1
|
Minshull T, Khawaja H, Martin S, Hmeljak J. Rewarding excellence: the 2024 FEBS Journal Richard Perham prize. FEBS J 2024. [PMID: 39642093 DOI: 10.1111/febs.17344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024]
Abstract
This editorial highlights and celebrates the winner of the 2024 Richard Perham prize. This was selected from shortlisted original articles that were published in The FEBS Journal in 2023 and received prize nominations from the Editorial Board. The winning paper, by Matteo Brindisi, Luca Frattaruolo, Federica Sotgia, Michael P Lisanti, Anna Rita Cappello and colleagues, shows how high cholesterol levels promote breast cancer aggressiveness.
Collapse
|
2
|
Lavudi K, Nuguri SM, Pandey P, Kokkanti RR, Wang QE. ALDH and cancer stem cells: Pathways, challenges, and future directions in targeted therapy. Life Sci 2024; 356:123033. [PMID: 39222837 DOI: 10.1016/j.lfs.2024.123033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Human ALDH comprise 19 subfamilies in which ALDH1A1, ALDH1A3, ALDH3A1, ALDH5A1, ALDH7A1, and ALDH18A1 are implicated in CSC. Studies have shown that ALDH can also be involved in drug resistance and standard chemotherapy regimens are ineffective in treating patients at the stage of disease recurrence. Existing chemotherapeutic drugs eliminate the bulk of tumors but are usually not effective against CSC which express ALDH+ population. Henceforth, targeting ALDH is convincing to treat the patient's post-relapse. Combination therapies that interlink signaling mechanisms seem promising to increase the overall disease-free survival rate. Therefore, targeting ALDH through ALDH inhibitors along with immunotherapies may create a novel platform for translational research. This review aims to fill in the gap between ALDH1 family members in relation to its cell signaling mechanisms, highlighting their potential as molecular targets to sensitize recurrent tumors and bring forward the future development concerning the current progress and draw backs. This review summarizes the role of cancer stem cells and their upregulation by maintaining the tumor microenvironment in which ALDH is specifically highlighted. It discusses the regulation of ALDH family proteins and the crosstalk between ALDH and CSC in relation to cancer metabolism. Furthermore, it establishes the correlation between ALDH involved signaling mechanisms and their specific targeted inhibitors, as well as their functional modularity, bioavailability, and mechanistic role in various cancers.
Collapse
Affiliation(s)
- Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Shreya Madhav Nuguri
- Department of Food science and Technology, The Ohio State University, Columbus, OH, United States
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P., India; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | | | - Qi-En Wang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
3
|
Frattaruolo L, Lauria G, Aiello F, Carullo G, Curcio R, Fiorillo M, Campiani G, Dolce V, Cappello AR. Exploiting Glycyrrhiza glabra L. (Licorice) Flavanones: Licoflavanone's Impact on Breast Cancer Cell Bioenergetics. Int J Mol Sci 2024; 25:7907. [PMID: 39063149 PMCID: PMC11276871 DOI: 10.3390/ijms25147907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Research on the energy metabolism of cancer cells is becoming a central element in oncology, and in recent decades, it has allowed us to better understand the mechanisms underlying the onset and chemoresistance of oncological pathologies. Mitochondrial bioenergetic processes, in particular, have proven to be fundamental for the survival of tumor stem cells (CSC), a subpopulation of tumor cells responsible for tumor recurrence, the onset of metastasis, and the failure of conventional anticancer therapies. Over the years, numerous natural products, in particular flavonoids, widely distributed in the plant kingdom, have been shown to interfere with tumor bioenergetics, demonstrating promising antitumor effects. Herein, the anticancer potential of Licoflavanone, a flavanone isolated from the leaves of G. glabra, was explored for the first time in breast cancer cells. The results obtained highlighted a marked antitumor activity that proved to be greater than that mediated by Glabranin or Pinocembrin, flavanones isolated from the same plant matrix. Furthermore, the investigation of Licoflavanone's effects on breast cancer energy metabolism highlighted the inhibitory activity of this natural product on tumor bioenergetics, a mechanism that could underlie its ability to reduce tumor proliferation, invasiveness, and stemness.
Collapse
Affiliation(s)
- Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, CS, Italy
| | - Graziantonio Lauria
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, CS, Italy
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, CS, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, SI, Italy
| | - Rosita Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, CS, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, CS, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, SI, Italy
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, CS, Italy
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, CS, Italy
| |
Collapse
|
4
|
Adorisio S, Muscari I, Fierabracci A, Thi Thuy T, Marchetti MC, Ayroldi E, Delfino DV. Biological effects of bergamot and its potential therapeutic use as an anti-inflammatory, antioxidant, and anticancer agent. PHARMACEUTICAL BIOLOGY 2023; 61:639-646. [PMID: 37067190 PMCID: PMC10114982 DOI: 10.1080/13880209.2023.2197010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/22/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Context: Bergamot, mainly produced in the Ionian coastal areas of Southern Italy (Calabria), has been used since 1700 for its balsamic and medicinal properties. Phytochemical profiling has confirmed that bergamot juices are rich in flavonoids, including flavone and flavanone glycosides which are responsible for its beneficial effects.Objective: Recently, it was shown that the combination of natural compounds with conventional treatments improves the efficacy of anticancer therapies. Natural compounds with anticancer properties attack cancerous cells without being toxic to healthy cells. Bergamot can induce cytotoxic and apoptotic effects and prevent cell proliferation in various cancer cells.Methods: In this review, the antiproliferative, pro-apoptotic, anti-inflammatory, and antioxidant effects of bergamot are described. Information was compiled from databases such as PubMed, Web of Science, and Google Scholar using the key words 'bergamot' accompanied by 'inflammation' and, 'cancer' for data published from 2015-2021.Results: In vitro and in vivo studies provided evidence that different forms of bergamot (extract, juice, essential oil, and polyphenolic fraction) can affect several mechanisms that lead to anti-proliferative and pro-apoptotic effects that decrease cell growth, as well as anti-inflammatory and antioxidant effects.Conclusions: Considering the effects of bergamot and its new formulations, we affirm the importance of its rational use in humans and illustrate how bergamot can be utilized in clinical applications. Numerous studies evaluated the effect of new bergamot formulations that can affect the absorption and, therefore, the final effects by altering the therapeutic profile of bergamot and enhancing the scientific knowledge of bergamot.
Collapse
Affiliation(s)
| | - Isabella Muscari
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | | | - Trinh Thi Thuy
- Institute of Chemistry, Vietnam Academy of Science and Technology Cau Giay, Graduate University of Science and Technology, Ha Noi, Vietnam
| | - Maria Cristina Marchetti
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Emira Ayroldi
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | | |
Collapse
|
5
|
Shen S, Wang S, Yang C, Wang C, Zhou Q, Zhou S, Zhang R, Li Y, Wang Z, Dai L, Peng W, Hao Y, Guo H, Cao G, Liu X, Yao F, Xu Q, Fernie AR, Luo J. Elucidation of the melitidin biosynthesis pathway in pummelo. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2505-2518. [PMID: 37675654 DOI: 10.1111/jipb.13564] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
Specialized plant metabolism is a rich resource of compounds for drug discovery. The acylated flavonoid glycoside melitidin is being developed as an anti-cholesterol statin drug candidate, but its biosynthetic route in plants has not yet been fully characterized. Here, we describe the gene discovery and functional characterization of a new flavonoid gene cluster (UDP-glucuronosyltransferases (CgUGTs), 1,2 rhamnosyltransferase (Cg1,2RhaT), acyltransferases (CgATs)) that is responsible for melitidin biosynthesis in pummelo (Citrus grandis (L.) Osbeck). Population variation analysis indicated that the tailoring of acyltransferases, specific for bitter substrates, mainly determine the natural abundance of melitidin. Moreover, 3-hydroxy-3-methylglutaryl-CoA reductase enzyme inhibition assays showed that the product from this metabolic gene cluster, melitidin, may be an effective anti-cholesterol statin drug candidate. Co-expression of these clustered genes in Nicotiana benthamiana resulted in the formation of melitidin, demonstrating the potential for metabolic engineering of melitidin in a heterologous plant system. This study establishes a biosynthetic pathway for melitidin, which provides genetic resources for the breeding and genetic improvement of pummelo aimed at fortifying the content of biologically active metabolites.
Collapse
Affiliation(s)
- Shuangqian Shen
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Shouchuang Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Chenkun Yang
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Chao Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Qianqian Zhou
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shen Zhou
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Ran Zhang
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Yufei Li
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Zixuan Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Liupan Dai
- Hubei Hongshan Laboratory, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjv Peng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingchen Hao
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Hao Guo
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Guangping Cao
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Xianqing Liu
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Centre of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Jie Luo
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| |
Collapse
|
6
|
Brindisi M, Frattaruolo L, Fiorillo M, Dolce V, Sotgia F, Lisanti MP, Cappello AR. New insights into cholesterol-mediated ERRα activation in breast cancer progression and pro-tumoral microenvironment orchestration. FEBS J 2023; 290:1481-1501. [PMID: 36237175 DOI: 10.1111/febs.16651] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 09/08/2022] [Accepted: 10/12/2022] [Indexed: 01/31/2023]
Abstract
Breast cancer remains the greatest cause of cancer-related death in women worldwide. Its aggressiveness and progression derive from intricate processes that occur simultaneously both within the tumour itself and in the neighbouring cells that make up its microenvironment. The aim of the present work was firstly to study how elevated cholesterol levels increase tumour aggressiveness. Herein, we demonstrate that cholesterol, by activating ERRα pathway, promotes epithelium-mesenchymal transition (EMT) in breast cancer cells (MCF-7 and MDA-MB-231) as well as the release of pro-inflammatory factors able to orchestrate the tumour microenvironment. A further objective of this work was to study the close symbiosis between tumour cells and the microenvironment. Our results allow us to highlight, for the first time, that breast cancer cells exposed to high cholesterol levels promote (a) greater macrophages infiltration with induction of an M2 phenotype, (b) angiogenesis and endothelial branching, as well as (c) a cancer-associated fibroblasts (CAFs) phenotype. The effects observed could be due to direct activation of the ERRα pathway by high cholesterol levels, since the simultaneous inhibition of this pathway subverts such effects. Overall, these findings enable us to identify the cholesterol-ERRα synergy as an interesting target for breast cancer treatment.
Collapse
Affiliation(s)
- Matteo Brindisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- Cell Adhesion Unit, Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- Translational Medicine, School of Science, Engineering and the Environment (SEE), University of Salford, Greater Manchester, UK
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and the Environment (SEE), University of Salford, Greater Manchester, UK
| | - Michael P Lisanti
- Translational Medicine, School of Science, Engineering and the Environment (SEE), University of Salford, Greater Manchester, UK
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
7
|
Israël M, Berg E, Tenenbaum G. Cancer Metabolism: Fasting Reset, the Keto-Paradox and Drugs for Undoing. J Clin Med 2023; 12:jcm12041589. [PMID: 36836124 PMCID: PMC9960359 DOI: 10.3390/jcm12041589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
In tumor cells, ketolysis "via" succinyl-CoA: 3-oxoacid-CoAtransferase (SCOT) and acetyl-CoA acetyltransferase 1 (ACAT1) is a major source of mitochondrial acetyl-CoA. Active ACAT1 tetramers stabilize by tyrosine phosphorylation, which facilitates the SCOT reaction and ketolysis. Tyrosine phosphorylation of pyruvate kinase PK M2 has the opposite effect, stabilizing inactive dimers, while pyruvate dehydrogenase (PDH), which is already inhibited by phosphorylation, is acetylated by ACAT1 and is doubly locked. This closes the glycolytic supply of acetyl-CoA. In addition, since tumor cells must synthesize fatty acids to create new membranes, they automatically turn off the degradation of fatty acids into acetyl-CoA ("via" the malonyl-CoA brake for the fatty acid carnityl transporter). Thus, inhibiting SCOT the specific ketolytic enzyme and ACAT1 should hold back tumor progression. However, tumor cells are still able to take up external acetate and convert it into acetyl-CoA in their cytosol "via" an acetyl-CoA synthetase, which feeds the lipogenic pathway; additionally, inhibiting this enzyme would make it difficult for tumor cells to form new lipid membrane and survive.
