1
|
Wang MY, Zhou Y, Li WL, Zhu LQ, Liu D. Friend or foe: Lactate in neurodegenerative diseases. Ageing Res Rev 2024; 101:102452. [PMID: 39127445 DOI: 10.1016/j.arr.2024.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Lactate, a byproduct of glycolysis, was considered as a metabolic waste until identified by studies on the Warburg effect. Increasing evidence elucidates that lactate functions as energy fuel, signaling molecule, and donor for protein lactylation. Altered lactate utilization is a common metabolic feature of the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. This review offers an overview of lactate metabolism from the perspective of production, transportation and clearance, and the role of lactate in neurodegenerative progression, as well as a summary of protein lactylation and the signaling function of lactate in neurodegenerative diseases. Besides, this review delves into the dual roles of changed lactate metabolism during neurodegeneration and explores prospective therapeutic methods targeting lactate. We propose that elucidating the correlation between lactate and neurodegeneration is pivotal for exploring innovative therapeutic interventions for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ming-Yu Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wen-Lian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
Cortes-Figueiredo F, Asseyer S, Chien C, Zimmermann HG, Ruprecht K, Schmitz-Hübsch T, Bellmann-Strobl J, Paul F, Morais VA. CD4 + T cell mitochondrial genotype in Multiple Sclerosis: a cross-sectional and longitudinal analysis. Sci Rep 2024; 14:7507. [PMID: 38553515 PMCID: PMC10980703 DOI: 10.1038/s41598-024-57592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system (CNS), with a largely unknown etiology, where mitochondrial dysfunction likely contributes to neuroaxonal loss and brain atrophy. Mirroring the CNS, peripheral immune cells from patients with MS, particularly CD4+ T cells, show inappropriate mitochondrial phenotypes and/or oxidative phosphorylation (OxPhos) insufficiency, with a still unknown contribution of mitochondrial DNA (mtDNA). We hypothesized that mitochondrial genotype in CD4+ T cells might influence MS disease activity and progression. Thus, we performed a retrospective cross-sectional and longitudinal study on patients with a recent diagnosis of either Clinically Isolated Syndrome (CIS) or Relapsing-Remitting MS (RRMS) at two timepoints: 6 months (VIS1) and 36 months (VIS2) after disease onset. Our primary outcomes were the differences in mtDNA extracted from CD4+ T cells between: (I) patients with CIS/RRMS (PwMS) at VIS1 and age- and sex-matched healthy controls (HC), in the cross-sectional analysis, and (II) different diagnostic evolutions in PwMS from VIS1 to VIS2, in the longitudinal analysis. We successfully performed mtDNA whole genome sequencing (mean coverage: 2055.77 reads/base pair) in 183 samples (61 triplets). Nonetheless, mitochondrial genotype was not associated with a diagnosis of CIS/RRMS, nor with longitudinal diagnostic evolution.
Collapse
Affiliation(s)
- Filipe Cortes-Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susanna Asseyer
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudia Chien
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hanna G Zimmermann
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany.
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Vanessa A Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
3
|
Jeong H, Lee B, Han SJ, Sohn DH. Glucose metabolic reprogramming in autoimmune diseases. Anim Cells Syst (Seoul) 2023; 27:149-158. [PMID: 37465289 PMCID: PMC10351453 DOI: 10.1080/19768354.2023.2234986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
Autoimmune diseases are conditions in which the immune system mistakenly targets and damages healthy tissue in the body. In recent decades, the incidence of autoimmune diseases has increased, resulting in a significant disease burden. The current autoimmune therapies focus on targeting inflammation or inducing immunosuppression rather than addressing the underlying cause of the diseases. The activity of metabolic pathways is elevated in autoimmune diseases, and metabolic changes are increasingly recognized as important pathogenic processes underlying these. Therefore, metabolically targeted therapies may represent an important strategy for treating autoimmune diseases. This review provides a comprehensive overview of the evidence surrounding glucose metabolic reprogramming and its potential applications in drug discovery and development for autoimmune diseases, such as type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and systemic sclerosis.
