1
|
Ravindranath MH, Ravindranath NM, Selvan SR, Hilali FE, Amato-Menker CJ, Filippone EJ. Cell Surface B2m-Free Human Leukocyte Antigen (HLA) Monomers and Dimers: Are They Neo-HLA Class and Proto-HLA? Biomolecules 2023; 13:1178. [PMID: 37627243 PMCID: PMC10452486 DOI: 10.3390/biom13081178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Cell surface HLA-I molecules (Face-1) consist of a polypeptide heavy chain (HC) with two groove domains (G domain) and one constant domain (C-domain) as well as a light chain, B2-microglobulin (B2m). However, HCs can also independently emerge unfolded on the cell surface without peptides as B2m-free HC monomers (Face-2), B2m-free HC homodimers (Face 3), and B2m-free HC heterodimers (Face-4). The transport of these HLA variants from ER to the cell surface was confirmed by antiviral antibiotics that arrest the release of newly synthesized proteins from the ER. Face-2 occurs at low levels on the normal cell surface of the lung, bronchi, epidermis, esophagus, breast, stomach, ilium, colorectum, gall bladder, urinary bladder, seminal vesicles ovarian epithelia, endometrium, thymus, spleen, and lymphocytes. They are upregulated on immune cells upon activation by proinflammatory cytokines, anti-CD3 antibodies, antibiotics (e.g., ionomycin), phytohemagglutinin, retinoic acid, and phorbol myristate acetate. Their density on the cell surface remains high as long as the cells remain in an activated state. After activation-induced upregulation, the Face-2 molecules undergo homo- and hetero-dimerization (Face-3 and Face-4). Alterations in the redox environment promote dimerization. Heterodimerization can occur among and between the alleles of different haplotypes. The glycosylation of these variants differ from that of Face-1, and they may occur with bound exogenous peptides. Spontaneous arthritis occurs in HLA-B27+ mice lacking B2m (HLA-B27+ B2m-/-) but not in HLA-B27+ B2m+/- mice. The mice with HLA-B27 in Face-2 spontaneous configuration develop symptoms such as changes in nails and joints, hair loss, and swelling in paws, leading to ankyloses. Anti-HC-specific mAbs delay disease development. Some HLA-I polyreactive mAbs (MEM series) used for immunostaining confirm the existence of B2m-free variants in several cancer cells. The upregulation of Face-2 in human cancers occurs concomitantly with the downregulation of intact HLAs (Face-1). The HLA monomeric and dimeric variants interact with inhibitory and activating ligands (e.g., KIR), growth factors, cytokines, and neurotransmitters. Similarities in the amino acid sequences of the HLA-I variants and HLA-II β-chain suggest that Face-2 could be the progenitor of both HLA classes. These findings may support the recognition of these variants as a neo-HLA class and proto-HLA.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
| | - Narendranath M. Ravindranath
- Norris Dental Science Center, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA;
| | - Senthamil R. Selvan
- Division of Immunology and Hematology Devices, OHT 7: Office of In Vitro Diagnostics, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA;
| | - Fatiha El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibnou Zohr University, Agadir 80000, Morocco;
| | - Carly J. Amato-Menker
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA;
| |
Collapse
|
2
|
Garavaglia ML, Giustarini D, Colombo G, Reggiani F, Finazzi S, Calatroni M, Landoni L, Portinaro NM, Milzani A, Badalamenti S, Rossi R, Dalle-Donne I. Blood Thiol Redox State in Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23052853. [PMID: 35269995 PMCID: PMC8911004 DOI: 10.3390/ijms23052853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Thiols (sulfhydryl groups) are effective antioxidants that can preserve the correct structure of proteins, and can protect cells and tissues from damage induced by oxidative stress. Abnormal levels of thiols have been measured in the blood of patients with moderate-to-severe chronic kidney disease (CKD) compared to healthy subjects, as well as in end-stage renal disease (ESRD) patients on haemodialysis or peritoneal dialysis. The levels of protein thiols (a measure of the endogenous antioxidant capacity inversely related to protein oxidation) and S-thiolated proteins (mixed disulphides of protein thiols and low molecular mass thiols), and the protein thiolation index (the molar ratio of the S-thiolated proteins to free protein thiols in plasma) have been investigated in the plasma or red blood cells of CKD and ESRD patients as possible biomarkers of oxidative stress. This type of minimally invasive analysis provides valuable information on the redox status of the less-easily accessible tissues and organs, and of the whole organism. This review provides an overview of reversible modifications in protein thiols in the setting of CKD and renal replacement therapy. The evidence suggests that protein thiols, S-thiolated proteins, and the protein thiolation index are promising biomarkers of reversible oxidative stress that could be included in the routine monitoring of CKD and ESRD patients.