Collapse
Affiliation(s)
- Maurice Israël
- Institut Alfred Fessard, CNRS, 2 Av. Terrasse, 91190 Gif-sur-Yvette, France
- Correspondence:
| | - Eric Berg
- Independent Researcher, 4501 Ford Ave., Alexandria, VA 22302, USA
| | - Guy Tenenbaum
- Independent Researcher, 5558 E Leitner Drive, Coral Springs, FL 33067, USA
| |
Collapse
|
8
|
Chen Q, Ruan D, Shi J, Du D, Bian C. The multifaceted roles of natural products in mitochondrial dysfunction. Front Pharmacol 2023; 14:1093038. [PMID: 36860298 PMCID: PMC9968749 DOI: 10.3389/fphar.2023.1093038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Mitochondria are the primary source of energy production in cells, supporting the metabolic demand of tissue. The dysfunctional mitochondria are implicated in various diseases ranging from neurodegeneration to cancer. Therefore, regulating dysfunctional mitochondria offers a new therapeutic opportunity for diseases with mitochondrial dysfunction. Natural products are pleiotropic and readily obtainable sources of therapeutic agents, which have broad prospects in new drug discovery. Recently, many mitochondria-targeting natural products have been extensively studied and have shown promising pharmacological activity in regulating mitochondrial dysfunction. Hence, we summarize recent advances in natural products in targeting mitochondria and regulating mitochondrial dysfunction in this review. We discuss natural products in terms of their mechanisms on mitochondrial dysfunction, including modulating mitochondrial quality control system and regulating mitochondrial functions. In addition, we describe the future perspective and challenges in the development of mitochondria-targeting natural products, emphasizing the potential value of natural products in mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Jiayan Shi
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Dongru Du
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | | |
Collapse
|
9
|
Frattaruolo L, Marra F, Lauria G, Siciliano C, Curcio R, Muto L, Brindisi M, Aiello D, Napoli A, Fiermonte G, Cappello AR, Fiorillo M, Ahmed A, Dolce V. A Picrocrocin-Enriched Fraction from a Saffron Extract Affects Lipid Homeostasis in HepG2 Cells through a Non-Statin-like Mode. Int J Mol Sci 2023; 24:3060. [PMID: 36834472 PMCID: PMC9965904 DOI: 10.3390/ijms24043060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Dyslipidemia is a lipid metabolism disorder associated with the loss of the physiological homeostasis that ensures safe levels of lipids in the organism. This metabolic disorder can trigger pathological conditions such as atherosclerosis and cardiovascular diseases. In this regard, statins currently represent the main pharmacological therapy, but their contraindications and side effects limit their use. This is stimulating the search for new therapeutic strategies. In this work, we investigated in HepG2 cells the hypolipidemic potential of a picrocrocin-enriched fraction, analyzed by high-resolution 1H NMR and obtained from a saffron extract, the stigmas of Crocus sativus L., a precious spice that has already displayed interesting biological properties. Spectrophotometric assays, as well as expression level of the main enzymes involved in lipid metabolism, have highlighted the interesting hypolipidemic effects of this natural compound; they seem to be exerted through a non-statin-like mechanism. Overall, this work provides new insights into the metabolic effects of picrocrocin, thus confirming the biological potential of saffron and paving the way for in vivo studies that could validate this spice or its phytocomplexes as useful adjuvants in balancing blood lipid homeostasis.
Collapse
Affiliation(s)
- Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Federica Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Graziantonio Lauria
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Rosita Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Luigina Muto
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Matteo Brindisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Donatella Aiello
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Anna Napoli
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Amer Ahmed
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
10
|
Bonuccelli G, Sotgia F, Lisanti MP. Identification of natural products and FDA-approved drugs for targeting cancer stem cell (CSC) propagation. Aging (Albany NY) 2022; 14:9466-9483. [PMID: 36455875 PMCID: PMC9792210 DOI: 10.18632/aging.204412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Here, we report the identification of key compounds that effectively inhibit the anchorage-independent growth and propagation of cancer stem cells (CSCs), as determined via screening using MCF7 cells, a human breast adenocarcinoma cell line. More specifically, we employed the mammosphere assay as an experimental format, which involves the generation of 3D spheroid cultures, using low-attachment plates. These positive hit compounds can be divided into 5 categories: 1) dietary supplements (quercetin and glucosamine); 2) FDA-approved drugs (carvedilol and ciprofloxacin); 3) natural products (aloe emodin, aloin, tannic acid, chlorophyllin copper salt, azelaic acid and adipic acid); 4) flavours (citral and limonene); and 5) vitamins (nicotinamide and nicotinic acid). In addition, for the compounds quercetin, glucosamine and carvedilol, we further assessed their metabolic action, using the Seahorse to conduct metabolic flux analysis. Our results indicate that these treatments can affect glycolytic flux and suppress oxidative mitochondrial metabolism (OXPHOS). Therefore, quercetin, glucosamine and carvedilol can reprogram the metabolic phenotype of breast cancer cells. Despite having diverse chemical structures, these compounds all interfere with mitochondrial metabolism. As these compounds halt CSCs propagation, ultimately, they may have therapeutic potential.
Collapse
Affiliation(s)
- Gloria Bonuccelli
- Translational Medicine, School of Science, Engineering and Environment, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| | - Michael P. Lisanti
- Translational Medicine, School of Science, Engineering and Environment, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
11
|
De Francesco EM, Cirillo F, Vella V, Belfiore A, Maggiolini M, Lappano R. Triple-negative breast cancer drug resistance, durable efficacy, and cure: How advanced biological insights and emerging drug modalities could transform progress. Expert Opin Ther Targets 2022; 26:513-535. [PMID: 35761781 DOI: 10.1080/14728222.2022.2094762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by the lack of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2) and often associated with poor survival outcomes. The backbone of current treatments for TNBC relies on chemotherapy; however, resistance to cytotoxic agents is a commonly encountered hurdle to overcome. AREAS COVERED : Current understanding on the mechanisms involved in TNBC chemoresistance is evaluated and novel potential actionable targets and recently explored modalities for carrying and delivering chemotherapeutics are highlighted. EXPERT OPINION : A comprehensive identification of both genomic and functional TNBC signatures is required for a more definite categorization of the patients in order to prevent insensitivity to chemotherapy and therefore realize the full potential of precision-medicine approaches. In this scenario, cell-line-derived xenografts (CDX), patient-derived xenografts (PDX), patient-derived orthotopic xenografts (PDOX) and patient-derived organoids (PDO) are indispensable experimental models for evaluating the efficacy of drug candidates and predicting the therapeutic response. The combination of increasingly sensitive "omics" technologies, computational algorithms and innovative drug modalities may accelerate the successful translation of novel candidate TNBC targets from basic research to clinical settings, thus contributing to reach optimal clinical output, with lower side effects and reduced resistance.
Collapse
Affiliation(s)
- Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
12
|
Ning J, Wang K, Yang W, Liu M, Tian J, Wei M, Zheng G. Qualitative and quantitative analyses of chemical components of Citri Sarcodactylis Fructus from different origins based on UPLC-Q-Exactive Orbitrap-MS and GC-MS. Food Sci Nutr 2022; 10:2057-2070. [PMID: 35702295 PMCID: PMC9179162 DOI: 10.1002/fsn3.2822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/11/2022] Open
Abstract
Ultra-high-performance liquid chromatography-Q-Exactive Orbitrap-mass spectrometry (MS) and gas chromatography (GC)-MS were performed for the qualitative and quantitative analyses of Citri Sarcodactylis Fructus (CSF) from different origins. The contents of eight major CSF components, namely 5,7-dimethoxycoumarin, scopoletin, hesperidin, tangeretin, nobiletin, limonin, nomilin, and stachydrine, were quantitatively analyzed. Clustering analysis and principal component analysis (PCA) were, respectively, performed to classify and compare the 10 CSF batches. One hundred and two volatile components were identified accordingly by comparing retention times, reference standards, parent peaks, fragment peaks, and findings from relevant literature. Moreover, high content of 5,7-dimethoxycoumarin and stachydrine was detected in all the CSFs, especially in CSF-Zhe. Therefore, the high content component coumarin "5,7-dimethoxycoumarin" was suggested to be quality analysis component rather than hesperidin. Additionally, characteristic compounds were found to distinguish different CSFs. This work was a comprehensive study about the components of various CSF. It distinguished the basic differences in the compositions of CSF from different origins. Eventually, it provided experimental and systematic bases for the quality control analysis of CSF, which has potential application in the further research.
Collapse
Affiliation(s)
- Jinrong Ning
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Kanghui Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Wanling Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Mengshi Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Jingyuan Tian
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Minyan Wei
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Guodong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
13
|
Laganà V, Giuffrè AM, De Bruno A, Poiana M. Formulation of Biscuits Fortified with a Flour Obtained from Bergamot By-Products (Citrus bergamia, Risso). Foods 2022; 11:foods11081137. [PMID: 35454727 PMCID: PMC9027505 DOI: 10.3390/foods11081137] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Bergamot belongs to the Rutaceae family and is a typical fruit grown principally in the province of Reggio Calabria (South Italy). Nowadays, its industrial use is mostly related to the extraction of the essential oil contained in the flavedo but also to a lesser extent the extraction of the juice (from the pulp), which is rich in antioxidants. However, the pressed pulp (known as Pastazzo) is either used for animal feed or is discarded. The aim of this research was to study the effect of bergamot Pastazzo flour in shortbread biscuits. Pastazzo flour partially replaced the 00 wheat flour in different percentages (2.5%, 5%, 10% and 15%). Simultaneously, a sample without the addition of pastazzo flour (control) was analyzed, thus obtaining five biscuit samples. Cooking was done in a ventilated oven at 180 °C. The baking time was different for the control and the enriched samples depending on when the desired color was reached. The control took 12 min, while the enriched samples reached the desired color in 8 min. All samples were subjected to physicochemical and antioxidant characterization, as well as total polyphenols and flavonoids. The use of pastazzo flour resulted in a slight increase in water activity and humidity values. pH values decreased for all the enriched samples compared to the control, but this was more relevant for the samples enriched with 10 and 15% of flour from by-products. Hardness varied from 1823 g (Control) to 2022 and 2818 g (respectively, for 2.5% and 15% bergamot Pastazzo flour in the recipe). Total phenol content varied from 0.14 mg GAE g−1 (Control) to 0.60 and 3.64 mg GAE g−1 (respectively, for 2.5% and 15% bergamot Pastazzo flour in the recipe). The obtained results demonstrated that the use of pastazzo flour had a positive influence on the antioxidant content, with values which increased as more pastazzo flour was added.