Collapse
Affiliation(s)
- Hoim Jeong
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Beomgu Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Seung Jin Han
- Department of Medical Biotechnology, Inje University, Gimhae, Republic of Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| |
Collapse
|
4
|
Bittner S, Pape K, Klotz L, Zipp F. Implications of immunometabolism for smouldering MS pathology and therapy. Nat Rev Neurol 2023:10.1038/s41582-023-00839-6. [PMID: 37430070 DOI: 10.1038/s41582-023-00839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/12/2023]
Abstract
Clinical symptom worsening in patients with multiple sclerosis (MS) is driven by inflammation compartmentalized within the CNS, which results in chronic neuronal damage owing to insufficient repair mechanisms. The term 'smouldering inflammation' summarizes the biological aspects underlying this chronic, non-relapsing and immune-mediated mechanism of disease progression. Smouldering inflammation is likely to be shaped and sustained by local factors in the CNS that account for the persistence of this inflammatory response and explain why current treatments for MS do not sufficiently target this process. Local factors that affect the metabolic properties of glial cells and neurons include cytokines, pH value, lactate levels and nutrient availability. This Review summarizes current knowledge of the local inflammatory microenvironment in smouldering inflammation and how it interacts with the metabolism of tissue-resident immune cells, thereby promoting inflammatory niches within the CNS. The discussion highlights environmental and lifestyle factors that are increasingly recognized as capable of altering immune cell metabolism and potentially responsible for smouldering pathology in the CNS. Currently approved MS therapies that target metabolic pathways are also discussed, along with their potential for preventing the processes that contribute to smouldering inflammation and thereby to progressive neurodegenerative damage in MS.
Collapse
Affiliation(s)
- Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Katrin Pape
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
5
|
Greeck VB, Williams SK, Haas J, Wildemann B, Fairless R. Alterations in Lymphocytic Metabolism-An Emerging Hallmark of MS Pathophysiology? Int J Mol Sci 2023; 24:ijms24032094. [PMID: 36768415 PMCID: PMC9917089 DOI: 10.3390/ijms24032094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterised by acute inflammation and subsequent neuro-axonal degeneration resulting in progressive neurological impairment. Aberrant immune system activation in the periphery and subsequent lymphocyte migration to the CNS contribute to the pathophysiology. Recent research has identified metabolic dysfunction as an additional feature of MS. It is already well known that energy deficiency in neurons caused by impaired mitochondrial oxidative phosphorylation results in ionic imbalances that trigger degenerative pathways contributing to white and grey matter atrophy. However, metabolic dysfunction in MS appears to be more widespread than the CNS. This review focuses on recent research assessing the metabolism and mitochondrial function in peripheral immune cells of MS patients and lymphocytes isolated from murine models of MS. Emerging evidence suggests that pharmacological modulation of lymphocytic metabolism may regulate their subtype differentiation and rebalance pro- and anti-inflammatory functions. As such, further understanding of MS immunometabolism may aid the identification of novel treatments to specifically target proinflammatory immune responses.
