1
|
Wang R, Lu P, Chen F, Huang Y, Ding H, Cheng T. Groundwater resistant gene accumulation in mining-agriculture complex zones: Insights from metagenomic analysis of subterranean mineral and terrestrial agricultural interactions. ENVIRONMENTAL RESEARCH 2024; 263:120138. [PMID: 39393455 DOI: 10.1016/j.envres.2024.120138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
During the Mining-Agriculture Complex Areas, the mining and agriculture activities could lead to an excessive presence of sulfate content in the regional groundwater. Sulfate exhibits the potential to influence the positive accumulation of RGs, although its mechanisms remain inadequately explored. To address this gap, this study analyzed the RGs buildup mechanisms in the groundwater of the mining-agriculture complex area. Results showed a widespread presence of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs), especially in coal-seams crevice groundwater. And iron and sulfur are primary environmental factors conducive to RGs accumulation through a synergistic interaction. Microbial annotation of gene sets sourced from coal-seams crevice groundwater samples unveiled part of sulfur-metabolizing microorganisms that were hosts of both ARGs and MRGs. Mechanistic insights revealed that iron may stimulates reactive oxygen species (ROS) generation, facilitating RGs accumulation, while adjusting sulfur metabolism and the synthesis of iron-sulfur clusters, thereby augmenting microbial growth which as predominant hosts of RGs, thereby intensifying the buildup of RGs.
Collapse
Affiliation(s)
- Rui Wang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Ping Lu
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Fangfang Chen
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yanchang Huang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Haoran Ding
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Tianhang Cheng
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
2
|
Dai C, Zhang G, Lin W, Luo J. Thiobacillus sedimenti sp. nov., a chemolithoautotrophic sulphur-oxidizing bacterium isolated from freshwater sediment. Antonie Van Leeuwenhoek 2024; 118:9. [PMID: 39316198 DOI: 10.1007/s10482-024-02026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
A sulphur-oxidizing bacterium, designated strain SCUT-2T, was isolated from freshwater sediment collected from the Pearl River in Guangzhou, PR China. This strain was an obligate chemolithoautotroph, utilizing reduced sulphur compounds (elemental sulphur, thiosulphate, tetrathionate and sulphite) as the electron donor. Growth of strain SCUT-2T was observed at 20-40 ℃ (optimum at 30 °C), pH 5.0-9.0 (optimum at 6.0), and NaCl concentration range of 0-9 g L-1 (optimum at 1 g L-1). The major cellular fatty acids were C16:0 ω7c and cyclo-C17:0. The DNA G + C content of the complete genome sequence was 66.8 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain SCUT-2T formed a lineage within the genus Thiobacillus, showing gene sequence identity of 98.0% with its closest relative Thiobacillus thioparus THI 115. The genome of strain SCUT-2T contains multiple genes encoding sulphur-oxidizing enzymes that catalyse the oxidation of reduced sulphur compounds, partial genes that are necessary for denitrification, and the genes encoding cbb3-type cytochrome c oxidase, aa3-type cytochrome c oxidase and bd-type quinol oxidase. Facultative anaerobic growth occurs when using nitrate as the electron acceptor and thiosulphate as the electron donor. On the basis of phenotypic, chemotaxonomic, genotypic and phylogenetic analysis, strain SCUT-2T (= GDMCC 1.4108T = JCM 39443T) is deemed to represent a novel Thiobacillus species, for which we propose the name Thiobacillus sedimenti sp. nov.
