, Corbeil-Essonnes, Service de Neurologie et Unité Neurovasculaire, Corbeil-Essonnes, France.,IFPPC, centre CAMKeys, Paris, France
| | - Isaac Adanyeguh
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France
| | | | - Maryvonne Retail
- INSERM, Centre d'Investigation Clinique Neurosciences, CIC-1422, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Benjamin Le Toullec
- INSERM, Centre d'Investigation Clinique Neurosciences, CIC-1422, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Mariana Atencio
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France
| | - Sophie Rivaud-Péchoux
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France
| | - Vanessa Brochard
- INSERM, Centre d'Investigation Clinique Neurosciences, CIC-1422, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Florence Habarou
- Service de Biochimie Métabolomique et protéomique, Hôpital Necker et Université Paris Descartes, AP-HP, Paris, France
| | - Chris Ottolenghi
- Service de Biochimie Métabolomique et protéomique, Hôpital Necker et Université Paris Descartes, AP-HP, Paris, France
| | - Florence Cormier
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France.,Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, 75013, Paris, France.,INSERM, Centre d'Investigation Clinique Neurosciences, CIC-1422, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Aurélie Méneret
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France.,Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, 75013, Paris, France
| | - Marta Ruiz
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France.,Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, 75013, Paris, France
| | - Mohamed Doulazmi
- Sorbonne Universités, UPMC Paris 06, CNRS UMR8256, Institut de Biologie Paris Seine, Adaptation Biologique et vieillissement, Paris, France
| | - Anne Roubergue
- Département de Neurologie, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Jean-Christophe Corvol
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France.,Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, 75013, Paris, France.,INSERM, Centre d'Investigation Clinique Neurosciences, CIC-1422, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Marie Vidailhet
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France.,Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, 75013, Paris, France.,INSERM, Centre d'Investigation Clinique Neurosciences, CIC-1422, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Fanny Mochel
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France.,Département de Génétique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Groupe de Recherche Clinique Neurométabolique, Université Pierre et Marie Curie, Paris, France
| | - Emmanuel Roze
- Université de la Sorbonne, UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moëlle, F-75013, Paris, France.,Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, 75013, Paris, France.,INSERM, Centre d'Investigation Clinique Neurosciences, CIC-1422, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
36
|
Zhang H, Wang Y, Xuan X, Wang G, Guo H, Fan J. A dynamic invertible intramolecular charge-transfer fluorescence probe: real-time monitoring of mitochondrial ATPase activity. Chem Commun (Camb) 2017; 53:5535-5538. [PMID: 28466886 DOI: 10.1039/c7cc02450a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A dynamic invertible intramolecular charge-transfer (ICT) process could provide abundant response signals for real-time monitoring in living organisms. Herein, based on dynamic invertible ICT, we have reported a cancer cell-targeted fluorescence probe (OPM) for mitochondrial ATPase activity. Due to its abundant response signals, OPM could real-time monitor mitochondrial ATPase activity during the cancer apoptosis process, successfully.
Collapse
Affiliation(s)
- Hua Zhang
- Henan Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Key Laboratory of Green Chemical Media and Reactions, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Institution, Henan Normal University, 453007 Xinxiang, China.
| | | | | | | | | | | |
Collapse
|