Collapse
|
14
|
Fontana F, Limonta P. The multifaceted roles of mitochondria at the crossroads of cell life and death in cancer. Free Radic Biol Med 2021; 176:203-221. [PMID: 34597798 DOI: 10.1016/j.freeradbiomed.2021.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022]
Abstract
Mitochondria are the cytoplasmic organelles mostly known as the "electric engine" of the cells; however, they also play pivotal roles in different biological processes, such as cell growth/apoptosis, Ca2+ and redox homeostasis, and cell stemness. In cancer cells, mitochondria undergo peculiar functional and structural dynamics involved in the survival/death fate of the cell. Cancer cells use glycolysis to support macromolecular biosynthesis and energy production ("Warburg effect"); however, mitochondrial OXPHOS has been shown to be still active during carcinogenesis and even exacerbated in drug-resistant and stem cancer cells. This metabolic rewiring is associated with mutations in genes encoding mitochondrial metabolic enzymes ("oncometabolites"), alterations of ROS production and redox biology, and a fine-tuned balance between anti-/proapoptotic proteins. In cancer cells, mitochondria also experience dynamic alterations from the structural point of view undergoing coordinated cycles of biogenesis, fusion/fission and mitophagy, and physically communicating with the endoplasmic reticulum (ER), through the Ca2+ flux, at the MAM (mitochondria-associated membranes) levels. This review addresses the peculiar mitochondrial metabolic and structural dynamics occurring in cancer cells and their role in coordinating the balance between cell survival and death. The role of mitochondrial dynamics as effective biomarkers of tumor progression and promising targets for anticancer strategies is also discussed.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milano, Italy.
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milano, Italy.
| |
Collapse
|
15
|
Fiorillo M, Ózsvári B, Sotgia F, Lisanti MP. High ATP Production Fuels Cancer Drug Resistance and Metastasis: Implications for Mitochondrial ATP Depletion Therapy. Front Oncol 2021; 11:740720. [PMID: 34722292 PMCID: PMC8554334 DOI: 10.3389/fonc.2021.740720] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Recently, we presented evidence that high mitochondrial ATP production is a new therapeutic target for cancer treatment. Using ATP as a biomarker, we isolated the “metabolically fittest” cancer cells from the total cell population. Importantly, ATP-high cancer cells were phenotypically the most aggressive, with enhanced stem-like properties, showing multi-drug resistance and an increased capacity for cell migration, invasion and spontaneous metastasis. In support of these observations, ATP-high cells demonstrated the up-regulation of both mitochondrial proteins and other protein biomarkers, specifically associated with stemness and metastasis. Therefore, we propose that the “energetically fittest” cancer cells would be better able to resist the selection pressure provided by i) a hostile micro-environment and/or ii) conventional chemotherapy, allowing them to be naturally-selected for survival, based on their high ATP content, ultimately driving tumor recurrence and distant metastasis. In accordance with this energetic hypothesis, ATP-high MDA-MB-231 breast cancer cells showed a dramatic increase in their ability to metastasize in a pre-clinical model in vivo. Conversely, metastasis was largely prevented by treatment with an FDA-approved drug (Bedaquiline), which binds to and inhibits the mitochondrial ATP-synthase, leading to ATP depletion. Clinically, these new therapeutic approaches could have important implications for preventing treatment failure and avoiding cancer cell dormancy, by employing ATP-depletion therapy, to target even the fittest cancer cells.
Collapse
Affiliation(s)
- Marco Fiorillo
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom.,The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Béla Ózsvári
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| | - Michael P Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
16
|
Li CH, Hsu TI, Chang YC, Chan MH, Lu PJ, Hsiao M. Stationed or Relocating: The Seesawing EMT/MET Determinants from Embryonic Development to Cancer Metastasis. Biomedicines 2021; 9:1265. [PMID: 34572451 PMCID: PMC8472300 DOI: 10.3390/biomedicines9091265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial and mesenchymal transition mechanisms continue to occur during the cell cycle and throughout human development from the embryo stage to death. In embryo development, epithelial-mesenchymal transition (EMT) can be divided into three essential steps. First, endoderm, mesoderm, and neural crest cells form, then the cells are subdivided, and finally, cardiac valve formation occurs. After the embryonic period, the human body will be subjected to ongoing mechanical stress or injury. The formation of a wound requires EMT to recruit fibroblasts to generate granulation tissues, repair the wound and re-create an intact skin barrier. However, once cells transform into a malignant tumor, the tumor cells acquire the characteristic of immortality. Local cell growth with no growth inhibition creates a solid tumor. If the tumor cannot obtain enough nutrition in situ, the tumor cells will undergo EMT and invade the basal membrane of nearby blood vessels. The tumor cells are transported through the bloodstream to secondary sites and then begin to form colonies and undergo reverse EMT, the so-called "mesenchymal-epithelial transition (MET)." This dynamic change involves cell morphology, environmental conditions, and external stimuli. Therefore, in this manuscript, the similarities and differences between EMT and MET will be dissected from embryonic development to the stage of cancer metastasis.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
| | - Tai-I Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
| | - Pei-Jung Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Clinical Medicine Research Center, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
17
|
Bedaquiline, an FDA-approved drug, inhibits mitochondrial ATP production and metastasis in vivo, by targeting the gamma subunit (ATP5F1C) of the ATP synthase. Cell Death Differ 2021; 28:2797-2817. [PMID: 33986463 PMCID: PMC8408289 DOI: 10.1038/s41418-021-00788-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023] Open
Abstract
Here, we provide evidence that high ATP production by the mitochondrial ATP-synthase is a new therapeutic target for anticancer therapy, especially for preventing tumor progression. More specifically, we isolated a subpopulation of ATP-high cancer cells which are phenotypically aggressive and demonstrate increases in proliferation, stemness, anchorage-independence, cell migration, invasion and multi-drug resistance, as well as high antioxidant capacity. Clinically, these findings have important implications for understanding treatment failure and cancer cell dormancy. Using bioinformatic analysis of patient samples, we defined a mitochondrial-related gene signature for metastasis, which features the gamma-subunit of the mitochondrial ATP-synthase (ATP5F1C). The relationship between ATP5F1C protein expression and metastasis was indeed confirmed by immunohistochemistry. Next, we used MDA-MB-231 cells as a model system to functionally validate these findings. Importantly, ATP-high MDA-MB-231 cells showed a nearly fivefold increase in metastatic capacity in vivo. Consistent with these observations, ATP-high cells overexpressed (i) components of mitochondrial complexes I-V, including ATP5F1C, and (ii) markers associated with circulating tumor cells (CTCs) and metastasis, such as EpCAM and VCAM1. Knockdown of ATP5F1C expression significantly reduced ATP-production, anchorage-independent growth, and cell migration, as predicted. Similarly, therapeutic administration of the FDA-approved drug, Bedaquiline, downregulated ATP5F1C expression in vitro and prevented spontaneous metastasis in vivo. In contrast, Bedaquiline had no effect on the growth of non-tumorigenic mammary epithelial cells (MCF10A) or primary tumors in vivo. Taken together, our results suggest that mitochondrial ATP depletion is a new therapeutic strategy for metastasis prophylaxis, to avoid treatment failure. In summary, we conclude that mitochondrial ATP5F1C is a promising new biomarker and molecular target for future drug development, for the prevention of metastatic disease progression.
Collapse
|
18
|
El-Sawaf ES, Saleh S, Abdallah DM, Ahmed KA, El-Abhar HS. Vitamin D and rosuvastatin obliterate peripheral neuropathy in a type-2 diabetes model through modulating Notch1, Wnt-10α, TGF-β and NRF-1 crosstalk. Life Sci 2021; 279:119697. [PMID: 34102194 DOI: 10.1016/j.lfs.2021.119697] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 11/28/2022]
Abstract
AIMS Vitamin D and rosuvastatin are well-known drugs that mediate beneficial effects in treating type-2 diabetes (T2D) complications; however, their anti-neuropathic potential is debatable. Hence, our study investigates their neurotherapeutic potential and the possible underlying mechanisms using a T2D-associated neuropathy rat model. MAIN METHODS Diabetic peripheral neuropathy (DPN) was induced with 8 weeks of administration of a high fat fructose diet followed by a single i.p. injection of streptozotocin (35 mg/kg). Six weeks later, DPN developed and rats were divided into five groups; viz., control, untreated DPN, DPN treated with vitamin D (cholecalciferol, 3500 IU/kg/week), DPN treated with rosuvastatin (10 mg/kg/day), or DPN treated with combination vitamin D and rosuvastatin. We determined their anti-neuropathic effects on small nerves (tail flick test); large nerves (electrophysiological and histological examination); neuronal inflammation (TNF-α and IL-18); apoptosis (caspase-3 activity and Bcl-2); mitochondrial function (NRF-1, TFAM, mtDNA, and ATP); and NICD1, Wnt-10α/β-catenin, and TGF-β/Smad-7 pathways. KEY FINDINGS Two-month treatment with vitamin D and/or rosuvastatin regenerated neuronal function and architecture and abated neuronal inflammation and apoptosis. This was verified by the inhibition of the neuronal content of TNF-α, IL-18, and caspase-3 activity, while augmenting Bcl-2 content in the sciatic nerve. These treatments inhibited the protein expressions of NICD1, Wnt-10α, β-catenin, and TGF-β; increased the sciatic nerve content of Smad-7; and enhanced mitochondrial biogenesis and function. SIGNIFICANCE Vitamin D and/or rosuvastatin alleviated diabetes-induced neuropathy by suppressing Notch1 and Wnt-10α/β-catenin; modulating TGF-β/Smad-7 signaling pathways; and enhancing mitochondrial function, which lessened neuronal degeneration, demyelination, and fibrosis.
Collapse
Affiliation(s)
- Engie S El-Sawaf
- Pharmacology, Toxicology, and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Samira Saleh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Dalaal M Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Hanan S El-Abhar
- Pharmacology, Toxicology, and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
19
|
Altamimi MA, Hussain A, Alshehri S, Imam SS, Alnemer UA. Development and Evaluations of Transdermally Delivered Luteolin Loaded Cationic Nanoemulsion: In Vitro and Ex Vivo Evaluations. Pharmaceutics 2021; 13:pharmaceutics13081218. [PMID: 34452179 PMCID: PMC8398932 DOI: 10.3390/pharmaceutics13081218] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction: Luteolin (LUT) is natural flavonoid with multiple therapeutic potentials and is explored for transdermal delivery using a nanocarrier system. LUT loaded cationic nanoemulsions (CNE1–CNE9) using bergamot oil (BO) were developed, optimized, and characterized in terms of in vitro and ex vivo parameters for improved permeation. Materials and methods: The solubility study of LUT was carried out in selected excipients, namely BO, cremophor EL (CEL as surfactant), labrasol (LAB), and oleylamine (OA as cationic charge inducer). Formulations were characterized with globular size, polydispersity index (PDI), zeta potential, pH, and thermodynamic stability studies. The optimized formulation (CNE4) was selected for comparative investigations (% transmittance as %T, morphology, chemical compatibility, drug content, in vitro % drug release, ex vivo skin permeation, and drug deposition, DD) against ANE4 (anionic nanoemulsion for comparison) and drug suspension (DS). Results: Formulations such as CNE1–CNE9 and ANE4 (except CNE6 and CNE8) were found to be stable. The optimized CNE4 based on the lowest value of globular size (112 nm), minimum PDI (0.15), and optimum zeta potential (+26 mV) was selected for comparative assessment against ANE4 and DS. The %T values of CNE1–CNE9 were found to be ˃95% and CEL content slightly improved the %T value. The spherical CNE4 was compatible with excipients and showed % total drug content in the range of 97.9–99.7%. In vitro drug release values from CNE4 and ANE4 were significantly higher than DS. Moreover, permeation flux (138.82 ± 8.4 µg/cm2·h), enhancement ratio (8.23), and DD (10.98%) were remarkably higher than DS. Thus, ex vivo parameters were relatively high as compared to DS which may be attributed to nanonization, surfactant-mediated reversible changes in skin lipid matrix, and electrostatic interaction of nanoglobules with the cellular surface. Conclusion: Transdermal delivery of LUT can be a suitable alternative to oral drug delivery for augmented skin permeation and drug deposition.