Collapse
Affiliation(s)
- Maria Lisa Garavaglia
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (M.L.G.); (G.C.); (L.L.); (A.M.)
| | - Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018–2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy;
| | - Graziano Colombo
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (M.L.G.); (G.C.); (L.L.); (A.M.)
| | - Francesco Reggiani
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy or (F.R.); (S.F.); or (M.C.); (S.B.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Silvia Finazzi
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy or (F.R.); (S.F.); or (M.C.); (S.B.)
| | - Marta Calatroni
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy or (F.R.); (S.F.); or (M.C.); (S.B.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Lucia Landoni
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (M.L.G.); (G.C.); (L.L.); (A.M.)
| | - Nicola Marcello Portinaro
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Aldo Milzani
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (M.L.G.); (G.C.); (L.L.); (A.M.)
| | - Salvatore Badalamenti
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy or (F.R.); (S.F.); or (M.C.); (S.B.)
| | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018–2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy;
- Correspondence: (R.R.); (I.D.-D.)
| | - Isabella Dalle-Donne
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (M.L.G.); (G.C.); (L.L.); (A.M.)
- Correspondence: (R.R.); (I.D.-D.)
| |
Collapse
|
3
|
Reggiani F, Colombo G, Astori E, Landoni L, Finazzi S, Milzani A, Angelini C, Dalle-Donne I, Cucchiari D. Preliminary experience on the use of sucrosomial iron in hemodialysis: focus on safety, hemoglobin maintenance and oxidative stress. Int Urol Nephrol 2021; 54:1145-1153. [PMID: 34510284 DOI: 10.1007/s11255-021-02983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Iron is usually administered in hemodialysis patients by parenteral route, as oral absorption is poor due to high hepcidin levels. However, administrations of intravenous iron and iron overload are associated with high oxidative stress and systemic inflammation that can affect patient survival. With this study, we evaluated an alternative type of oral iron for the treatment of anemia in hemodialysis patients. The formulation consists in ferric pyrophosphate covered by phospholipids plus sucrose ester of fatty acid matrix, named sucrosomial iron, whose absorption is not influenced by hepcidin. METHODS Twenty-four (24) patients undergoing chronic hemodialysis switched iron supplementation from intravenous (ferric gluconate 62.5 mg weekly) to oral (sucrosomial iron, 90 mg weekly in 3 administrations of 30 mg) route for 3 months. Classical anemia, iron metabolism, inflammation and nutritional biomarkers were monitored, as well as biomarkers of oxidative stress, such as protein-bound di-tyrosines, protein carbonylation, advanced oxidation protein products and protein thiols. RESULTS Over the 3 months, hemoglobin values remained stable, as the values of hematocrit and mean corpuscular volume. In parallel, other anemia parameters dropped, including ferritin, transferrin saturation and serum iron. On the other side, nutritional biomarkers, such as total proteins and transferrin, increased significantly during the time frame. We also observed a significant decrease in white blood cells as well as a non-significant reduction in C-reactive protein and some oxidative stress biomarkers, such as protein carbonyls and di-tyrosines. CONCLUSION Our study demonstrates that a therapy with sucrosomial iron in hemodialysis patients is safe and can maintain stable hemoglobin levels in a three-month period with a possible beneficial effect on oxidative stress parameters. However, the reduction of ferritin and transferrin saturation suggests that a weekly dosage of 90 mg is not sufficient in hemodialysis patients in the long time to maintain hemoglobin.