Collapse
Affiliation(s)
- Viktoria B. Greeck
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sarah K. Williams
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jürgen Haas
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany
| | - Brigitte Wildemann
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
6
|
Mora VP, Loaiza RA, Soto JA, Bohmwald K, Kalergis AM. Involvement of trained immunity during autoimmune responses. J Autoimmun 2022:102956. [DOI: 10.1016/j.jaut.2022.102956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
|
7
|
Ma T, Tsai C, Luo S, Chen W, Huang Y, Su W. Chemical structures and compositions of peptide copolymer films affect their functional properties for cell adhesion and cell viability. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Liebmann M, Korn L, Janoschka C, Albrecht S, Lauks S, Herrmann AM, Schulte-Mecklenbeck A, Schwab N, Schneider-Hohendorf T, Eveslage M, Wildemann B, Luessi F, Schmidt S, Diebold M, Bittner S, Gross CC, Kovac S, Zipp F, Derfuss T, Kuhlmann T, König S, Meuth SG, Wiendl H, Klotz L. Dimethyl fumarate treatment restrains the antioxidative capacity of T cells to control autoimmunity. Brain 2021; 144:3126-3141. [PMID: 34849598 PMCID: PMC8634070 DOI: 10.1093/brain/awab307] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/11/2021] [Accepted: 07/25/2021] [Indexed: 02/02/2023] Open
Abstract
Dimethyl fumarate, an approved treatment for relapsing-remitting multiple sclerosis, exerts pleiotropic effects on immune cells as well as CNS resident cells. Here, we show that dimethyl fumarate exerts a profound alteration of the metabolic profile of human CD4+ as well as CD8+ T cells and restricts their antioxidative capacities by decreasing intracellular levels of the reactive oxygen species scavenger glutathione. This causes an increase in mitochondrial reactive oxygen species levels accompanied by an enhanced mitochondrial stress response, ultimately leading to impaired mitochondrial function. Enhanced mitochondrial reactive oxygen species levels not only result in enhanced T-cell apoptosis in vitro as well as in dimethyl fumarate-treated patients, but are key for the well-known immunomodulatory effects of dimethyl fumarate both in vitro and in an animal model of multiple sclerosis, i.e. experimental autoimmune encephalomyelitis. Indeed, dimethyl fumarate immune-modulatory effects on T cells were completely abrogated by pharmacological interference of mitochondrial reactive oxygen species production. These data shed new light on dimethyl fumarate as bona fide immune-metabolic drug that targets the intracellular stress response in activated T cells, thereby restricting mitochondrial function and energetic capacity, providing novel insight into the role of oxidative stress in modulating cellular immune responses and T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Marie Liebmann
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Lisanne Korn
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Claudia Janoschka
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Stefanie Albrecht
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Sarah Lauks
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Alexander M Herrmann
- Department of Neurology, University Hospital Düsseldorf, Düsseldorf 40225, Germany
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Nicholas Schwab
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Tilman Schneider-Hohendorf
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Maria Eveslage
- Institute of Biostatistics and Clinical Research, University of Münster, Münster 48149, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg 69120, Germany
| | - Felix Luessi
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | | | - Martin Diebold
- Laboratory of Clinical Neuroimmunology, Neurologic Clinic and Policlinic, Departments of Biomedicine and Clinical Research, University Hospital Basel, and University of Basel, Basel 4031, Switzerland
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Tobias Derfuss
- Laboratory of Clinical Neuroimmunology, Neurologic Clinic and Policlinic, Departments of Biomedicine and Clinical Research, University Hospital Basel, and University of Basel, Basel 4031, Switzerland
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Clinical Research Center, University of Münster, Münster 48149, Germany
| | - Sven G Meuth
- Department of Neurology, University Hospital Düsseldorf, Düsseldorf 40225, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| |
Collapse
|
9
|