Collapse
Affiliation(s)
- Mohammad A. Altamimi
- Correspondence: (M.A.A.); (A.H.); Tel.: +966-055-555-2464 (M.A.A.); +966-056-459-1584 (A.H.)
| | - Afzal Hussain
- Correspondence: (M.A.A.); (A.H.); Tel.: +966-055-555-2464 (M.A.A.); +966-056-459-1584 (A.H.)
| | | | | | | |
Collapse
|
20
|
Erkisa M, Sariman M, Geyik OG, Geyik CG, Stanojkovic T, Ulukay E. Natural Products as a Promising Therapeutic Strategy to Target Cancer Stem Cells. Curr Med Chem 2021; 29:741-783. [PMID: 34182899 DOI: 10.2174/0929867328666210628131409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
Cancer is still a deadly disease, and its treatment desperately needs to be managed in a very sophisticated way through fast-developing novel strategies. Most of the cancer cases eventually develop into recurrencies, for which cancer stem cells (CSCs) are thought to be responsible. They are considered as a subpopulation of all cancer cells of tumor tissue with aberrant regulation of self-renewal, unbalanced proliferation, and cell death properties. Moreover, CSCs show a serious degree of resistance to chemotherapy or radiotherapy and immune surveillance as well. Therefore, new classes of drugs are rushing into the market each year, which makes the cost of therapy increase dramatically. Natural products are also becoming a new research area as a diverse chemical library to suppress CSCs. Some of the products even show promise in this regard. So, the near future could witness the introduction of natural products as a source of new chemotherapy modalities, which may result in the development of novel anticancer drugs. They could also be a reasonably-priced alternative to highly expensive current treatments. Nowadays, considering the effects of natural compounds on targeting surface markers, signaling pathways, apoptosis, and escape from immunosurveillance have been a highly intriguing area in preclinical and clinical research. In this review, we present scientific advances regarding their potential use in the inhibition of CSCs and the mechanisms by which they kill the CSCs.
Collapse
Affiliation(s)
- Merve Erkisa
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Melda Sariman
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Oyku Gonul Geyik
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Caner Geyik Geyik
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Tatjana Stanojkovic
- Experimental Oncology Deparment, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Pasterova 14. Serbia
| | - Engin Ulukay
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| |
Collapse
|
21
|
Wang S, Fu JL, Hao HF, Jiao YN, Li PP, Han SY. Metabolic reprogramming by traditional Chinese medicine and its role in effective cancer therapy. Pharmacol Res 2021; 170:105728. [PMID: 34119622 DOI: 10.1016/j.phrs.2021.105728] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming, characterized by alterations of cellular metabolic patterns, is fundamentally important in supporting the malignant behaviors of cancer cells. It is considered as a promising therapeutic target against cancer. Traditional Chinese medicine (TCM) and its bioactive components have been used in cancer therapy for an extended period, and they are well-known for their multi-target pharmacological functions and fewer side effects. However, the detailed and advanced mechanisms underlying the anticancer activities of TCM remain obscure. In this review, we summarized the critical processes of cancer cell metabolic reprogramming, including glycolysis, mitochondrial oxidative phosphorylation, glutaminolysis, and fatty acid biosynthesis. Moreover, we systemically reviewed the regulatory effects of TCM and its bioactive ingredients on metabolic enzymes and/or signal pathways that may impede cancer progress. A total of 46 kinds of TCMs was reported to exert antitumor effects and/or act as chemosensitizers via regulating metabolic processes of cancer cells, and multiple targets and signaling pathways were revealed to contribute to the metabolic-modulating functions of TCM. In conclusion, TCM has its advantages in ameliorating cancer cell metabolic reprogramming by its poly-pharmacological actions. This review may shed some new light on the explicit recognition of the mechanisms of anticancer actions of TCM, leading to the development of natural antitumor drugs based on reshaping cancer cell metabolism.
Collapse
Affiliation(s)
- Shan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Jia-Lei Fu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Hui-Feng Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Yan-Na Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Ping-Ping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China.
| | - Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China.
| |
Collapse
|
22
|
Mazzotti F, Bartella L, Talarico IR, Napoli A, Di Donna L. High-throughput determination of flavanone-O-glycosides in citrus beverages by paper spray tandem mass spectrometry. Food Chem 2021; 360:130060. [PMID: 34022518 DOI: 10.1016/j.foodchem.2021.130060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
A fast and accurate methodology for the quantification of the most abundant flavanone glycosides in citrus beverages has been developed. The approach relies on the use of paper spray mass spectrometry, which allows to record data in few minutes and without sample pre-treatment. The experiments have been carried out in Multiple Reaction Monitoring scan mode, in order to obtain the best specificity and sensitivity. The analytical parameters were all satisfactory. The results coming from the analysis of real samples were compared to the data obtained by the commonly used chromatographic method, proving the robustness of the proposed approach.
Collapse
Affiliation(s)
- Fabio Mazzotti
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/D, I-87036 Arcavacata di Rende, CS, Italy; QUASIORA Laboratory, AGRINFRA Research Net, Università della Calabria, Via P. Bucci Cubo 12/D, I-87036 Arcavacata di Rende, CS, Italy
| | - Lucia Bartella
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/D, I-87036 Arcavacata di Rende, CS, Italy; QUASIORA Laboratory, AGRINFRA Research Net, Università della Calabria, Via P. Bucci Cubo 12/D, I-87036 Arcavacata di Rende, CS, Italy.
| | - Ines Rosita Talarico
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/D, I-87036 Arcavacata di Rende, CS, Italy; QUASIORA Laboratory, AGRINFRA Research Net, Università della Calabria, Via P. Bucci Cubo 12/D, I-87036 Arcavacata di Rende, CS, Italy
| | - Anna Napoli
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/D, I-87036 Arcavacata di Rende, CS, Italy
| | - Leonardo Di Donna
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/D, I-87036 Arcavacata di Rende, CS, Italy; QUASIORA Laboratory, AGRINFRA Research Net, Università della Calabria, Via P. Bucci Cubo 12/D, I-87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
23
|
Zhang R, Tu J, Liu S. Novel molecular regulators of breast cancer stem cell plasticity and heterogeneity. Semin Cancer Biol 2021; 82:11-25. [PMID: 33737107 DOI: 10.1016/j.semcancer.2021.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/19/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Tumors consist of heterogeneous cell populations, and tumor heterogeneity plays key roles in regulating tumorigenesis, metastasis, recurrence and resistance to anti-tumor therapies. More and more studies suggest that cancer stem cells (CSCs) promote tumorigenesis, metastasis, recurrence and drug resistance as well as are the major source for heterogeneity of cancer cells. CD24-CD44+ and ALDH+ are the most common markers for breast cancer stem cells (BCSCs). Previous studies showed that different BCSC markers label different BCSC populations, indicating the heterogeneity of BCSCs. Therefore, defining the regulation mechanisms of heterogeneous BCSCs is essential for precisely targeting BCSCs and treating breast cancer. In this review, we summarized the novel regulators existed in BCSCs and their niches for BCSC heterogeneity which has been discovered in recent years, and discussed their regulation mechanisms and the latest corresponding cancer treatments, which will extend our understanding on BCSC heterogeneity and plasticity, and provide better prognosis prediction and more efficient novel therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Rui Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Majumder S, Crabtree JS, Golde TE, Minter LM, Osborne BA, Miele L. Targeting Notch in oncology: the path forward. Nat Rev Drug Discov 2021; 20:125-144. [PMID: 33293690 DOI: 10.1038/s41573-020-00091-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Notch signalling is involved in many aspects of cancer biology, including angiogenesis, tumour immunity and the maintenance of cancer stem-like cells. In addition, Notch can function as an oncogene and a tumour suppressor in different cancers and in different cell populations within the same tumour. Despite promising preclinical results and early-phase clinical trials, the goal of developing safe, effective, tumour-selective Notch-targeting agents for clinical use remains elusive. However, our continually improving understanding of Notch signalling in specific cancers, individual cancer cases and different cell populations, as well as crosstalk between pathways, is aiding the discovery and development of novel investigational Notch-targeted therapeutics.
Collapse
Affiliation(s)
- Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Judy S Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Todd E Golde
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
25
|
The mitochondrial aspartate/glutamate carrier (AGC or Aralar1) isoforms in D. melanogaster: biochemical characterization, gene structure, and evolutionary analysis. Biochim Biophys Acta Gen Subj 2021; 1865:129854. [PMID: 33497735 DOI: 10.1016/j.bbagen.2021.129854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND In man two mitochondrial aspartate/glutamate carrier (AGC) isoforms, known as aralar and citrin, are required to accomplish several metabolic pathways. In order to fill the existing gap of knowledge in Drosophila melanogaster, we have studied aralar1 gene, orthologue of human AGC-encoding genes in this organism. METHODS The blastp algorithm and the "reciprocal best hit" approach have been used to identify the human orthologue of AGCs in Drosophilidae and non-Drosophilidae. Aralar1 proteins have been overexpressed in Escherichia coli and functionally reconstituted into liposomes for transport assays. RESULTS The transcriptional organization of aralar1 comprises six isoforms, three constitutively expressed (aralar1-RA, RD and RF), and the remaining three distributed during the development or in different tissues (aralar1-RB, RC and RE). Aralar1-PA and Aralar1-PE, representative of all isoforms, have been biochemically characterized. Recombinant Aralar1-PA and Aralar1-PE proteins share similar efficiency to exchange glutamate against aspartate, and same substrate affinities than the human isoforms. Interestingly, although Aralar1-PA and Aralar1-PE diverge only in their EF-hand 8, they greatly differ in their specific activities and substrate specificity. CONCLUSIONS The tight regulation of aralar1 transcripts expression and the high request of aspartate and glutamate during early embryogenesis suggest a crucial role of Aralar1 in this Drosophila developmental stage. Furthermore, biochemical characterization and calcium sensitivity have identified Aralar1-PA and Aralar1-PE as the human aralar and citrin counterparts, respectively. GENERAL SIGNIFICANCE The functional characterization of the fruit fly mitochondrial AGC transporter represents a crucial step toward a complete understanding of the metabolic events acting during early embryogenesis.