Collapse
Affiliation(s)
- Chenming Dai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Guangye Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Weitie Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Jianfei Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
3
|
Jiang F, Hao X, Li D, Zhu X, Huang J, Lai Q, Wang J, Wang L, Shao Z. Aquibium pacificus sp. nov., a Novel Mixotrophic Bacterium from Bathypelagic Seawater in the Western Pacific Ocean. Microorganisms 2024; 12:1584. [PMID: 39203426 PMCID: PMC11356281 DOI: 10.3390/microorganisms12081584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
A novel Gram-stain-negative, facultatively anaerobic, and mixotrophic bacterium, designated as strain LZ166T, was isolated from the bathypelagic seawater in the western Pacific Ocean. The cells were short rod-shaped, oxidase- and catalase-positive, and motile by means of lateral flagella. The growth of strain LZ166T was observed at 10-45 °C (optimum 34-37 °C), at pH 5-10 (optimum 6-8), and in the presence of 0-5% NaCl (optimum 1-3%). A phylogenetic analysis based on the 16S rRNA gene showed that strain LZ166T shared the highest similarity (98.58%) with Aquibium oceanicum B7T and formed a distinct branch within the Aquibium genus. The genomic characterization, including average nucleotide identity (ANI, 90.73-76.79%), average amino identity (AAI, 88.50-79.03%), and digital DNA-DNA hybridization (dDDH, 36.1-22.2%) values between LZ166T and other species within the Aquibium genus, further substantiated its novelty. The genome of strain LZ166T was 6,119,659 bp in size with a 64.7 mol% DNA G+C content. The predominant fatty acid was summed feature 8 (C18:1ω7c and/or C18:1ω6c). The major polar lipids identified were diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), glycolipid (GL), and phosphatidylglycerol (PG), with ubiquinone-10 (Q-10) as the predominant respiratory quinone. The genomic annotation indicated the presence of genes for a diverse metabolic profile, including pathways for carbon fixation via the Calvin-Benson-Bassham cycle and inorganic sulfur oxidation. Based on the polyphasic taxonomic results, strain LZ166T represented a novel species of the genus Aquibium, for which the name Aquibium pacificus sp. nov. is proposed, with the type strain LZ166T (=MCCC M28807T = KACC 23148T = KCTC 82889T).
Collapse
Affiliation(s)
- Fan Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361102, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361102, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xun Hao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361102, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361102, China
| | - Ding Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361102, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361102, China
| | - Xuying Zhu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361102, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361102, China
| | - Jiamei Huang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361102, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361102, China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361102, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361102, China
| | - Jianning Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361102, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361102, China
| | - Liping Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361102, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361102, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361102, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361102, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
4
|
Tanabe TS, Bach E, D'Ermo G, Mohr MG, Hager N, Pfeiffer N, Guiral M, Dahl C. A cascade of sulfur transferases delivers sulfur to the sulfur-oxidizing heterodisulfide reductase-like complex. Protein Sci 2024; 33:e5014. [PMID: 38747384 PMCID: PMC11094781 DOI: 10.1002/pro.5014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/25/2024] [Accepted: 04/21/2024] [Indexed: 05/19/2024]
Abstract
A heterodisulfide reductase-like complex (sHdr) and novel lipoate-binding proteins (LbpAs) are central players of a wide-spread pathway of dissimilatory sulfur oxidation. Bioinformatic analysis demonstrate that the cytoplasmic sHdr-LbpA systems are always accompanied by sets of sulfur transferases (DsrE proteins, TusA, and rhodaneses). The exact composition of these sets may vary depending on the organism and sHdr system type. To enable generalizations, we studied model sulfur oxidizers from distant bacterial phyla, that is, Aquificota and Pseudomonadota. DsrE3C of the chemoorganotrophic Alphaproteobacterium Hyphomicrobium denitrificans and DsrE3B from the Gammaproteobacteria Thioalkalivibrio sp. K90mix, an obligate chemolithotroph, and Thiorhodospira sibirica, an obligate photolithotroph, are homotrimers that donate sulfur to TusA. Additionally, the hyphomicrobial rhodanese-like protein Rhd442 exchanges sulfur with both TusA and DsrE3C. The latter is essential for sulfur oxidation in Hm. denitrificans. TusA from Aquifex aeolicus (AqTusA) interacts physiologically with AqDsrE, AqLbpA, and AqsHdr proteins. This is particularly significant as it establishes a direct link between sulfur transferases and the sHdr-LbpA complex that oxidizes sulfane sulfur to sulfite. In vivo, it is unlikely that there is a strict unidirectional transfer between the sulfur-binding enzymes studied. Rather, the sulfur transferases form a network, each with a pool of bound sulfur. Sulfur flux can then be shifted in one direction or the other depending on metabolic requirements. A single pair of sulfur-binding proteins with a preferred transfer direction, such as a DsrE3-type protein towards TusA, may be sufficient to push sulfur into the sink where it is further metabolized or needed.