Collapse
Affiliation(s)
- Francesco Reggiani
- Nephrology and Dialysis Unit, Humanitas Clinical and Research Center, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Graziano Colombo
- Department of Biosciences, Università Degli Studi Di Milano, Milan, Italy
| | - Emanuela Astori
- Department of Biosciences, Università Degli Studi Di Milano, Milan, Italy
| | - Lucia Landoni
- Department of Biosciences, Università Degli Studi Di Milano, Milan, Italy
| | - Silvia Finazzi
- Nephrology and Dialysis Unit, Humanitas Clinical and Research Center, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Aldo Milzani
- Department of Biosciences, Università Degli Studi Di Milano, Milan, Italy
| | - Claudio Angelini
- Nephrology and Dialysis Unit, Humanitas Clinical and Research Center, Manzoni 56, 20089, Rozzano, Milan, Italy
| | | | - David Cucchiari
- Nephrology and Dialysis Unit, Humanitas Clinical and Research Center, Manzoni 56, 20089, Rozzano, Milan, Italy. .,Renal Transplant Unit, Hospital Clínic, Barcelona, Spain.
| |
Collapse
|
4
|
Toualbi LA, Mounir A, Wafa B, Medina A, Abderrezak K, Chahine T, Henni C, Abdelghani B, Atmane S. Implications of advanced oxidation protein products and vitamin E in atherosclerosis progression. Arch Med Sci Atheroscler Dis 2021; 6:e135-e144. [PMID: 34381915 PMCID: PMC8336440 DOI: 10.5114/amsad.2021.107823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Advanced oxidation protein products (AOPP) are considered as markers of oxidative stress and inflammation, and highly predictive of atherosclerosis. Vitamin E (Vit-E) is a powerful antioxidant, but no consensus on its effectiveness at the level of AOPP or the process of atherosclerosis has been made. Hence this was the aim of the present study. MATERIAL AND METHODS A longitudinal study was conducted on 205 patients with chronic kidney disease (CKD) and 40 controls. The correlations between AOPP and glomerular filtration rate (GFR) and different biological markers were analyzed. Supra-aortic trunk echo-Doppler was conducted to assess the correlation of AOPP with intima-media thickness. The effects of Vit-E treatment on AOPP levels and atherosclerosis progression were also investigated. RESULTS AOPP levels increased in parallel to the alteration of renal functions in CKD patients, compared to the control group (p < 0.05). The mean value of AOPP increased concomitantly with the intima-media thickness (p < 0.05). Furthermore, AOPP mean value was higher in patients with atherosclerotic plaques (p < 0.05) compared to those without plaques. Vit-E treatment stabilized the levels of AOPP but had no effect on the atherosclerotic progression. CONCLUSIONS AOPP were proved to be effective markers of oxidative stress and their high levels help to predict the progression of atherosclerosis. As a powerful antioxidant, Vit-E stabilized the AOPP levels.
Collapse
Affiliation(s)
- Leila Azouaou Toualbi
- Hospital CHU Parnet Universite Algiers, Algeria
- Department of Nephrology, Parnet Hospital, Faculty of Medicine Algiers, Algeria
| | - Adnane Mounir
- Department of Biomedicine, Institute of Veterinary Sciences, University of Tiaret, Tiaret, Algeria
| | - Ballouti Wafa
- Department of Biochemistry, Hospital of Parnet, Faculty of Medicine Algiers, Algeria
| | - Arab Medina
- Department of Biochemistry, Hospital of CPMC, Faculty of Pharmacy, Algiers, Algeria
| | - Khelfi Abderrezak
- Department of Toxicology, Hospital of Bab el oued, Faculty of Pharmacy Algiers, Algeria
| | - Toualbi Chahine
- Department of Orthopedic Surgery, Hospital of Bejaia, Faculty of Medicine, Bejaia, Algeria
| | - Chader Henni
- Department of Pharmacology, Pastor Institute, Faculty of Pharmacy, Algiers, Algeria
| | | | - Seba Atmane
- Hospital CHU Parnet Universite Algiers, Algeria
| |
Collapse
|
5
|
