1
|
Agostini A, Bína D, Barcytė D, Bortolus M, Eliáš M, Carbonera D, Litvín R. Eustigmatophyte model of red-shifted chlorophyll a absorption in light-harvesting complexes. Commun Biol 2024; 7:1406. [PMID: 39472488 PMCID: PMC11522437 DOI: 10.1038/s42003-024-07101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Photosynthetic organisms harvest light for energy. Some eukaryotic algae have specialized in harvesting far-red light by tuning chlorophyll a absorption through a mechanism still to be elucidated. Here, we combined optically detected magnetic resonance and pulsed electron paramagnetic resonance measurements on red-adapted light-harvesting complexes, rVCP, isolated from the freshwater eustigmatophyte alga Trachydiscus minutus to identify the location of the pigments responsible for this remarkable adaptation. The pigments have been found to belong to an excitonic cluster of chlorophylls a at the core of the complex, close to the central carotenoids in L1/L2 sites. A pair of structural features of the Chl a403/a603 binding site, namely the histidine-to-asparagine substitution in the magnesium-ligation residue and the small size of the amino acid at the i-4 position, resulting in a [A/G]xxxN motif, are proposed to be the origin of this trait. Phylogenetic analysis of various eukaryotic red antennae identified several potential LHCs that could share this tuning mechanism. This knowledge of the red light acclimation mechanism in algae is a step towards rational design of algal strains in order to enhance light capture and efficiency in large-scale biotechnology applications.
Collapse
Affiliation(s)
- Alessandro Agostini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - David Bína
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Institute of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Marco Bortolus
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Radek Litvín
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic.
- Institute of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
2
|
Mohamed Abdoul-Latif F, Ainane A, Houmed Aboubaker I, Merito Ali A, Mohamed H, Jutur PP, Ainane T. Unlocking the Green Gold: Exploring the Cancer Treatment and the Other Therapeutic Potential of Fucoxanthin Derivatives from Microalgae. Pharmaceuticals (Basel) 2024; 17:960. [PMID: 39065808 PMCID: PMC11280058 DOI: 10.3390/ph17070960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Fucoxanthin, a carotenoid widely studied in marine microalgae, is at the heart of scientific research because of its promising bioactive properties for human health. Its unique chemical structure and specific biosynthesis, characterized by complex enzymatic conversion in marine organisms, have been examined in depth in this review. The antioxidant, anti-inflammatory, and anti-cancer activities of fucoxanthin have been rigorously supported by data from in vitro and in vivo experiments and early clinical trials. Additionally, this review explores emerging strategies to optimize the stability and efficacy of fucoxanthin, aiming to increase its solubility and bioavailability to enhance its therapeutic applications. However, despite these potential benefits, challenges persist, such as limited bioavailability and technological obstacles hindering its large-scale production. The medical exploitation of fucoxanthin thus requires an innovative approach and continuous optimization to overcome these barriers. Although further research is needed to refine its clinical use, fucoxanthin offers promising potential in the development of natural therapies aimed at improving human health. By integrating knowledge about its biosynthesis, mechanisms of action, and potential beneficial effects, future studies could open new perspectives in the treatment of cancer and other chronic diseases.
Collapse
Affiliation(s)
| | - Ayoub Ainane
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| | - Ibrahim Houmed Aboubaker
- Center for Research and Study of Djibouti, Medicinal Research Institute, Djibouti City P.O. Box 486, Djibouti
- Peltier Hospital of Djibouti, Djibouti City P.O. Box 2123, Djibouti
| | - Ali Merito Ali
- Center for Research and Study of Djibouti, Medicinal Research Institute, Djibouti City P.O. Box 486, Djibouti
| | - Houda Mohamed
- Center for Research and Study of Djibouti, Medicinal Research Institute, Djibouti City P.O. Box 486, Djibouti
- Peltier Hospital of Djibouti, Djibouti City P.O. Box 2123, Djibouti
| | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India;
| | - Tarik Ainane
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| |
Collapse
|
3
|
Maity S, Daskalakis V, Jansen TLC, Kleinekathöfer U. Electric Field Susceptibility of Chlorophyll c Leads to Unexpected Excitation Dynamics in the Major Light-Harvesting Complex of Diatoms. J Phys Chem Lett 2024; 15:2499-2510. [PMID: 38410961 PMCID: PMC10926154 DOI: 10.1021/acs.jpclett.3c03241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Diatoms are one of the most abundant photosynthetic organisms on earth and contribute largely to atmospheric oxygen production. They contain fucoxanthin and chlorophyll-a/c binding proteins (FCPs) as light-harvesting complexes with a remarkable adaptation to the fluctuating light on ocean surfaces. To understand the basis of the photosynthetic process in diatoms, the excitation energy funneling within FCPs must be probed. A state-of-the-art multiscale analysis within a quantum mechanics/molecular mechanics framework has been employed. To this end, the chlorophyll (Chl) excitation energies within the FCP complex from the diatom Phaeodactylum tricornutum have been determined. The Chl-c excitation energies were found to be 5-fold more susceptible to electric fields than those of Chl-a pigments and thus are significantly lower in FCP than in organic solvents. This finding challenges the general belief that the excitation energy of Chl-c is always higher than that of Chl-a in FCP proteins and reveals that Chl-c molecules are much more sensitive to electric fields within protein scaffolds than in Chl-a pigments. The analysis of the linear absorption spectrum and the two-dimensional electronic spectra of the FCP complex strongly supports these findings and allows us to study the excitation transfer within the FCP complex.
Collapse
Affiliation(s)
- Sayan Maity
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Vangelis Daskalakis
- Department
of Chemical Engineering, School of Engineering,
University of Patras, Patras 26504, Greece
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | | |
Collapse
|
4
|
Migliore A, Corni S, Agostini A, Carbonera D. Unraveling the electronic origin of a special feature in the triplet-minus-singlet spectra of carotenoids in natural photosystems. Phys Chem Chem Phys 2023; 25:28998-29016. [PMID: 37859550 DOI: 10.1039/d3cp03836j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The influence of carotenoid triplet states on the Qy electronic transitions of chlorophylls has been observed in experiments on light-harvesting complexes over the past three decades, but the interpretation of the resulting spectral feature in the triplet minus singlet (T-S) absorption spectra of photosystems is still debated, as the physical-chemical explanation of this feature has been elusive. Here, we resolve this debate, by explaining the T-S spectra of pigment complexes over the Qy-band spectral region through a comparative study of chlorophyll-carotenoid model dyads and larger pigment complexes from the main light harvesting complex of higher plants (LHCII). This goal is achieved by combining state-of-the-art time-dependent density functional theory with analysis of the relationship between electronic properties and nuclear structure, and by comparison to the experiment. We find that the special signature in the T-S spectra of both model and natural photosystems is determined by singlet-like triplet excitations that can be described as effective singlet excitations on chlorophylls influenced by a stable electronic triplet on the carotenoid. The comparison with earlier experiments on different light-harvesting complexes confirms our theoretical interpretation of the T-S spectra in the Qy spectral region. Our results indicate an important role for the chlorophyll-carotenoid electronic coupling, which is also responsible for the fast triplet-triplet energy transfer, suggesting a fast trapping of the triplet into the relaxed carotenoid structure. The gained understanding of the interplay between the electronic and nuclear structures is potentially informative for future studies of the mechanism of photoprotection by carotenoids.
Collapse
Affiliation(s)
- Agostino Migliore
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
- CNR Institute of Nanoscience, 41125 Modena, Italy
| | - Alessandro Agostini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|