Collapse
Affiliation(s)
- Tomohisa Sebastian Tanabe
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich‐Wilhelms‐Universität BonnBonnGermany
- Division of Microbial EcologyUniversity of ViennaWienAustria
- Present address:
Division of Microbial Ecology, University of Vienna, Djerassiplatz 1 , A‐1030 WienKölnAustria
| | - Elena Bach
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich‐Wilhelms‐Universität BonnBonnGermany
| | - Giulia D'Ermo
- CNRS, Bioénergétique et Ingénierie des Protéines, Aix Marseille Université, IMMMarseilleFrance
| | - Marc Gregor Mohr
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich‐Wilhelms‐Universität BonnBonnGermany
| | - Natalie Hager
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich‐Wilhelms‐Universität BonnBonnGermany
| | - Niklas Pfeiffer
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich‐Wilhelms‐Universität BonnBonnGermany
- Present address:
Labor Dr. Wisplinghoff, Horbeller Str. 18‐20KölnGermany
| | - Marianne Guiral
- CNRS, Bioénergétique et Ingénierie des Protéines, Aix Marseille Université, IMMMarseilleFrance
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich‐Wilhelms‐Universität BonnBonnGermany
| |
Collapse
|
5
|
D'Ermo G, Audebert S, Camoin L, Planer-Friedrich B, Casiot-Marouani C, Delpoux S, Lebrun R, Guiral M, Schoepp-Cothenet B. Quantitative proteomics reveals the Sox system's role in sulphur and arsenic metabolism of phototroph Halorhodospira halophila. Environ Microbiol 2024; 26:e16655. [PMID: 38897608 DOI: 10.1111/1462-2920.16655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
The metabolic process of purple sulphur bacteria's anoxygenic photosynthesis has been primarily studied in Allochromatium vinosum, a member of the Chromatiaceae family. However, the metabolic processes of purple sulphur bacteria from the Ectothiorhodospiraceae and Halorhodospiraceae families remain unexplored. We have analysed the proteome of Halorhodospira halophila, a member of the Halorhodospiraceae family, which was cultivated with various sulphur compounds. This analysis allowed us to reconstruct the first comprehensive sulphur-oxidative photosynthetic network for this family. Some members of the Ectothiorhodospiraceae family have been shown to use arsenite as a photosynthetic electron donor. Therefore, we analysed the proteome response of Halorhodospira halophila when grown under arsenite and sulphide conditions. Our analyses using ion chromatography-inductively coupled plasma mass spectrometry showed that thioarsenates are chemically formed under these conditions. However, they are more extensively generated and converted in the presence of bacteria, suggesting a biological process. Our quantitative proteomics revealed that the SoxAXYZB system, typically dedicated to thiosulphate oxidation, is overproduced under these growth conditions. Additionally, two electron carriers, cytochrome c551/c5 and HiPIP III, are also overproduced. Electron paramagnetic resonance spectroscopy suggested that these transporters participate in the reduction of the photosynthetic Reaction Centre. These results support the idea of a chemically and biologically formed thioarsenate being oxidized by the Sox system, with cytochrome c551/c5 and HiPIP III directing electrons towards the Reaction Centre.