Plasma Protein Carbonyls as Biomarkers of Oxidative Stress in Chronic Kidney Disease, Dialysis, and Transplantation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2975256. [PMID: 33299524 PMCID: PMC7707964 DOI: 10.1155/2020/2975256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/03/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that oxidative stress plays a role in the pathophysiology of chronic kidney disease (CKD) and its progression; during renal replacement therapy, oxidative stress-derived oxidative damage also contributes to the development of CKD systemic complications, such as cardiovascular disease, hypertension, atherosclerosis, inflammation, anaemia, and impaired host defence. The main mechanism underlying these events is the retention of uremic toxins, which act as a substrate for oxidative processes and elicit the activation of inflammatory pathways targeting endothelial and immune cells. Due to the growing worldwide spread of CKD, there is an overwhelming need to find oxidative damage biomarkers that are easy to measure in biological fluids of subjects with CKD and patients undergoing renal replacement therapy (haemodialysis, peritoneal dialysis, and kidney transplantation), in order to overcome limitations of invasive monitoring of CKD progression. Several studies investigated biomarkers of protein oxidative damage in CKD, including plasma protein carbonyls (PCO), the most frequently used biomarker of protein damage. This review provides an up-to-date overview on advances concerning the correlation between plasma protein carbonylation in CKD progression (from stage 1 to stage 5) and the possibility that haemodialysis, peritoneal dialysis, and kidney transplantation improve plasma PCO levels. Despite the fact that the role of plasma PCO in CKD is often underestimated in clinical practice, emerging evidence highlights that plasma PCO can serve as good biomarkers of oxidative stress in CKD and substitutive therapies. Whether plasma PCO levels merely serve as biomarkers of CKD-related oxidative stress or whether they are associated with the pathogenesis of CKD complications deserves further evaluation.
Collapse
|
6
|
Dağ AD, Yanar K, Atayik MC, Simsek B, Belce A, Çakatay U. Early-adulthood caloric restriction is beneficial to improve renal redox status as future anti-aging strategy in rats. Arch Gerontol Geriatr 2020; 90:104116. [DOI: 10.1016/j.archger.2020.104116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 11/16/2022]
|
7
|
Reversible Oxidative Modifications in Myoglobin and Functional Implications. Antioxidants (Basel) 2020; 9:antiox9060549. [PMID: 32599765 PMCID: PMC7346209 DOI: 10.3390/antiox9060549] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022] Open
Abstract
Myoglobin (Mb), an oxygen-binding heme protein highly expressed in heart and skeletal muscle, has been shown to undergo oxidative modifications on both an inter- and intramolecular level when exposed to hydrogen peroxide (H2O2) in vitro. Here, we show that exposure to H2O2 increases the peroxidase activity of Mb. Reaction of Mb with H2O2 causes covalent binding of heme to the Mb protein (Mb-X), corresponding to an increase in peroxidase activity when ascorbic acid is the reducing co-substrate. Treatment of H2O2-reacted Mb with ascorbic acid reverses the Mb-X crosslink. Reaction with H2O2 causes Mb to form dimers, trimers, and larger molecular weight Mb aggregates, and treatment with ascorbic acid regenerates Mb monomers. Reaction of Mb with H2O2 causes formation of dityrosine crosslinks, though the labile nature of the crosslinks broken by treatment with ascorbic acid suggests that the reversible aggregation of Mb is mediated by crosslinks other than dityrosine. Disappearance of a peptide containing a tryptophan residue when Mb is treated with H2O2 and the peptide’s reappearance after subsequent treatment with ascorbic acid suggest that tryptophan side chains might participate in the labile crosslinking. Taken together, these data suggest that while exposure to H2O2 causes Mb-X formation, increases Mb peroxidase activity, and causes Mb aggregation, these oxidative modifications are reversible by treatment with ascorbic acid. A caveat is that future studies should demonstrate that these and other in vitro findings regarding properties of Mb have relevance in the intracellular milieu, especially in regard to actual concentrations of metMb, H2O2, and ascorbate that would be found in vivo.