Collapse
|
26
|
Effect of the Rho GTPase inhibitor-1 on the entry of dengue serotype 2 virus into EAhy926 cells. Mol Biol Rep 2020; 47:9739-9747. [PMID: 33200314 DOI: 10.1007/s11033-020-05980-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
Dengue virus (DV) is the most rapidly spreading arbovirus in the world. Our previous studies indicated that Rac1, a kind of Rho GTPase, was related with the increased vascular permeability in DV infection. However, the molecular mechanisms that regulate the activity of the Rac1 pathway during DV infection is not fully understood yet. Recently, Rho-specific guanine nucleotide dissociated inhibitors (Rho GDIs), as a pivotal upstream regulator of Rho GTPase, attract our attention. To identify the role of GDI-1 in DV2 infection, the expression of GDI in Eahy926 cells was detected. Moreover, a GDI-1 down-regulated cell line was constructed to explore the correlation between GDI-1 and Rac1 and to further evaluate the function of GDI in DV life cycle. Our results indicated that DV2 infection could up-regulate GDI-1 expression, and down-regulation of GDI enhanced the activity of Rac1. In addition, down-regulated GDI-1 significantly inhibited all steps of DV2 replication cycle. GDI-1 plays an important role in DV2 infection via negatively regulating the activation of the Rac1-actin pathway. These results not only contribute to our further understanding of the pathogenesis of severe dengue but also provide further insight into the development of antiviral drugs.
Collapse
|
27
|
Sánchez-Alvarez R, De Francesco EM, Fiorillo M, Sotgia F, Lisanti MP. Mitochondrial Fission Factor (MFF) Inhibits Mitochondrial Metabolism and Reduces Breast Cancer Stem Cell (CSC) Activity. Front Oncol 2020; 10:1776. [PMID: 33194575 PMCID: PMC7642822 DOI: 10.3389/fonc.2020.01776] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022] Open
Abstract
Elevated mitochondrial biogenesis and metabolism represent key features of breast cancer stem cells (CSCs), whose propagation is conducive to disease onset and progression. Therefore, interfering with mitochondria biology and function may be regarded as a useful approach to eradicate CSCs. Here, we used the breast cancer cell line MCF7 as a model system to interrogate how mitochondrial fission contributes to the development of mitochondrial dysfunction toward the inhibition of metabolic flux and stemness. We generated an isogenic MCF7 cell line transduced with Mitochondrial Fission Factor (MCF7-MFF), which is primarily involved in mitochondrial fission. We evaluated the biochemical, molecular and functional properties of MCF7-MFF cells, as compared to control MCF7 cells transduced with the empty vector (MCF7-Control). We observed that MFF over-expression reduces both mitochondrial mass and activity, as evaluated using the mitochondrial probes MitroTracker Red and MitoTracker Orange, respectively. The analysis of metabolic flux using the Seahorse XFe96 revealed the inhibition of OXPHOS and glycolysis in MCF7-MFF cells, suggesting that increased mitochondrial fission may impair the biochemical properties of these organelles. Notably, CSCs activity, assessed by 3D-tumorsphere assays, was reduced in MCF7-MFF cells. A similar trend was observed for the activity of ALDH, a well-established marker of stemness. We conclude that enhanced mitochondrial fission may compromise CSCs propagation, through the impairment of mitochondrial function, possibly leading to a quiescent cell phenotype. Unbiased proteomic analysis revealed that proteins involved in mitochondrial dysfunction, oxidative stress-response, fatty acid metabolism and hypoxia signaling are among the most highly up-regulated in MCF7-MFF cells. Of note, integrated analysis of top regulatory networks obtained from unbiased proteomics in MCF7-MFF cells predicts that this cell phenotype activates signaling systems and effectors involved in the inhibition of cell survival and adhesion, together with the activation of specific breast cancer cell death programs. Overall, our study shows that unbalanced and abnormal activation of mitochondrial fission may drive the impairment of mitochondrial metabolic function, leading to inhibition of CSC propagation, and the activation of quiescence programs. Exploiting the potential of mitochondria to control pivotal events in tumor biology may, therefore, represent a useful tool to prevent disease progression.
Collapse
Affiliation(s)
- Rosa Sánchez-Alvarez
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Ernestina Marianna De Francesco
- Translational Medicine, School of Science, Engineering and Environment (SEE), Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom.,Department of Clinical and Experimental Medicine, University of Catania, and ARNAS Garibaldi, Catania, Italy
| | - Marco Fiorillo
- Translational Medicine, School of Science, Engineering and Environment (SEE), Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
| | - Michael P Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
28
|
Sári Z, Mikó E, Kovács T, Boratkó A, Ujlaki G, Jankó L, Kiss B, Uray K, Bai P. Indoxylsulfate, a Metabolite of the Microbiome, Has Cytostatic Effects in Breast Cancer via Activation of AHR and PXR Receptors and Induction of Oxidative Stress. Cancers (Basel) 2020; 12:E2915. [PMID: 33050543 PMCID: PMC7599465 DOI: 10.3390/cancers12102915] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Changes to bacterial metabolite-elicited signaling, in oncobiosis associated with breast cancer, plays a role in facilitating the progression of the disease. We show that indoxyl-sulfate (IS), a tryptophan metabolite, has cytostatic properties in models of breast cancer. IS supplementation, in concentrations corresponding to the human serum reference range, suppressed tumor infiltration to the surrounding tissues and metastasis formation in a murine model of breast cancer. In cellular models, IS suppressed NRF2 and induced iNOS, leading to induction of oxidative and nitrosative stress, and, consequently, reduction of cell proliferation; enhanced oxidative and nitrosative stress are crucial in the subsequent cytostasis. IS also suppressed epithelial-to-mesenchymal transition vital for suppressing cellular movement and diapedesis. Furthermore, IS rendered cells hypometabolic, leading to a reduction in aldehyde-dehydrogenase positive cells. Pharmacological inhibition of the pregnane-X receptor using CH223191 and the aryl-hydrocarbon receptor using ketoconazole diminished the IS-elicited effects, suggesting that these receptors were the major receptors of IS in these models. Finally, we showed that increased expression of the human enzymes that form IS (Cyp2E1, Sult1A1, and Sult1A2) is associated with better survival in breast cancer, an effect that is lost in triple negative cases. Taken together, IS, similar to indolepropionic acid (another tryptophan metabolite), has cytostatic properties and higher expression of the metabolic machinery responsible for the formation of IS supports survival in breast cancer.
Collapse
Affiliation(s)
- Zsanett Sári
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
| | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
| | - Laura Jankó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
| | - Borbála Kiss
- Department of Oncology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (A.B.); (G.U.); (L.J.); (K.U.)
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
29
|
Chemical Profile, Antioxidant, Anti-Inflammatory, and Anti-Cancer Effects of Italian Salvia rosmarinus Spenn. Methanol Leaves Extracts. Antioxidants (Basel) 2020; 9:antiox9090826. [PMID: 32899385 PMCID: PMC7556042 DOI: 10.3390/antiox9090826] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, we evaluated and compared the chemical composition, the antioxidant, anti-inflammatory, and anti-proliferative effects of four methanol extracts (R1–R4), of Salvia rosmarinus Spenn. in two different sites of Southern Italy obtained by maceration or ultrasound-assisted extraction. Extracts of S. rosmarinus collected on the Ionian coast are indicated with the abbreviations R1 (maceration) and R2 (ultrasound-assisted extraction). Extracts of S. rosmarinus collected on the Tyrrhenian coast are indicated with the abbreviations R3 (maceration) and R4 (ultrasound-assisted extraction). The chemical composition was analyzed using High Pressure liquid chromatography–Diod-Array detection–Electrospray ionization–Quadrupole–Mass Spectroscopy (HPLC-DAD-ESI-Q-MS). The antioxidant activity was analyzed by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene bleaching, and Ferric Reducing Antioxidant Power (FRAP) assays. Antioxidant features were also assessed in lipopolysaccharide (LPS)-stimulated RAW-264.7 murine macrophages, evaluating Reactive Oxygen Species (ROS) production; in the same experimental model, the anti-inflammatory activity of the extracts was investigated. Interestingly, all extracts displayed antioxidant and anti-inflammatory properties. They exhibited significative nitrite production inhibitory activity, whith IC50 values ranging from 3.46 to 5.53 µg/mL, without impairing cell viability. The anti-inflammatory activity was also investigated by Western Blotting and immunofluorescence assay, highlighting the R3 and R4 extracts ability to reduce NF-κB translocation, as well as to disrupt the MAPKs signaling pathway. Extracts exhibited both potential anti-proliferative activity on breast cancer cells, inducing apoptosis, without affecting non-tumorigenic cells, and the ability to inhibit MDA-MB-231 cells’ motility. Finally, the rosemary extracts treatment significantly reduced the power of conditioned media, from MCF-7 or MDA-MB-231 cells to induce nitrite production on RAW 264.7 cells, confirming their promising anti-inflammatory activity.
Collapse
|
30
|
Sári Z, Mikó E, Kovács T, Jankó L, Csonka T, Lente G, Sebő É, Tóth J, Tóth D, Árkosy P, Boratkó A, Ujlaki G, Török M, Kovács I, Szabó J, Kiss B, Méhes G, Goedert JJ, Bai P. Indolepropionic Acid, a Metabolite of the Microbiome, Has Cytostatic Properties in Breast Cancer by Activating AHR and PXR Receptors and Inducing Oxidative Stress. Cancers (Basel) 2020; 12:E2411. [PMID: 32854297 PMCID: PMC7565149 DOI: 10.3390/cancers12092411] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Oncobiotic transformation of the gut microbiome may contribute to the risk of breast cancer. Recent studies have provided evidence that the microbiome secretes cytostatic metabolites that inhibit the proliferation, movement, and metastasis formation of cancer cells. In this study, we show that indolepropionic acid (IPA), a bacterial tryptophan metabolite, has cytostatic properties. IPA selectively targeted breast cancer cells, but it had no effects on non-transformed, primary fibroblasts. In cell-based and animal experiments, we showed that IPA supplementation reduced the proportions of cancer stem cells and the proliferation, movement, and metastasis formation of cancer cells. These were achieved through inhibiting epithelial-to-mesenchymal transition, inducing oxidative and nitrosative stress, and boosting antitumor immune response. Increased oxidative/nitrosative stress was due to the IPA-mediated downregulation of nuclear factor erythroid 2-related factor 2 (NRF2), upregulation of inducible nitric oxide synthase (iNOS), and enhanced mitochondrial reactive species production. Increased oxidative/nitrosative stress led to cytostasis and reductions in cancer cell stem-ness. IPA exerted its effects through aryl hydrocarbon receptor (AHR) and pregnane X receptor (PXR) receptors. A higher expression of PXR and AHR supported better survival in human breast cancer patients, highlighting the importance of IPA-elicited pathways in cytostasis in breast cancer. Furthermore, AHR activation and PXR expression related inversely to cancer cell proliferation level and to the stage and grade of the tumor. The fecal microbiome's capacity for IPA biosynthesis was suppressed in women newly diagnosed with breast cancer, especially with stage 0. Bacterial indole biosynthesis showed correlation with lymphocyte infiltration to tumors in humans. Taken together, we found that IPA is a cytostatic bacterial metabolite, the production of which is suppressed in human breast cancer. Bacterial metabolites, among them, IPA, have a pivotal role in regulating the progression but not the initiation of the disease.
Collapse
Affiliation(s)
- Zsanett Sári
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (L.J.); (G.L.); (A.B.); (G.U.)