Collapse
Affiliation(s)
- Giulia D'Ermo
- Aix-Marseille Université, CNRS, BIP-UMR 7281, Marseille, France
| | - Stéphane Audebert
- Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Luc Camoin
- Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Centre for Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth, Germany
| | | | - Sophie Delpoux
- Laboratoire HydroSciences Montpellier, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Régine Lebrun
- Aix-Marseille Université, CNRS, IMM-FR3479, Marseille Protéomique, Marseille, France
| | - Marianne Guiral
- Aix-Marseille Université, CNRS, BIP-UMR 7281, Marseille, France
| | | |
Collapse
|
6
|
Liu Y, Brinkhoff T, Berger M, Poehlein A, Voget S, Paoli L, Sunagawa S, Amann R, Simon M. Metagenome-assembled genomes reveal greatly expanded taxonomic and functional diversification of the abundant marine Roseobacter RCA cluster. MICROBIOME 2023; 11:265. [PMID: 38007474 PMCID: PMC10675870 DOI: 10.1186/s40168-023-01644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND The RCA (Roseobacter clade affiliated) cluster belongs to the family Roseobacteracea and represents a major Roseobacter lineage in temperate to polar oceans. Despite its prevalence and abundance, only a few genomes and one described species, Planktomarina temperata, exist. To gain more insights into our limited understanding of this cluster and its taxonomic and functional diversity and biogeography, we screened metagenomic datasets from the global oceans and reconstructed metagenome-assembled genomes (MAG) affiliated to this cluster. RESULTS The total of 82 MAGs, plus five genomes of isolates, reveal an unexpected diversity and novel insights into the genomic features, the functional diversity, and greatly refined biogeographic patterns of the RCA cluster. This cluster is subdivided into three genera: Planktomarina, Pseudoplanktomarina, and the most deeply branching Candidatus Paraplanktomarina. Six of the eight Planktomarina species have larger genome sizes (2.44-3.12 Mbp) and higher G + C contents (46.36-53.70%) than the four Pseudoplanktomarina species (2.26-2.72 Mbp, 42.22-43.72 G + C%). Cand. Paraplanktomarina is represented only by one species with a genome size of 2.40 Mbp and a G + C content of 45.85%. Three novel species of the genera Planktomarina and Pseudoplanktomarina are validly described according to the SeqCode nomenclature for prokaryotic genomes. Aerobic anoxygenic photosynthesis (AAP) is encoded in three Planktomarina species. Unexpectedly, proteorhodopsin (PR) is encoded in the other Planktomarina and all Pseudoplanktomarina species, suggesting that this light-driven proton pump is the most important mode of acquiring complementary energy of the RCA cluster. The Pseudoplanktomarina species exhibit differences in functional traits compared to Planktomarina species and adaptations to more resource-limited conditions. An assessment of the global biogeography of the different species greatly expands the range of occurrence and shows that the different species exhibit distinct biogeographic patterns. They partially reflect the genomic features of the species. CONCLUSIONS Our detailed MAG-based analyses shed new light on the diversification, environmental adaptation, and global biogeography of a major lineage of pelagic bacteria. The taxonomic delineation and validation by the SeqCode nomenclature of prominent genera and species of the RCA cluster may be a promising way for a refined taxonomic identification of major prokaryotic lineages and sublineages in marine and other prokaryotic communities assessed by metagenomics approaches. Video Abstract.
Collapse
Affiliation(s)
- Yanting Liu
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany.
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China.
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany.
| | - Martine Berger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Sonja Voget
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zurich, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zurich, Switzerland
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany.
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstr. 231, 26129, Oldenburg, Germany.