Collapse
|
8
|
Colombo G, Reggiani F, Astori E, Altomare A, Finazzi S, Garavaglia ML, Angelini C, Milzani A, Badalamenti S, Dalle-Donne I. Advanced oxidation protein products in nondiabetic end stage renal disease patients on maintenance haemodialysis. Free Radic Res 2019; 53:1114-1124. [PMID: 31755327 DOI: 10.1080/10715762.2019.1690651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In chronic kidney disease (CKD), the impairment of the excretory function leads to elevation in the blood concentrations of urea, creatinine, and various protein metabolic products. Advanced oxidation protein products (AOPP), along with protein carbonyls, protein-bound di-tyrosines and S-thiolated proteins, are considered biomarkers of oxidative stress in end-stage renal disease (ESRD) patients on maintenance haemodialysis (HD). In this study, we evaluated the correlations between plasma levels of AOPP (measured by size exclusion/gel filtration high performance liquid chromatography) and those of protein-bound di-tyrosines, protein carbonyls, albumin and fibrinogen in 50 nondiabetic ESRD patients on maintenance HD. Considering that AOPP could represent the bridge between oxidative stress and inflammation, having been identified as proinflammatory mediators, we also evaluated the association between AOPP levels, C-reactive protein concentration and white blood cells count. Finally, we assessed the associations between plasma level of AOPP and serum concentrations of creatinine and urea, both of which showed a strong dependence on the chronological age of haemodialysed patients. Taken together, our results confirm the robust relationship between uraemia and oxidative stress, especially when measured as biomarkers of severe protein oxidative damage (e.g. plasma AOPP).
Collapse
Affiliation(s)
- Graziano Colombo
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, Milan, Italy
| | | | - Emanuela Astori
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, Milan, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Silvia Finazzi
- Nephrology Unit, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Maria L Garavaglia
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, Milan, Italy
| | - Claudio Angelini
- Nephrology Unit, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Aldo Milzani
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, Milan, Italy
| | | | - Isabella Dalle-Donne
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019; 6:91. [PMID: 31750312 PMCID: PMC6843074 DOI: 10.3389/fmolb.2019.00091] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K. Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
10
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019. [PMID: 31750312 DOI: 10.3389/fmolb.2019.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
11
|
Abdelsalam L, Ibrahim AA, Shalaby A, Osman N, Hashad A, Badawy D, Elghobary H, Amer E. Expression of miRNAs-122, -192 and -499 in end stage renal disease associated with acute myocardial infarction. Arch Med Sci 2019; 15:1247-1253. [PMID: 31572470 PMCID: PMC6764293 DOI: 10.5114/aoms.2019.87095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/16/2017] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION New diagnostic tools are needed to accurately detect acute myocardial infarction (AMI) in patients with end stage renal disease (ESRD) presenting with ischemic chest pain. We aimed in this study to investigate circulating miR-122, -192 and -499 expression levels in patients with AMI on top of ESRD and evaluate the potential of these miRNAs as blood-based biomarkers for AMI in patients with ESRD. MATERIAL AND METHODS The study included 80 ESRD patients without AMI, 80 patients with ESRD associated with AMI and 60 healthy subjects. Assessment of microRNAs was done using SYBR Green based real-time PCR. RESULTS Levels of miR-122 were 28-fold and 20-fold higher in controls than in ESRD patients with or without AMI respectively (p < 0.001), while no differences were detected between the two patient groups (p = 0.9). Levels of miR-192 showed a marked increase in ESRD patients with and without AMI compared to the control group (> 500-fold, > 8000-fold respectively, p ≤ 0.001). Patients who developed AMI had lower expression than ESRD patients without AMI (p < 0.001). Non-significant miR-499 elevation was found in ESRD patients without cardiac disease compared to the control group, while highly significant elevation of miR- 499 was demonstrated in ESRD patients who developed AMI compared to other ESRD patients and the control group (> 100-fold, > 350-fold respectively, p = 0.001). CONCLUSIONS Altered expression of miR-122 and -192 may contribute in pathogenesis of ESRD. MiR-192 and -499 may serve as potential biomarkers for AMI in ESRD. Further studies are needed to correlate these miRNAs with disease progression and outcome.