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (L.J.); (G.L.); (A.B.); (G.U.)
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (L.J.); (G.L.); (A.B.); (G.U.)
| | - Laura Jankó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (L.J.); (G.L.); (A.B.); (G.U.)
| | - Tamás Csonka
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.C.); (G.M.)
| | - Gréta Lente
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (L.J.); (G.L.); (A.B.); (G.U.)
| | - Éva Sebő
- Kenézy Breast Center at Kenézy Gyula County Hospital, 4032 Debrecen, Hungary;
| | - Judit Tóth
- Department of Oncology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.T.); (P.Á.); (B.K.)
| | - Dezső Tóth
- Department of Surgery, Borsod-Abaúj-Zemplén County Hospital and University Teaching Hospital, 3526 Miskolc, Hungary;
| | - Péter Árkosy
- Department of Oncology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.T.); (P.Á.); (B.K.)
| | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (L.J.); (G.L.); (A.B.); (G.U.)
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (L.J.); (G.L.); (A.B.); (G.U.)
| | - Miklós Török
- Department of Pathology at Kenézy Gyula County Hospital, 4032 Debrecen, Hungary; (M.T.); (I.K.)
| | - Ilona Kovács
- Department of Pathology at Kenézy Gyula County Hospital, 4032 Debrecen, Hungary; (M.T.); (I.K.)
| | - Judit Szabó
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Borbála Kiss
- Department of Oncology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.T.); (P.Á.); (B.K.)
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.C.); (G.M.)
| | - James J. Goedert
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20982, USA;
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (E.M.); (T.K.); (L.J.); (G.L.); (A.B.); (G.U.)
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
31
|
Drosophila melanogaster Mitochondrial Carriers: Similarities and Differences with the Human Carriers. Int J Mol Sci 2020; 21:ijms21176052. [PMID: 32842667 PMCID: PMC7504413 DOI: 10.3390/ijms21176052] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial carriers are a family of structurally related proteins responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. The in silico analysis of the Drosophila melanogaster genome has highlighted the presence of 48 genes encoding putative mitochondrial carriers, but only 20 have been functionally characterized. Despite most Drosophila mitochondrial carrier genes having human homologs and sharing with them 50% or higher sequence identity, D. melanogaster genes display peculiar differences from their human counterparts: (1) in the fruit fly, many genes encode more transcript isoforms or are duplicated, resulting in the presence of numerous subfamilies in the genome; (2) the expression of the energy-producing genes in D. melanogaster is coordinated from a motif known as Nuclear Respiratory Gene (NRG), a palindromic 8-bp sequence; (3) fruit-fly duplicated genes encoding mitochondrial carriers show a testis-biased expression pattern, probably in order to keep a duplicate copy in the genome. Here, we review the main features, biological activities and role in the metabolism of the D. melanogaster mitochondrial carriers characterized to date, highlighting similarities and differences with their human counterparts. Such knowledge is very important for obtaining an integrated view of mitochondrial function in D. melanogaster metabolism.
Collapse
|
32
|
Brindisi M, Fiorillo M, Frattaruolo L, Sotgia F, Lisanti MP, Cappello AR. Cholesterol and Mevalonate: Two Metabolites Involved in Breast Cancer Progression and Drug Resistance through the ERRα Pathway. Cells 2020; 9:E1819. [PMID: 32751976 PMCID: PMC7465765 DOI: 10.3390/cells9081819] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the second greatest cause of cancer-related death in women. Resistance to endocrine treatments or chemotherapy is a limiting drawback. In this context, this work aims to evaluate the effects of cholesterol and mevalonate during tumor progression and their contribution in the onset of resistance to clinical treatments in use today. In this study, we demonstrated that cholesterol and mevalonate treatments were able to activate the estrogen-related receptor alpha (ERRα) pathway, increasing the expression levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), ERbB2/human epithelial receptor (HER2), tumor protein D52 (TPD52), and NOTCH2 proteins in breast cancer cells. The activation of this pathway is shown to be responsible for intense metabolic switching, higher proliferation rates, sustained motility, the propagation of cancer stem-like cells (CSCs), and lipid droplet formation. All of these events are related to greater tumor propagation, aggressiveness, and drug resistance. Furthermore, the activation and expression of proteins induced by the treatment with cholesterol or mevalonate are consistent with those obtained from the MCF-7/TAMr cell line, which is largely used as a breast cancer model of acquired endocrine therapy resistance. Altogether, our data indicate that cholesterol and mevalonate are two metabolites implicated in breast cancer progression, aggressiveness, and drug resistance, through the activation of the ERRα pathway. Our findings enable us to identify the ERRα receptor as a poor prognostic marker in patients with breast carcinoma, suggesting the correlation between cholesterol/mevalonate and ERRα as a new possible target in breast cancer treatment.
Collapse
Affiliation(s)
- Matteo Brindisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (M.B.); (M.F.); (L.F.)
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (M.B.); (M.F.); (L.F.)
- Translational Medicine, School of Science, Engineering and the Environment (SEE), University of Salford, Greater Manchester M5 4WT, UK
| | - Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (M.B.); (M.F.); (L.F.)
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and the Environment (SEE), University of Salford, Greater Manchester M5 4WT, UK
| | - Michael P. Lisanti
- Translational Medicine, School of Science, Engineering and the Environment (SEE), University of Salford, Greater Manchester M5 4WT, UK
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (M.B.); (M.F.); (L.F.)
| |
Collapse
|
33
|
Zhang ZJ, Wang KP, Mo JG, Xiong L, Wen Y. Photodynamic therapy regulates fate of cancer stem cells through reactive oxygen species. World J Stem Cells 2020; 12:562-584. [PMID: 32843914 PMCID: PMC7415247 DOI: 10.4252/wjsc.v12.i7.562] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) is an effective and promising cancer treatment. PDT directly generates reactive oxygen species (ROS) through photochemical reactions. This oxygen-dependent exogenous ROS has anti-cancer stem cell (CSC) effect. In addition, PDT may also increase ROS production by altering metabolism, endoplasmic reticulum stress, or potential of mitochondrial membrane. It is known that the half-life of ROS in PDT is short, with high reactivity and limited diffusion distance. Therefore, the main targeting position of PDT is often the subcellular localization of photosensitizers, which is helpful for us to explain how PDT affects CSC characteristics, including differentiation, self-renewal, apoptosis, autophagy, and immunogenicity. Broadly speaking, excess ROS will damage the redox system and cause oxidative damage to molecules such as DNA, change mitochondrial permeability, activate unfolded protein response, autophagy, and CSC resting state. Therefore, understanding the molecular mechanism by which ROS affect CSCs is beneficial to improve the efficiency of PDT and prevent tumor recurrence and metastasis. In this article, we review the effects of two types of photochemical reactions on PDT, the metabolic processes, and the biological effects of ROS in different subcellular locations on CSCs.
Collapse
Affiliation(s)
- Zi-Jian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Kun-Peng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Jing-Gang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
34
|
Vinegar production from Citrus bergamia by-products and preservation of bioactive compounds. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03549-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Fiorillo M, Tóth F, Brindisi M, Sotgia F, Lisanti MP. Deferiprone (DFP) Targets Cancer Stem Cell (CSC) Propagation by Inhibiting Mitochondrial Metabolism and Inducing ROS Production. Cells 2020; 9:cells9061529. [PMID: 32585919 PMCID: PMC7349387 DOI: 10.3390/cells9061529] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Deferiprone (DFP), also known as Ferriprox, is an FDA-approved, orally active, iron chelator that is currently used clinically for the treatment of iron-overload, especially in thalassaemia major. As iron is a critical factor in Fe-S cluster assembly that is absolutely required for the metabolic function of mitochondria, we hypothesized that DFP treatment could be used to selectively target mitochondria in cancer stem cells (CSCs). For this purpose, we used two ER(+) human breast cancer cell lines, namely MCF7 and T47D cells, as model systems. More specifically, a 3D tumorsphere assay was employed as a functional readout of CSC activity which measures anchorage-independent growth under low attachment conditions. Here, we show that DFP dose dependently inhibited the propagation of CSCs, with an IC-50 of ~100 nM for MCF7 and an IC-50 of ~0.5 to 1 μM for T47D cells, making DFP one the most potent FDA-approved drugs that we and others have thus far identified for targeting CSCs. Mechanistically, we show that high concentrations of DFP metabolically targeted both mitochondrial oxygen consumption (OCR) and glycolysis (extracellular acidification rates (ECAR)) in MCF7 and T47D cell monolayers. Most importantly, we demonstrate that DFP also induced a generalized increase in reactive oxygen species (ROS) and mitochondrial superoxide production, and its effects reverted in the presence of N-acetyl-cysteine (NAC). Therefore, we propose that DFP is a new candidate therapeutic for drug repurposing and for Phase II clinical trials aimed at eradicating CSCs.
Collapse
Affiliation(s)
- Marco Fiorillo
- Translational Medicine, School of Science, Engineering and the Environment (SEE), University of Salford, Greater Manchester M5 4WT, UK; (M.F.); (F.T.)
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy;
| | - Fanni Tóth
- Translational Medicine, School of Science, Engineering and the Environment (SEE), University of Salford, Greater Manchester M5 4WT, UK; (M.F.); (F.T.)
| | - Matteo Brindisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy;
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and the Environment (SEE), University of Salford, Greater Manchester M5 4WT, UK; (M.F.); (F.T.)
- Correspondence: (F.S.); (M.P.L.)
| | - Michael P. Lisanti
- Translational Medicine, School of Science, Engineering and the Environment (SEE), University of Salford, Greater Manchester M5 4WT, UK; (M.F.); (F.T.)
- Correspondence: (F.S.); (M.P.L.)
| |
Collapse
|
36
|
Blagodatski A, Klimenko A, Jia L, Katanaev VL. Small Molecule Wnt Pathway Modulators from Natural Sources: History, State of the Art and Perspectives. Cells 2020; 9:cells9030589. [PMID: 32131438 PMCID: PMC7140537 DOI: 10.3390/cells9030589] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
The Wnt signaling is one of the major pathways known to regulate embryonic development, tissue renewal and regeneration in multicellular organisms. Dysregulations of the pathway are a common cause of several types of cancer and other diseases, such as osteoporosis and rheumatoid arthritis. This makes Wnt signaling an important therapeutic target. Small molecule activators and inhibitors of signaling pathways are important biomedical tools which allow one to harness signaling processes in the organism for therapeutic purposes in affordable and specific ways. Natural products are a well known source of biologically active small molecules with therapeutic potential. In this article, we provide an up-to-date overview of existing small molecule modulators of the Wnt pathway derived from natural products. In the first part of the review, we focus on Wnt pathway activators, which can be used for regenerative therapy in various tissues such as skin, bone, cartilage and the nervous system. The second part describes inhibitors of the pathway, which are desired agents for targeted therapies against different cancers. In each part, we pay specific attention to the mechanisms of action of the natural products, to the models on which they were investigated, and to the potential of different taxa to yield bioactive molecules capable of regulating the Wnt signaling.