| |
Collapse
|
7
|
Sun W, Xu Y, Liang Y, Yu Q, Gao H. A novel bacterial sulfite dehydrogenase that requires three c-type cytochromes for electron transfer. Appl Environ Microbiol 2023; 89:e0110823. [PMID: 37732808 PMCID: PMC10617556 DOI: 10.1128/aem.01108-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 09/22/2023] Open
Abstract
c-type Cytochromes (c-Cyts), primarily as electron carriers and oxidoreductases, play a key role in energy transduction processes in virtually all living organisms. Many bacteria, such as Shewanella oneidensis, are particularly rich in c-Cyts, supporting respiratory versatility not seen in eukaryotes. Unfortunately, a large number of c-Cyts are underexplored, and their biological functions remain unknown. In this study, we identify SorCABD of S. oneidensis as a novel sulfite dehydrogenase (SDH), which catalyzes the oxidation of sulfite to sulfate. In addition to catalytic subunit SorA, this enzymatic complex includes three c-Cyt subunits, which all together carry out electron transfer. The electrons extracted from sulfite oxidation are ultimately delivered to oxygen, leading to oxygen reduction, a process relying on terminal oxidase cyt cbb3. Genomic analysis suggests that the homologs of this SDH are present in a small number of bacterial genera, Shewanella and Vibrio in particular. Because these bacteria are generally capable of reducing sulfite under anaerobic conditions, the co-existence of a sulfite oxidation system implies that they may play especially important roles in the transformation of sulfur species in natural environments.Importancec-type Cytochromes (c-Cyts) endow bacteria with high flexibility in their oxidative/respiratory systems, allowing them to extracellularly transform diverse inorganic and organic compounds for survival and growth. However, a large portion of the bacterial c-Cyts remain functionally unknown. Here, we identify three c-Cyts that work together as essential electron transfer partners for the catalytic subunit of a novel SDH in sulfite oxidation in Shewanella oneidensis. This characteristic makes S. oneidensis the first organism known to be capable of oxidizing and reducing sulfite. The findings suggest that Shewanella, along with a small number of other aquatic bacteria, would serve as a particular driving force in the biogeochemical sulfur cycle in nature.
Collapse
Affiliation(s)
- Weining Sun
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuanyou Xu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yawen Liang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qingzi Yu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Nosalova L, Piknova M, Kolesarova M, Pristas P. Cold Sulfur Springs-Neglected Niche for Autotrophic Sulfur-Oxidizing Bacteria. Microorganisms 2023; 11:1436. [PMID: 37374938 DOI: 10.3390/microorganisms11061436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Since the beginning of unicellular life, dissimilation reactions of autotrophic sulfur bacteria have been a crucial part of the biogeochemical sulfur cycle on Earth. A wide range of sulfur oxidation states is reflected in the diversity of metabolic pathways used by sulfur-oxidizing bacteria. This metabolically and phylogenetically diverse group of microorganisms inhabits a variety of environments, including extreme environments. Although they have been of interest to microbiologists for more than 150 years, meso- and psychrophilic chemolithoautotrophic sulfur-oxidizing microbiota are less studied compared to the microbiota of hot springs. Several recent studies suggested that cold sulfur waters harbor unique, yet not described, bacterial taxa.
Collapse
Affiliation(s)
- Lea Nosalova
- Department of Microbiology, Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Maria Piknova
- Department of Microbiology, Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Mariana Kolesarova
- Department of Microbiology, Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Peter Pristas
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, 040 01 Kosice, Slovakia
| |
Collapse
|
9
|
D'Angelo T, Goordial J, Lindsay MR, McGonigle J, Booker A, Moser D, Stepanauskus R, Orcutt BN. Replicated life-history patterns and subsurface origins of the bacterial sister phyla Nitrospirota and Nitrospinota. THE ISME JOURNAL 2023; 17:891-902. [PMID: 37012337 DOI: 10.1038/s41396-023-01397-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
The phyla Nitrospirota and Nitrospinota have received significant research attention due to their unique nitrogen metabolisms important to biogeochemical and industrial processes. These phyla are common inhabitants of marine and terrestrial subsurface environments and contain members capable of diverse physiologies in addition to nitrite oxidation and complete ammonia oxidation. Here, we use phylogenomics and gene-based analysis with ancestral state reconstruction and gene-tree-species-tree reconciliation methods to investigate the life histories of these two phyla. We find that basal clades of both phyla primarily inhabit marine and terrestrial subsurface environments. The genomes of basal clades in both phyla appear smaller and more densely coded than the later-branching clades. The extant basal clades of both phyla share many traits inferred to be present in their respective common ancestors, including hydrogen, one-carbon, and sulfur-based metabolisms. Later-branching groups, namely the more frequently studied classes Nitrospiria and Nitrospinia, are both characterized by genome expansions driven by either de novo origination or laterally transferred genes that encode functions expanding their metabolic repertoire. These expansions include gene clusters that perform the unique nitrogen metabolisms that both phyla are most well known for. Our analyses support replicated evolutionary histories of these two bacterial phyla, with modern subsurface environments representing a genomic repository for the coding potential of ancestral metabolic traits.