Runtsch MC, Ferrara G, Angiari S. Metabolic determinants of leukocyte pathogenicity in neurological diseases. J Neurochem 2020; 158:36-58. [PMID: 32880969 DOI: 10.1111/jnc.15169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Neuroinflammatory and neurodegenerative diseases are characterized by the recruitment of circulating blood-borne innate and adaptive immune cells into the central nervous system (CNS). These leukocytes sustain the detrimental response in the CNS by releasing pro-inflammatory mediators that induce activation of local glial cells, blood-brain barrier (BBB) dysfunction, and neural cell death. However, infiltrating peripheral immune cells could also dampen CNS inflammation and support tissue repair. Recent advances in the field of immunometabolism demonstrate the importance of metabolic reprogramming for the activation and functionality of such innate and adaptive immune cell populations. In particular, an increasing body of evidence suggests that the activity of metabolites and metabolic enzymes could influence the pathogenic potential of immune cells during neuroinflammatory and neurodegenerative disorders. In this review, we discuss the role of intracellular metabolic cues in regulating leukocyte-mediated CNS damage in Alzheimer's and Parkinson's disease, multiple sclerosis and stroke, highlighting the therapeutic potential of drugs targeting metabolic pathways for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Marah C Runtsch
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | | | - Stefano Angiari
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Signoriello E, Iardino P, Casertano S, De Lucia D, Pucciarelli A, Puoti G, Chiosi E, Lus G. 12-months prospective Pentraxin-3 and metabolomic evaluation in multiple sclerosis patients treated with glatiramer acetate. J Neuroimmunol 2020; 348:577385. [PMID: 32927398 DOI: 10.1016/j.jneuroim.2020.577385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pentraxin-3 (PTX-3) is involved in acute immunological responses and it is a pro-inflammatory protein and a novel biomarker of inflammatory diseases. It is demonstrated that PTX-3 is higher in cerebrospinal fluid (CSF) of aggressive Multiple Sclerosis (MS). Metabolomics, the identification of small endogenous molecules, offers a molecular profile of MS. Glatiramer acetate (GA) is a widely used treatment for (MS) but its mechanism of action is not completely defined. The aim of our study is to analyze PTX-3 and metabolomic profile in MS patients compared to controls and to investigate the effect of GA on PXT-3 and metabolic molecules during treatment in responder and not responder MS patients. METHODS 28 unrelated MS patients and 27 age-and sex-matched controls were recruited. In serum, PTX-3 levels were measured by ELISA and Metabolomic panel was evaluated trough Nuclear Magnetic Resonance (NMR). According to clinical practice patients started GA treatment; PTX-3 and metabolomic identification were performed before and during treatment. Responders to treatment were identified if no evidence of instrumental, clinical relapses and disability progression (NEDA) occurred during follow up. RESULTS Serum PTX-3 levels were higher in MS patients compared to matched controls (7,85 ± 2,19 vs 6,20 ± 1,63 ng/ml) (p = 0,03); metabolomic evaluation shows higher levels of lactate and lower levels of valine, tyrosine and tryptophan in MS patients compared to controls. During therapy, PTX-3 levels have been reduced statistically significant (p = 0,001) at six months and one year of treatment. After one year, of the twenty patients that completed the study, 55% were considered fully responders to treatment; in these patients the mean reduction of PTX-3 at one year was higher respect to not responders (-3,82 ± 1,24 ng/ml vs -2,32 ± 1,03 ng/ml p = 0,02) and we observed a higher reduction of lactate, tyrosine and hypoxanthine and an increase of hydroxyproline and ADP as well as of three oxidative phosphorylation markers, citrulline, ornithine and tryptophan approaching the metabolic profile of healthy subjects. DISCUSSION AND CONCLUSIONS We demonstrated a metabolomic imbalance with mitochondrial dysfunction detected by higher levels of lactate and lower levels of tryptophan, tyrosine and valine in MS patients compared to healthy controls. The reduction of PTX-3 levels and the restoring of mitochondrial function, reducing oxidative stress by GA, allows to identify responder patients. Further and larger studies are needed to understand the predictive role of PTX-3 and metabolomic pattern in the identification of responder patients to GA.
Collapse
Affiliation(s)
- E Signoriello
- Multiple Sclerosis Center, Second Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Italy.