Collapse
Affiliation(s)
- Artem Blagodatski
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia;
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Correspondence: (A.B.); (V.L.K.)
| | - Antonina Klimenko
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia;
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Vladimir L. Katanaev
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia;
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Correspondence: (A.B.); (V.L.K.)
| |
Collapse
|
37
|
Shen YA, Pan SC, Chu I, Lai RY, Wei YH. Targeting cancer stem cells from a metabolic perspective. Exp Biol Med (Maywood) 2020; 245:465-476. [PMID: 32102562 PMCID: PMC7082881 DOI: 10.1177/1535370220909309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The process of cancer development and progression is driven by distinct subsets of cancer stem cells (CSCs) that contribute the self-renewal capacity as the major impetus to the metastatic dissemination and main impediments in cancer treatment. Given that CSCs are so scarce in the tumor mass, there are debatable points on the metabolic signatures of CSCs. As opposed to differentiated tumor progenies, CSCs display exquisite patterns of metabolism that, depending on the type of cancer, predominately rely on glycolysis, oxidative metabolism of glutamine, fatty acids, or amino acids for ATP production. Metabolic heterogeneity of CSCs, which attributes to differences in type and microenvironment of tumors, confers CSCs to have the plasticity to cope with the endogenous mitochondrial stress and exogenous microenvironment. In essence, CSCs and normal stem cells are like mirror images of each other in terms of metabolism. To achieve reprogramming, CSCs not only need to upregulate their metabolic engine for self-renewal and defense mechanism, but also expedite the antioxidant defense to sustain the redox homeostasis. In the context of these pathways, this review portrays the connection between the metabolic features of CSCs and cancer stemness. Identification of the metabolic features in conferring resistance to anticancer treatment dictated by CSCs can enhance the opportunity to open up a new therapeutic dimension, which might not only improve the effectiveness of cancer therapies but also annihilate the whole tumor without recurrence. Henceforth, we highlight current findings of potential therapeutic targets for the design of alternative strategies to compromise the growth, drug resistance, and metastasis of CSCs by altering their metabolic phenotypes. Perturbing the versatile skills of CSCs by barricading metabolic signaling might bring about plentiful approaches to discover novel therapeutic targets for clinical application in cancer treatments.Impact statementThis minireview highlights the current evidence on the mechanisms of pivotal metabolic pathways that attribute to cancer stem cells (CSCs) with a special focus on developing metabolic strategies of anticancer treatment that can be exploited in preclinical and clinical settings. Specific metabolic inhibitors that can overwhelm the properties of CSCs may impede tumor recurrence and metastasis, and potentially achieve a permanent cure of cancer patients.
Collapse
Affiliation(s)
- Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Siao-Cian Pan
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| | - I Chu
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ruo-Yun Lai
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Yau-Huei Wei
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| |
Collapse
|
38
|
El Hout M, Cosialls E, Mehrpour M, Hamaï A. Crosstalk between autophagy and metabolic regulation of cancer stem cells. Mol Cancer 2020; 19:27. [PMID: 32028963 PMCID: PMC7003352 DOI: 10.1186/s12943-019-1126-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is now considered as a heterogeneous ecosystem in which tumor cells collaborate with each other and with host cells in their microenvironment. As circumstances change, the ecosystem evolves to ensure the survival and growth of the cancer cells. In this ecosystem, metabolism is not only a key player but also drives stemness. In this review, we first summarize our current understanding of how autophagy influences cancer stem cell phenotype. We emphasize metabolic pathways in cancer stem cells and discuss how autophagy-mediated regulation metabolism is involved in their maintenance and proliferation. We then provide an update on the role of metabolic reprogramming and plasticity in cancer stem cells. Finally, we discuss how metabolic pathways in cancer stem cells could be therapeutically targeted.
Collapse
Affiliation(s)
- Mouradi El Hout
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, F-75993, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, F-75993, Paris, France
| | - Emma Cosialls
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, F-75993, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, F-75993, Paris, France
| | - Maryam Mehrpour
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, F-75993, Paris, France.
- Université Paris Descartes-Sorbonne Paris Cité, F-75993, Paris, France.
| | - Ahmed Hamaï
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, F-75993, Paris, France.
- Université Paris Descartes-Sorbonne Paris Cité, F-75993, Paris, France.
| |
Collapse
|
39
|
3-Amino-alkylated indoles: unexplored green products acting as anti-inflammatory agents. Future Med Chem 2020; 12:5-17. [DOI: 10.4155/fmc-2019-0234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: Over the years, indole has proved to be a versatile scaffold for the design of molecules acting as anti-inflammatory agents. Materials & Methods: A small library of 3-amino-alkylated indoles has been obtained by an optimized Mannich green approach. The anti-inflammatory activity of the new 3-amino-alkylated indoles, GLYC 0–10, was evaluated in RAW 264.7 macrophages. Results: The anti-inflammatory activity of the new 3-amino-alkylated indoles, GLYC 0–10, was evaluatedn and, among them, GLYC 4, 5 and 9 displayed the greatest inhibitory effects on nitric oxide production, with IC50 values of 5.41, 4.22 and 6.3 μM, respectively. Conclusion: Our outcomes, overall, highlight the importance of the indole substitution in the anti-inflammatory activity of these compounds, exerted by acting on the interlinked NF-κB/ERK1/2 pathways.
Collapse
|
40
|
The ER-alpha mutation Y537S confers Tamoxifen-resistance via enhanced mitochondrial metabolism, glycolysis and Rho-GDI/PTEN signaling: Implicating TIGAR in somatic resistance to endocrine therapy. Aging (Albany NY) 2019; 10:4000-4023. [PMID: 30573703 PMCID: PMC6326696 DOI: 10.18632/aging.101690] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023]
Abstract
Naturally-occurring somatic mutations in the estrogen receptor gene (ESR1) have been previously implicated in the clinical development of resistance to hormonal therapies, such as Tamoxifen. For example, the somatic mutation Y537S has been specifically associated with acquired endocrine resistance. Briefly, we recombinantly-transduced MCF7 cells with a lentiviral vector encoding ESR1 (Y537S). As a first step, we confirmed that MCF7-Y537S cells are indeed functionally resistant to Tamoxifen, as compared with vector alone controls. Importantly, further phenotypic characterization of Y537S cells revealed that they show increased resistance to Tamoxifen-induced apoptosis, allowing them to form mammospheres with higher efficiency, in the presence of Tamoxifen. Similarly, Y537S cells had elevated basal levels of ALDH activity, a marker of “stemness”, which was also Tamoxifen-resistant. Metabolic flux analysis of Y537S cells revealed a hyper-metabolic phenotype, with significantly increased mitochondrial respiration and high ATP production, as well as enhanced aerobic glycolysis. Finally, to understand which molecular signaling pathways that may be hyper-activated in Y537S cells, we performed unbiased label-free proteomics analysis. Our results indicate that TIGAR over-expression and the Rho-GDI/PTEN signaling pathway appear to be selectively activated by the Y537S mutation. Remarkably, this profile is nearly identical in MCF7-TAMR cells; these cells were independently-generated in vitro, suggesting a highly conserved mechanism underlying Tamoxifen-resistance. Importantly, we show that the Y537S mutation is specifically associated with the over-expression of a number of protein markers of poor clinical outcome (COL6A3, ERBB2, STAT3, AFP, TFF1, CDK4 and CD44). In summary, we have uncovered a novel metabolic mechanism leading to endocrine resistance, which may have important clinical implications for improving patient outcomes.
Collapse
|
41
|
Curcio R, Aiello D, Vozza A, Muto L, Martello E, Cappello AR, Capobianco L, Fiermonte G, Siciliano C, Napoli A, Dolce V. Cloning, Purification, and Characterization of the Catalytic C-Terminal Domain of the Human 3-Hydroxy-3-methyl glutaryl-CoA Reductase: An Effective, Fast, and Easy Method for Testing Hypocholesterolemic Compounds. Mol Biotechnol 2019; 62:119-131. [DOI: 10.1007/s12033-019-00230-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Frattaruolo L, Fiorillo M, Brindisi M, Curcio R, Dolce V, Lacret R, Truman AW, Sotgia F, Lisanti MP, Cappello AR. Thioalbamide, A Thioamidated Peptide from Amycolatopsis alba, Affects Tumor Growth and Stemness by Inducing Metabolic Dysfunction and Oxidative Stress. Cells 2019; 8:cells8111408. [PMID: 31717378 PMCID: PMC6912574 DOI: 10.3390/cells8111408] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
Thioalbamide, a thioamidated peptide biosynthesized by Amycolatopsis alba, is a thioviridamide-like molecule, and is part of a family of natural products representing a focus of biotechnological and pharmaceutical research in recent years due to their potent anti-proliferative and cytotoxic activities on malignant cells. Despite the high antitumor potential observed at nanomolar concentrations, the mechanisms underlying thioalbamide activity are still not known. In this work, the cellular effects induced by thioalbamide treatment on breast cancer cell lines were evaluated for the first time, highlighting the ability of this microbial natural peptide to induce mitochondrial dysfunction, oxidative stress, and apoptotic cell death. Furthermore, we demonstrate that thioalbamide can inhibit the propagation of cancer stem-like cells, which are strongly dependent on mitochondrial function and are responsible for chemotherapy resistance, metastasis, and tumor recurrence.
Collapse
Affiliation(s)
- Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (L.F.); (M.F.); (M.B.); (R.C.); (V.D.)
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (L.F.); (M.F.); (M.B.); (R.C.); (V.D.)
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester M5 4WT, UK
| | - Matteo Brindisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (L.F.); (M.F.); (M.B.); (R.C.); (V.D.)
| | - Rosita Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (L.F.); (M.F.); (M.B.); (R.C.); (V.D.)
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (L.F.); (M.F.); (M.B.); (R.C.); (V.D.)
| | - Rodney Lacret
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK; (R.L.); (A.W.T.)
| | - Andrew W. Truman
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK; (R.L.); (A.W.T.)
| | - Federica Sotgia
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester M5 4WT, UK
- Correspondence: (F.S.); (M.P.L.); (A.R.C.)
| | - Michael P. Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester M5 4WT, UK
- Correspondence: (F.S.); (M.P.L.); (A.R.C.)
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (L.F.); (M.F.); (M.B.); (R.C.); (V.D.)
- Correspondence: (F.S.); (M.P.L.); (A.R.C.)
| |
Collapse
|
43
|
Wang Z, Ni F, Yu F, Cui Z, Zhu X, Chen J. Prognostic significance of mRNA expression of CASPs in gastric cancer. Oncol Lett 2019; 18:4535-4554. [PMID: 31611962 PMCID: PMC6781674 DOI: 10.3892/ol.2019.10816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/16/2019] [Indexed: 12/28/2022] Open
Abstract
Current studies suggest that the cysteinyl aspartate specific proteinase (caspase/CASP) family may be closely associated with apoptosis. Scientists have suggested that caspases may be a key to the development of more effective anti-cancer therapies. However, the prognostic value of CASP expression in gastric cancer (GC) remains unclear. Using a Kaplan-Meier plotter online database, the predictive prognostic significance of the expression of 12 CASPs genes (CASP1, CASP2, CASP3, CASP4, CASP5, CASP6, CASP7, CASP8, CASP9, CASP10, CASP12 and CASP14) to overall survival (OS) in different clinicopathological features, including Lauren classification, pathological stages, therapies employed and differentiation in gastric cancer patients was explored. The present study revealed that higher CASP1, 2, 3, 4, 5, 6, 7 and 8 mRNA expression was associated with better OS, whereas higher expression of CASP9, 10, 12 and 14 showed an unfavorable OS in all GC patients. Moreover, CASP1 to 8 were all associated with favorable OS in intestinal type and diffuse type classified by Lauren classification. Therefore, the results of the present study suggested that the CASP family may function as new prognostic indicators in GC and may be helpful in making treatment decisions.