Collapse
Affiliation(s)
- Timothy D'Angelo
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA
| | - Jacqueline Goordial
- University of Guelph, School of Environmental Sciences, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Melody R Lindsay
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA
| | - Julia McGonigle
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA
- Basepaws Pet Genetics, 1820 W. Carson Street, Suite 202-351, Torrance, CA, 90501, USA
| | - Anne Booker
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA
| | - Duane Moser
- Desert Research Institute, 755 East Flamingo Road, Las Vegas, NV, 89119, USA
| | - Ramunas Stepanauskus
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA
| | - Beth N Orcutt
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA.
| |
Collapse
|
10
|
Nguyen PM, Do PT, Pham YB, Doan TO, Nguyen XC, Lee WK, Nguyen DD, Vadiveloo A, Um MJ, Ngo HH. Roles, mechanism of action, and potential applications of sulfur-oxidizing bacteria for environmental bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158203. [PMID: 36044953 DOI: 10.1016/j.scitotenv.2022.158203] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Sulfur (S) is a crucial component in the environment and living organisms. This work is the first attempt to provide an overview and critical discussion on the roles, mechanisms, and environmental applications of sulfur-oxidizing bacteria (SOB). The findings reveal that key enzymes of SOB embarked on oxidation of sulfide, sulfite, thiosulfate, and elemental S. Conversion of reduced S compounds was oxidatively catalyzed by various enzymes (e.g. sulfide: quinone oxidoreductase, flavocytochrome c-sulfide dehydrogenase, dissimilatory sulfite reductase, heterodisulfide reductase-like proteins). Environmental applications of SOB discussed include detoxifying hydrogen sulfide, soil bioremediation, and wastewater treatment. SOB producing S0 engaged in biological S soil amendments (e.g. saline-alkali soil remediation, the oxidation of sulfide-bearing minerals). Biotreatment of H2S using SOB occurred under both aerobic and anaerobic conditions. Sulfide, nitrate, and sulfamethoxazole were removed through SOB suspension cultures and S0-based carriers. Finally, this work presented future perspectives on SOB development, including S0 recovery, SOB enrichment, field measurement and identification of sulfur compounds, and the development of mathematical simulation.
Collapse
Affiliation(s)
- Phuong Minh Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Phuc Thi Do
- Faculty of Biology, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam; Key Laboratory of Enzyme and Protein Technology (KLEPT), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Yen Bao Pham
- Key Laboratory of Enzyme and Protein Technology (KLEPT), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Thi Oanh Doan
- Faculty of Environment, Ha Noi University of Natural Resources and Environment, No 41A, Phu Dien Street, Bac Tu Liem, Ha Noi, Vietnam
| | - Xuan Cuong Nguyen
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam.
| | - Woo Kul Lee
- Department of Chemical Engineering, Dankook University, 152 Jukjeonro, Yongin 16890, South Korea
| | - D Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, HCM City, 755414, Vietnam; Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, South Korea
| | - Ashiwin Vadiveloo
- Algae R & D Centre, Environmental and Conservation Sciences, College of Science, Health, Engineering and Education, 90 South Street, Murdoch, WA 6150, Australia
| | - Myoung-Jin Um
- Department of Civil Engineering, Kyonggi University, Suwon 16227, South Korea
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia.