| | - P Iardino
- Clinical and molecular pathology, University of Campania, Luigi Vavitelli, Italy
| | - S Casertano
- Multiple Sclerosis Center, Second Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Italy
| | - D De Lucia
- Multiple Sclerosis Center, Second Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Italy
| | - A Pucciarelli
- Department of precision Medicine, University of Campania Luigi Vanvitelli, Italy
| | - G Puoti
- Multiple Sclerosis Center, Second Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Italy
| | - E Chiosi
- Department of precision Medicine, University of Campania Luigi Vanvitelli, Italy
| | - G Lus
- Multiple Sclerosis Center, Second Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Italy
| |
Collapse
|
11
|
Immunometabolism and autoimmunity. Curr Opin Immunol 2020; 67:10-17. [PMID: 32784085 DOI: 10.1016/j.coi.2020.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
Over the last few years, immune cell metabolism has become one of the most stimulating areas of investigation in the field of immunology. Compelling evidence has revealed that metabolic pathways are closely associated to cell functions and immune cells adopt defined metabolic programs to sustain their activity and respond to micro-environmental demands. It is now clear that alterations in cell metabolism can favour dysregulation typical of autoreactive immune cells, thus sustaining loss of immunological self-tolerance. In this short review, we highlight the main metabolic alterations associated with both innate and adaptive immune cells in autoimmune conditions, such as multiple sclerosis (MS) and type 1 diabetes (T1D). We also summarize recent findings reporting the use of pharmacological agents, which modulate the immunometabolism to possibly control immune responses during autoimmune disorders.
Collapse
|
12
|
Suppression of the Peripheral Immune System Limits the Central Immune Response Following Cuprizone-Feeding: Relevance to Modelling Multiple Sclerosis. Cells 2019; 8:cells8111314. [PMID: 31653054 PMCID: PMC6912385 DOI: 10.3390/cells8111314] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Cuprizone (CPZ) preferentially affects oligodendrocytes (OLG), resulting in demyelination. To investigate whether central oligodendrocytosis and gliosis triggered an adaptive immune response, the impact of combining a standard (0.2%) or low (0.1%) dose of ingested CPZ with disruption of the blood brain barrier (BBB), using pertussis toxin (PT), was assessed in mice. 0.2% CPZ(±PT) for 5 weeks produced oligodendrocytosis, demyelination and gliosis plus marked splenic atrophy (37%) and reduced levels of CD4 (44%) and CD8 (61%). Conversely, 0.1% CPZ(±PT) produced a similar oligodendrocytosis, demyelination and gliosis but a smaller reduction in splenic CD4 (11%) and CD8 (14%) levels and no splenic atrophy. Long-term feeding of 0.1% CPZ(±PT) for 12 weeks produced similar reductions in CD4 (27%) and CD8 (43%), as well as splenic atrophy (33%), as seen with 0.2% CPZ(±PT) for 5 weeks. Collectively, these results suggest that 0.1% CPZ for 5 weeks may be a more promising model to study the ‘inside-out’ theory of Multiple Sclerosis (MS). However, neither CD4 nor CD8 were detected in the brain in CPZ±PT groups, indicating that CPZ-mediated suppression of peripheral immune organs is a major impediment to studying the ‘inside-out’ role of the adaptive immune system in this model over long time periods. Notably, CPZ(±PT)-feeding induced changes in the brain proteome related to the suppression of immune function, cellular metabolism, synaptic function and cellular structure/organization, indicating that demyelinating conditions, such as MS, can be initiated in the absence of adaptive immune system involvement.