Collapse
Affiliation(s)
- Lobna Abdelsalam
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alshaymaa A. Ibrahim
- Clinical and Chemical Pathology Department, National Research Centre, Cairo, Egypt
| | - Aliaa Shalaby
- Clinical and Chemical Pathology Department, National Research Centre, Cairo, Egypt
| | - Noha Osman
- Nephrology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Assem Hashad
- Cardiology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina Badawy
- Clinical and Chemical Pathology department, Alzahraa University hospital, Al-azhar University, Cairo, Egypt
| | - Hany Elghobary
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman Amer
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| |
Collapse
|
12
|
Vlasova II, Sokolov AV, Kostevich VA, Mikhalchik EV, Vasilyev VB. Myeloperoxidase-Induced Oxidation of Albumin and Ceruloplasmin: Role of Tyrosines. BIOCHEMISTRY (MOSCOW) 2019; 84:652-662. [DOI: 10.1134/s0006297919060087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Plasma Protein Carbonylation in Haemodialysed Patients: Focus on Diabetes and Gender. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4149681. [PMID: 30057679 PMCID: PMC6051011 DOI: 10.1155/2018/4149681] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
Patients with end-stage renal disease (ESRD) undergoing haemodialysis (HD) experience oxidative/carbonyl stress, which is postulated to increase after the HD session. The influence of diabetes mellitus and sex on oxidation of plasma proteins in ESRD has not yet been clarified despite that diabetic nephropathy is the most common cause of ESRD in developed and developing countries and despite the increasingly emerging differences between males and females in epidemiology, pathophysiology, clinical manifestations, and outcomes for several diseases. Therefore, this study aimed to evaluate the possible effect of type 2 diabetes mellitus, gender, and dialysis filter on plasma level of protein carbonyls (PCO) in ESRD patients at the beginning and at the end of a single HD session. Results show that mean post-HD plasma PCO levels are significantly higher than mean pre-HD plasma PCO levels and that the type of dialysis filter and dialysis technique are unrelated to plasma PCO levels. The mean level of plasma PCO after a HD session increases slightly but significantly in nondiabetic ESRD patients compared to diabetic ones, whereas it increases more markedly in women than in men. These novel findings suggest that women with ESRD are more susceptible than men to oxidative/carbonyl stress induced by HD.
Collapse
|
14
|
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018; 118:1338-1408. [DOI: 10.1021/acs.chemrev.7b00568] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Campolo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Carballal
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Romero
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
15
|
Rosenfeld MA, Vasilyeva AD, Yurina LV, Bychkova AV. Oxidation of proteins: is it a programmed process? Free Radic Res 2017; 52:14-38. [DOI: 10.1080/10715762.2017.1402305] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mark A. Rosenfeld
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra D. Vasilyeva
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Lyubov V. Yurina
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Anna V. Bychkova
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
Advanced Oxidation Protein Products and Carbonylated Proteins as Biomarkers of Oxidative Stress in Selected Atherosclerosis-Mediated Diseases. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4975264. [PMID: 28884122 PMCID: PMC5572583 DOI: 10.1155/2017/4975264] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/19/2017] [Accepted: 06/20/2017] [Indexed: 11/21/2022]
Abstract
Objectives The main question of this study was to evaluate the intensity of oxidative protein modification shown as advanced oxidation protein products (AOPP) and carbonylated proteins, expressed as protein carbonyl content (C=O) in abdominal aortic aneurysms (AAA), aortoiliac occlusive disease (AIOD), and chronic kidney disease (CKD). Design and Methods The study was carried out in a group of 35 AAA patients and 13 AIOD patients. However, CKD patients were divided into two groups: predialysis (PRE) included 50 patients or hemodialysis (HD) consisted of 34 patients. AOPP and C=O were measured using colorimetric assay kit, while C-reactive protein concentration was measured by high-sensitivity assay (hsCRP). Results The concentration of AOPP in both AAA and AIOD groups was higher than in PRE and HD groups according to descending order: AAA~AIOD > HD > PRE. The content of C=O was higher in the PRE group in comparison to AIOD and AAA according to the descending order: PRE~HD > AAA~AIOD. Conclusions AAA, AIOD, and CKD-related atherosclerosis (PRE and HD) contribute to the changes in the formation of AOPP and C=O. They may promote modification of proteins in a different way, probably due to the various factors that influence oxidative stress here.
Collapse
|