| |
Collapse
|
11
|
Tanabe TS, Dahl C. HMS-S-S: a tool for the identification of sulfur metabolism-related genes and analysis of operon structures in genome and metagenome assemblies. Mol Ecol Resour 2022; 22:2758-2774. [PMID: 35579058 DOI: 10.1111/1755-0998.13642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022]
Abstract
Sulfur compounds are used in a variety of biological processes including respiration and photosynthesis. Sulfide and sulfur compounds of intermediary oxidation state can serve as electron donors for lithotrophic growth while sulfate, thiosulfate and sulfur are used as electron acceptors in anaerobic respiration. The biochemistry underlying the manifold transformations of inorganic sulfur compounds occurring in sulfur metabolizing prokaryotes is astonishingly complex and knowledge about it has immensely increased over the last years. The advent of next-generation sequencing approaches as well as the significant increase of data availability in public databases has driven focus of environmental microbiology to probing the metabolic capacity of microbial communities by analysis of this sequence data. To facilitate these analyses, we created HMS-S-S, a comprehensive equivalogous hidden Markov model (HMM)-supported tool. Protein sequences related to sulfur compound oxidation, reduction, transport and intracellular transfer are efficiently detected and related enzymes involved in dissimilatory sulfur oxidation as opposed to sulfur compound reduction can be confidently distinguished. HMM search results are coupled to corresponding genes, which allows analysis of co-occurrence, synteny and genomic neighborhood. The HMMs were validated on an annotated test dataset and by cross-validation. We also proved its performance by exploring meta-assembled genomes isolated from samples from environments with active sulfur cycling, including members of the cable bacteria, novel Acidobacteria and assemblies from a sulfur-rich glacier, and were able to replicate and extend previous reports.
Collapse
Affiliation(s)
- Tomohisa Sebastian Tanabe
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
12
|
Modularity of membrane-bound charge-translocating protein complexes. Biochem Soc Trans 2021; 49:2669-2685. [PMID: 34854900 DOI: 10.1042/bst20210462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023]
Abstract
Energy transduction is the conversion of one form of energy into another; this makes life possible as we know it. Organisms have developed different systems for acquiring energy and storing it in useable forms: the so-called energy currencies. A universal energy currency is the transmembrane difference of electrochemical potential (Δμ~). This results from the translocation of charges across a membrane, powered by exergonic reactions. Different reactions may be coupled to charge-translocation and, in the majority of cases, these reactions are catalyzed by modular enzymes that always include a transmembrane subunit. The modular arrangement of these enzymes allows for different catalytic and charge-translocating modules to be combined. Thus, a transmembrane charge-translocating module can be associated with different catalytic subunits to form an energy-transducing complex. Likewise, the same catalytic subunit may be combined with a different membrane charge-translocating module. In this work, we analyze the modular arrangement of energy-transducing membrane complexes and discuss their different combinations, focusing on the charge-translocating module.
Collapse
|
13
|
Wu B, Liu F, Fang W, Yang T, Chen GH, He Z, Wang S. Microbial sulfur metabolism and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146085. [PMID: 33714092 DOI: 10.1016/j.scitotenv.2021.146085] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Sulfur as a macroelement plays an important role in biochemistry in both natural environments and engineering biosystems, which can be further linked to other important element cycles, e.g. carbon, nitrogen and iron. Consequently, the sulfur cycling primarily mediated by sulfur compounds oxidizing microorganisms and sulfur compounds reducing microorganisms has enormous environmental implications, particularly in wastewater treatment and pollution bioremediation. In this review, to connect the knowledge in microbial sulfur metabolism to environmental applications, we first comprehensively review recent advances in understanding microbial sulfur metabolisms at molecular-, cellular- and ecosystem-levels, together with their energetics. We then discuss the environmental implications to fight against soil and water pollution, with four foci: (1) acid mine drainage, (2) water blackening and odorization in urban rivers, (3) SANI® and DS-EBPR processes for sewage treatment, and (4) bioremediation of persistent organic pollutants. In addition, major challenges and further developments toward elucidation of microbial sulfur metabolisms and their environmental applications are identified and discussed.