Collapse
|
13
|
Kaushik DK, Bhattacharya A, Mirzaei R, Rawji KS, Ahn Y, Rho JM, Yong VW. Enhanced glycolytic metabolism supports transmigration of brain-infiltrating macrophages in multiple sclerosis. J Clin Invest 2019; 129:3277-3292. [PMID: 31112527 DOI: 10.1172/jci124012] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The migration of leukocytes into the CNS drives the neuropathology of multiple sclerosis (MS). This penetration likely utilizes energy resources that remain to be defined. Using the experimental autoimmune encephalomyelitis (EAE) model of MS, we determined that macrophages within the perivascular cuff of post-capillary venules are highly glycolytic as manifested by strong expression of lactate dehydrogenase A (LDHA) that converts pyruvate to lactate. These macrophages expressed prominent levels of monocarboxylate transporter-4 (MCT-4) specialized in secreting lactate from glycolytic cells. The functional relevance of glycolysis was confirmed by siRNA-mediated knockdown of LDHA and MCT-4, which decreased lactate secretion and macrophage transmigration. MCT-4 was in turn regulated by EMMPRIN (CD147) as determined through co-expression/co-immunoprecipitation studies, and siRNA-mediated EMMPRIN silencing. The functional relevance of MCT-4/EMMPRIN interaction was affirmed by lower macrophage transmigration in culture using the MCT-4 inhibitor, α-cyano-4-hydroxy-cinnamic acid (CHCA), a cinnamon derivative. CHCA also reduced leukocyte infiltration and the clinical severity of EAE. Relevance to MS was corroborated by the strong expression of MCT-4, EMMPRIN and LDHA in perivascular macrophages in MS brains. These results detail the metabolism of macrophages for transmigration from perivascular cuffs into the CNS parenchyma and identifies CHCA and diet as potential modulators of neuro-inflammation in MS.
Collapse
Affiliation(s)
| | | | - Reza Mirzaei
- Hotchkiss Brain Institute.,Department of Clinical Neurosciences
| | - Khalil S Rawji
- Hotchkiss Brain Institute.,Department of Clinical Neurosciences
| | - Younghee Ahn
- Alberta Children's Hospital Research Institute.,Department of Pediatrics, and
| | - Jong M Rho
- Alberta Children's Hospital Research Institute.,Department of Pediatrics, and.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute.,Department of Clinical Neurosciences
| |
Collapse
|
14
|
Lunetti P, Di Giacomo M, Vergara D, De Domenico S, Maffia M, Zara V, Capobianco L, Ferramosca A. Metabolic reprogramming in breast cancer results in distinct mitochondrial bioenergetics between luminal and basal subtypes. FEBS J 2019; 286:688-709. [PMID: 30657636 DOI: 10.1111/febs.14756] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/15/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction is a key feature of cancer and is frequently associated with increased aggressiveness and metastatic potential. Recent evidence has brought to light a metabolic rewiring that takes place during the epithelial-to-mesenchymal transition (EMT), a process that drives the invasive capability of malignant tumors, and highlights a mechanistic link between mitochondrial dysfunction and EMT that has been only partially investigated. In this study, we characterized mitochondrial function and bioenergetic status of cultured human breast cancer cell lines, including luminal-like and basal-like subtypes. Through a combination of biochemical and functional studies, we demonstrated that basal-like cell lines exhibit impaired, but not completely inactive, mitochondrial function, and rely on a consequent metabolic switch to glycolysis to support their ATP demand. These altered metabolic activities are linked to modifications of key electron transport chain proteins and a significant increase in levels of reactive oxygen species compared to luminal cells. Furthermore, we observed that the stable knockdown of EMT markers caused functional changes in mitochondria that result in acquisition of a hybrid glycolysis/OXPHOS phenotype in cancer cells as a means to sustain their metabolic demand.