Collapse
Affiliation(s)
- Zixiang Wang
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Fubiao Ni
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Fangyi Yu
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhonghui Cui
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiandong Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jicai Chen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
44
|
Giuffrè AM. Bergamot ( Citrus bergamia, Risso): The Effects of Cultivar and Harvest Date on Functional Properties of Juice and Cloudy Juice. Antioxidants (Basel) 2019; 8:E221. [PMID: 31336933 PMCID: PMC6680538 DOI: 10.3390/antiox8070221] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/19/2019] [Accepted: 07/09/2019] [Indexed: 11/17/2022] Open
Abstract
Reggio Calabria province (South Italy) is known for being almost the only area of cultivation of the bergamot fruit, grown principally for its essential oil, but today much studied for the health benefits of its juice. The biometrics and physico-chemical properties of the three (Citrus bergamia Risso) existing genotypes namely Castagnaro, Fantastico and Femminello were studied during fruit ripening from October to March. Castagnaro cultivar had the biggest and heaviest fruit during this harvest period. °Brix (7.9-10.0), pH (2.2-2.8) and formol number (1.47-2.37 mL NaOH 0.1 N/100 mL) were shown to be influenced by both the genotype and harvest date. Titratable acidity (34.98-59.50 g/L) and vitamin C (ascorbic acid) (341-867 g/L) decreased during fruit ripening. The evolution of flavonoids such as neoeriocitrin, naringin, neohesperidin, brutieridin and melitidin was studied both in bergamot juice and in the bergamot cloudy juice which is the aqueous extract of bergamot during fruit processing. Bergamot cloudy juice contained a higher quantity of flavonoids compared to the juice. This study gives important information regarding the cultivar and the harvest date for producers who want to obtain the highest juice quantity or the highest juice quality from the bergamot fruit.
Collapse
Affiliation(s)
- Angelo Maria Giuffrè
- Università degli Studi Mediterranea di Reggio Calabria, AGRARIA-Dipartimento di Agricoltura, Risorse forestali, Ambiente Risorse zootecniche, Ingegneria agraria, Alimenti-Contrada Melissari, 89124 Reggio Calabria, Italy.
| |
Collapse
|
45
|
Vásquez-Bochm LX, Velázquez-Paniagua M, Castro-Vázquez SS, Guerrero-Rodríguez SL, Mondragon-Peralta A, De La Fuente-Granada M, Pérez-Tapia SM, González-Arenas A, Velasco-Velázquez MA. Transcriptome-based identification of lovastatin as a breast cancer stem cell-targeting drug. Pharmacol Rep 2019; 71:535-544. [PMID: 31026757 DOI: 10.1016/j.pharep.2019.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/27/2019] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
|
46
|
Mikó E, Kovács T, Sebő É, Tóth J, Csonka T, Ujlaki G, Sipos A, Szabó J, Méhes G, Bai P. Microbiome-Microbial Metabolome-Cancer Cell Interactions in Breast Cancer-Familiar, but Unexplored. Cells 2019; 8:E293. [PMID: 30934972 PMCID: PMC6523810 DOI: 10.3390/cells8040293] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is a leading cause of death among women worldwide. Dysbiosis, an aberrant composition of the microbiome, characterizes breast cancer. In this review we discuss the changes to the metabolism of breast cancer cells, as well as the composition of the breast and gut microbiome in breast cancer. The role of the breast microbiome in breast cancer is unresolved, nevertheless it seems that the gut microbiome does have a role in the pathology of the disease. The gut microbiome secretes bioactive metabolites (reactivated estrogens, short chain fatty acids, amino acid metabolites, or secondary bile acids) that modulate breast cancer. We highlight the bacterial species or taxonomical units that generate these metabolites, we show their mode of action, and discuss how the metabolites affect mitochondrial metabolism and other molecular events in breast cancer. These metabolites resemble human hormones, as they are produced in a "gland" (in this case, the microbiome) and they are subsequently transferred to distant sites of action through the circulation. These metabolites appear to be important constituents of the tumor microenvironment. Finally, we discuss how bacterial dysbiosis interferes with breast cancer treatment through interfering with chemotherapeutic drug metabolism and availability.
Collapse
Affiliation(s)
- Edit Mikó
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
- Department of Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Tünde Kovács
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
| | - Éva Sebő
- Kenézy Breast Center, Kenézy Gyula County Hospital, 4032 Debrecen, Hungary.
| | - Judit Tóth
- Kenézy Breast Center, Kenézy Gyula County Hospital, 4032 Debrecen, Hungary.
| | - Tamás Csonka
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Gyula Ujlaki
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
| | - Adrienn Sipos
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
| | - Judit Szabó
- Department of Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Péter Bai
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| |
Collapse
|
47
|
Jagust P, de Luxán-Delgado B, Parejo-Alonso B, Sancho P. Metabolism-Based Therapeutic Strategies Targeting Cancer Stem Cells. Front Pharmacol 2019; 10:203. [PMID: 30967773 PMCID: PMC6438930 DOI: 10.3389/fphar.2019.00203] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 02/02/2023] Open
Abstract
Cancer heterogeneity constitutes the major source of disease progression and therapy failure. Tumors comprise functionally diverse subpopulations, with cancer stem cells (CSCs) as the source of this heterogeneity. Since these cells bear in vivo tumorigenicity and metastatic potential, survive chemotherapy and drive relapse, its elimination may be the only way to achieve long-term survival in patients. Thanks to the great advances in the field over the last few years, we know now that cellular metabolism and stemness are highly intertwined in normal development and cancer. Indeed, CSCs show distinct metabolic features as compared with their more differentiated progenies, though their dominant metabolic phenotype varies across tumor entities, patients and even subclones within a tumor. Following initial works focused on glucose metabolism, current studies have unveiled particularities of CSC metabolism in terms of redox state, lipid metabolism and use of alternative fuels, such as amino acids or ketone bodies. In this review, we describe the different metabolic phenotypes attributed to CSCs with special focus on metabolism-based therapeutic strategies tested in preclinical and clinical settings.
Collapse
Affiliation(s)
- Petra Jagust
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Beatriz de Luxán-Delgado
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Beatriz Parejo-Alonso
- Traslational Research Unit, Hospital Universitario Miguel Servet, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Patricia Sancho
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Traslational Research Unit, Hospital Universitario Miguel Servet, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| |
Collapse
|
48
|
Kovács T, Mikó E, Vida A, Sebő É, Toth J, Csonka T, Boratkó A, Ujlaki G, Lente G, Kovács P, Tóth D, Árkosy P, Kiss B, Méhes G, Goedert JJ, Bai P. Cadaverine, a metabolite of the microbiome, reduces breast cancer aggressiveness through trace amino acid receptors. Sci Rep 2019; 9:1300. [PMID: 30718646 PMCID: PMC6361949 DOI: 10.1038/s41598-018-37664-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
Recent studies showed that changes to the gut microbiome alters the microbiome-derived metabolome, potentially promoting carcinogenesis in organs that are distal to the gut. In this study, we assessed the relationship between breast cancer and cadaverine biosynthesis. Cadaverine treatment of Balb/c female mice (500 nmol/kg p.o. q.d.) grafted with 4T1 breast cancer cells ameliorated the disease (lower mass and infiltration of the primary tumor, fewer metastases, and lower grade tumors). Cadaverine treatment of breast cancer cell lines corresponding to its serum reference range (100–800 nM) reverted endothelial-to-mesenchymal transition, inhibited cellular movement and invasion, moreover, rendered cells less stem cell-like through reducing mitochondrial oxidation. Trace amino acid receptors (TAARs), namely, TAAR1, TAAR8 and TAAR9 were instrumental in provoking the cadaverine-evoked effects. Early stage breast cancer patients, versus control women, had reduced abundance of the CadA and LdcC genes in fecal DNA, both responsible for bacterial cadaverine production. Moreover, we found low protein expression of E. coli LdcC in the feces of stage 1 breast cancer patients. In addition, higher expression of lysine decarboxylase resulted in a prolonged survival among early-stage breast cancer patients. Taken together, cadaverine production seems to be a regulator of early breast cancer.
Collapse
Affiliation(s)
- Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
| | - András Vida
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
| | - Éva Sebő
- Kenézy Breast Center, Kenézy Gyula County Hospital, Debrecen, 4032, Hungary
| | - Judit Toth
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Tamás Csonka
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gréta Lente
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Patrik Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Dezső Tóth
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Péter Árkosy
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Borbála Kiss
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - James J Goedert
- National Cancer Institute, National Institutes of Health, Bethesda, 20982 MD, USA
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary. .,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary. .,Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
49
|
|
50
|
Sotgia F, Ozsvari B, Fiorillo M, De Francesco EM, Bonuccelli G, Lisanti MP. A mitochondrial based oncology platform for targeting cancer stem cells (CSCs): MITO-ONC-RX. Cell Cycle 2018; 17:2091-2100. [PMID: 30257595 PMCID: PMC6226227 DOI: 10.1080/15384101.2018.1515551] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Here, we wish to propose a new systematic approach to cancer therapy, based on the targeting of mitochondrial metabolism, especially in cancer stem cells (CSCs). In the future, we envision that anti-mitochondrial therapy would ultimately be practiced as an add-on to more conventional therapy, largely for the prevention of tumor recurrence and cancer metastasis. This mitochondrial based oncology platform would require a panel of FDA-approved therapeutics (e.g. Doxycycline) that can safely be used to inhibit mitochondrial OXPHOS and/or biogenesis in CSCs. In addition, new therapeutics that target mitochondria could also be developed, to optimize their ability to eradicate CSCs. Finally, in this context, mitochondrial-based biomarkers (i.e. "Mito-signatures") could be utilized as companion diagnostics, to identify high-risk cancer patients at diagnosis, facilitating the early detection of tumor recurrence and the prevention of treatment failure. In summary, we suggest that new clinical trials are warranted to test and possibly implement this emerging treatment strategy, in a variety of human cancer types. This general approach, using FDA-approved antibiotics to target mitochondria, was effective in killing CSCs originating from many different cancer types, including DCIS, breast (ER(+) and ER(-)), prostate, ovarian, lung and pancreatic cancers, as well as melanoma and glioblastoma, among others. Thus, we propose the term MITO-ONC-RX, to describe this anti-mitochondrial platform for targeting CSCs. The use of re-purposed FDA-approved drugs will undoubtedly help to accelerate the clinical evaluation of this approach, as these drugs can move directly into Phase II clinical trials, saving considerable amounts of time (10-15 y) and billions in financial resources.
Collapse
Affiliation(s)
- Federica Sotgia
- a Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC) , University of Salford , Greater Manchester , UK
| | - Bela Ozsvari
- a Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC) , University of Salford , Greater Manchester , UK
| | - Marco Fiorillo
- a Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC) , University of Salford , Greater Manchester , UK.,b Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , Rende , Italy
| | - Ernestina Marianna De Francesco
- a Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC) , University of Salford , Greater Manchester , UK.,b Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , Rende , Italy
| | - Gloria Bonuccelli
- a Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC) , University of Salford , Greater Manchester , UK
| | - Michael P Lisanti
- a Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC) , University of Salford , Greater Manchester , UK
| |
Collapse
|