Collapse
Affiliation(s)
- Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Feifei Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, China
| | - Wenwen Fang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Tony Yang
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada
| | - Guang-Hao Chen
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
14
|
Calisto F, Pereira MM. The Ion-Translocating NrfD-Like Subunit of Energy-Transducing Membrane Complexes. Front Chem 2021; 9:663706. [PMID: 33928068 PMCID: PMC8076601 DOI: 10.3389/fchem.2021.663706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
Several energy-transducing microbial enzymes have their peripheral subunits connected to the membrane through an integral membrane protein, that interacts with quinones but does not have redox cofactors, the so-called NrfD-like subunit. The periplasmic nitrite reductase (NrfABCD) was the first complex recognized to have a membrane subunit with these characteristics and consequently provided the family's name: NrfD. Sequence analyses indicate that NrfD homologs are present in many diverse enzymes, such as polysulfide reductase (PsrABC), respiratory alternative complex III (ACIII), dimethyl sulfoxide (DMSO) reductase (DmsABC), tetrathionate reductase (TtrABC), sulfur reductase complex (SreABC), sulfite dehydrogenase (SoeABC), quinone reductase complex (QrcABCD), nine-heme cytochrome complex (NhcABCD), group-2 [NiFe] hydrogenase (Hyd-2), dissimilatory sulfite-reductase complex (DsrMKJOP), arsenate reductase (ArrC) and multiheme cytochrome c sulfite reductase (MccACD). The molecular structure of ACIII subunit C (ActC) and Psr subunit C (PsrC), NrfD-like subunits, revealed the existence of ion-conducting pathways. We performed thorough primary structural analyses and built structural models of the NrfD-like subunits. We observed that all these subunits are constituted by two structural repeats composed of four-helix bundles, possibly harboring ion-conducting pathways and containing a quinone/quinol binding site. NrfD-like subunits may be the ion-pumping module of several enzymes. Our data impact on the discussion of functional implications of the NrfD-like subunit-containing complexes, namely in their ability to transduce energy.
Collapse
Affiliation(s)
- Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universdade de Lisboa, Lisboa, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universdade de Lisboa, Lisboa, Portugal
| |
Collapse
|
15
|
Duarte AG, Barbosa ACC, Ferreira D, Manteigas G, Domingos RM, Pereira IAC. Redox loops in anaerobic respiration - The role of the widespread NrfD protein family and associated dimeric redox module. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148416. [PMID: 33753023 DOI: 10.1016/j.bbabio.2021.148416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
In prokaryotes, the proton or sodium motive force required for ATP synthesis is produced by respiratory complexes that present an ion-pumping mechanism or are involved in redox loops performed by membrane proteins that usually have substrate and quinone-binding sites on opposite sides of the membrane. Some respiratory complexes include a dimeric redox module composed of a quinone-interacting membrane protein of the NrfD family and an iron‑sulfur protein of the NrfC family. The QrcABCD complex of sulfate reducers, which includes the QrcCD module homologous to NrfCD, was recently shown to perform electrogenic quinone reduction providing the first conclusive evidence for energy conservation among this family. Similar redox modules are present in multiple respiratory complexes, which can be associated with electroneutral, energy-driven or electrogenic reactions. This work discusses the presence of the NrfCD/PsrBC dimeric redox module in different bioenergetics contexts and its role in prokaryotic energy conservation mechanisms.
Collapse
Affiliation(s)
- Américo G Duarte
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal.
| | - Ana C C Barbosa
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Delfim Ferreira
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Gonçalo Manteigas
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Renato M Domingos
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal.
| |
Collapse
|
16
|
Guiral M, Giudici-Orticoni MT. Microbe Profile: Aquifex aeolicus: an extreme heat-loving bacterium that feeds on gases and inorganic chemicals. Microbiology (Reading) 2021; 167. [DOI: 10.1099/mic.0.001010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterium ‘
Aquifex aeolicus
’ is the model organism for the deeply rooted phylum
Aquificae
. This ‘water-maker’ is an H2-oxidizing microaerophile that flourishes in extremely hot marine habitats, and it also thrives on the sulphur compounds commonly found in volcanic environments. ‘
A. aeolicus
’ has hyper-stable proteins and a fully sequenced genome, with some of its essential metabolic pathways deciphered (including energy conservation). Many of its proteins have also been characterized (especially structurally), including many of the enzymes involved in replication, transcription, RNA processing and cell envelope biosynthesis. Enzymes that are of promise for biotechnological applications have been widely investigated in this species. ‘
A. aeolicus
’ has also added to our understanding of the origins of life and evolution.
Collapse
Affiliation(s)
- Marianne Guiral
- BIP, UMR 7281, CNRS, Aix Marseille Université, Marseille, France
| | | |
Collapse
|