Collapse
Affiliation(s)
- Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Mariangela Di Giacomo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Stefania De Domenico
- Institute of Food Production Sciences, C.N.R. Unit of Lecce, Italy.,Biotecgen, c/o Department of Biological and Environmental Sciences and Technologies, Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Vincenzo Zara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Alessandra Ferramosca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
15
|
Dymond T. The Effects of Viral Infection on Lymphocyte Metabolism: A New Perspective on Disease Characterization. Viral Immunol 2018; 31:278-281. [DOI: 10.1089/vim.2017.0194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
16
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism and Potential PPARγ Agonist Treatment Approaches. Int J Mol Sci 2018; 19:ijms19041212. [PMID: 29659554 PMCID: PMC5979570 DOI: 10.3390/ijms19041212] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022] Open
Abstract
Demyelination in multiple sclerosis (MS) cells is the site of several energy metabolic abnormalities driven by dysregulation between the opposed interplay of peroxisome proliferator-activated receptor γ (PPARγ) and WNT/β-catenin pathways. We focus our review on the opposing interactions observed in demyelinating processes in MS between the canonical WNT/β-catenin pathway and PPARγ and their reprogramming energy metabolism implications. Demyelination in MS is associated with chronic inflammation, which is itself associated with the release of cytokines by CD4+ Th17 cells, and downregulation of PPARγ expression leading to the upregulation of the WNT/β-catenin pathway. Upregulation of WNT/β-catenin signaling induces activation of glycolytic enzymes that modify their energy metabolic behavior. Then, in MS cells, a large portion of cytosolic pyruvate is converted into lactate. This phenomenon is called the Warburg effect, despite the availability of oxygen. The Warburg effect is the shift of an energy transfer production from mitochondrial oxidative phosphorylation to aerobic glycolysis. Lactate production is correlated with increased WNT/β-catenin signaling and demyelinating processes by inducing dysfunction of CD4+ T cells leading to axonal and neuronal damage. In MS, downregulation of PPARγ decreases insulin sensitivity and increases neuroinflammation. PPARγ agonists inhibit Th17 differentiation in CD4+ T cells and then diminish release of cytokines. In MS, abnormalities in the regulation of circadian rhythms stimulate the WNT pathway to initiate the demyelination process. Moreover, PPARγ contributes to the regulation of some key circadian genes. Thus, PPARγ agonists interfere with reprogramming energy metabolism by directly inhibiting the WNT/β-catenin pathway and circadian rhythms and could appear as promising treatments in MS due to these interactions.
Collapse
Affiliation(s)
- Alexandre Vallée
- Délégation à la Recherche Clinique et à l'Innovation (DRCI), Hôpital Foch, 92150 Suresnes, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France.
| | - Rémy Guillevin
- Data Analysis and Computations Through Imaging Modeling-Mathématiques (DACTIM), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348 (Laboratoire de Mathématiques et Application), University of Poitiers, Centre Hospitalier Universitaire (CHU) de Poitiers, 86000 Poitiers, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, University of Picardie Jules Verne (UPJV), 80000 Amiens, France.
- LMA (Laboratoire de Mathématiques et Applications), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, Université de Poitiers, 86000 Poitiers, France.
| |
Collapse
|
17
|
Chen Z, Liu M, Li L, Chen L. Involvement of the Warburg effect in non-tumor diseases processes. J Cell Physiol 2017; 233:2839-2849. [PMID: 28488732 DOI: 10.1002/jcp.25998] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/16/2022]
Abstract
Warburg effect, as an energy shift from mitochondrial oxidative phosphorylation to aerobic glycolysis, is extensively found in various cancers. Interestingly, increasing researchers show that Warburg effect plays a crucial role in non-tumor diseases. For instance, inhibition of Warburg effect can alleviate pulmonary vascular remodeling in the process of pulmonary hypertension (PH). Interference of Warburg effect improves mitochondrial function and cardiac function in the process of cardiac hypertrophy and heart failure. Additionally, the Warburg effect induces vascular smooth muscle cell proliferation and contributes to atherosclerosis. Warburg effect may also involve in axonal damage and neuronal death, which are related with multiple sclerosis. Furthermore, Warburg effect significantly promotes cell proliferation and cyst expansion in polycystic kidney disease (PKD). Besides, Warburg effect relieves amyloid β-mediated cell death in Alzheimer's disease. And Warburg effect also improves the mycobacterium tuberculosis infection. Finally, we also introduce some glycolytic agonists. This review focuses on the newest researches about the role of Warburg effect in non-tumor diseases, including PH, tuberculosis, idiopathic pulmonary fibrosis (IPF), failing heart, cardiac hypertrophy, atherosclerosis, Alzheimer's diseases, multiple sclerosis, and PKD. Obviously, Warburg effect may be a potential therapeutic target for those non-tumor diseases.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Meiqing Liu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| |
Collapse
|