1
|
Ong SG, Dehghan R, Dorajoo R, Liu JJ, Sng AA, Lee YS, Ooi DSQ. Novel Melanocortin-3 and -4 Receptor Functional Variants in Asian Children With Severe Obesity. J Clin Endocrinol Metab 2024; 109:e1249-e1259. [PMID: 37820740 DOI: 10.1210/clinem/dgad602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
CONTEXT Genetic variants in melanocortin 3 receptor (MC3R) and melanocortin 4 receptor (MC4R) genes are strongly associated with childhood obesity. OBJECTIVE This study aims to identify and functionally characterize MC3R and MC4R variants in an Asian cohort of children with severe early-onset obesity. METHODS Whole-exome sequencing was performed to screen for MC3R and MC4R coding variants in 488 Asian children with severe early-onset obesity (body mass index for age ≥97th percentile). Functionality of the identified variants were determined via measurement of intracellular cyclic adenosine monophosphate (cAMP) concentrations and luciferase activity. RESULTS Four MC3R and 2 MC4R heterozygous nonsynonymous rare variants were detected. There were 3 novel variants: MC3R c.151G > C (p.Val51Leu), MC4R c.127C > A (p.Gln43Lys), and MC4R c.272T > G (p.Met91Arg), and 3 previously reported variants: MC3R c.127G > A (p.Glu43Lys), MC3R c.97G > A (p.Ala33Thr), and MC3R c.437T > A (p.Ile146Asn). Both MC3R c.127G > A (p.Glu43Lys) and MC4R c.272T > G (p.Met91Arg) variants demonstrated defective downstream cAMP signaling activity. The MC4R c.127C > A (p.Gln43Lys) variant showed reduced cAMP signaling activity at low substrate concentration but the signaling activity was restored at high substrate concentration. The MC3R c.151G > C (p.Val51Leu) variant did not show a significant reduction in cAMP signaling activity compared to wild-type (WT) MC3R. Coexpression studies of the WT and variant MC3R/MC4R showed that the heterozygous variants did not exhibit dominant negative effect. CONCLUSION Our functional assays demonstrated that MC3R c.127G > A (p.Glu43Lys) and MC4R c.272T > G (p.Met91Arg) variants might predispose individuals to early-onset obesity, and further studies are needed to establish the causative effect of these variants in the pathogenesis of obesity.
Collapse
Affiliation(s)
- Siong Gim Ong
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Division of Paediatric Endocrinology, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore 119228, Singapore
| | - Roghayeh Dehghan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
- Department of Genetics and Molecular Biology, School of Medicine, University of Medical Science, Isfahan 81746-73461, Iran
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Jian-Jun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Andrew Anjian Sng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Division of Paediatric Endocrinology, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore 119228, Singapore
| | - Yung Seng Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Division of Paediatric Endocrinology, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore 119228, Singapore
| | - Delicia Shu Qin Ooi
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Division of Paediatric Endocrinology, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore 119228, Singapore
| |
Collapse
|
2
|
Liu T, Ji RL, Tao YX. Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus. Pharmacol Ther 2021; 234:108044. [PMID: 34822948 DOI: 10.1016/j.pharmthera.2021.108044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors involved in the regulation of almost all known physiological processes. Dysfunctions of GPCR-mediated signaling have been shown to cause various diseases. The prevalence of obesity and type 2 diabetes mellitus (T2DM), two strongly associated disorders, is increasing worldwide, with tremendous economical and health burden. New safer and more efficacious drugs are required for successful weight reduction and T2DM treatment. Multiple GPCRs are involved in the regulation of energy and glucose homeostasis. Mutations in these GPCRs contribute to the development and progression of obesity and T2DM. Therefore, these receptors can be therapeutic targets for obesity and T2DM. Indeed some of these receptors, such as melanocortin-4 receptor and glucagon-like peptide 1 receptor, have provided important new drugs for treating obesity and T2DM. This review will focus on the naturally occurring mutations of several GPCRs associated with obesity and T2DM, especially incorporating recent large genomic data and insights from structure-function studies, providing leads for future investigations.
Collapse
Affiliation(s)
- Ting Liu
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States.
| |
Collapse
|
3
|
Wang W, Lin YJ, Chen ZX, Guo DY. Identification and characterization of two novel melanocortin-3 receptor mutations in Chinese obese individuals. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166107. [PMID: 33621651 DOI: 10.1016/j.bbadis.2021.166107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/31/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022]
Abstract
The melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R), known as neural melanocortin receptors, have been implicated to be critical components of the hypothalamic leptin-melanocortin pathway and related to obesity pathogenesis. In contrast to extensive evidence from physiologic, biological, genetic studies demonstrating that MC4R is a critical regulator in obesity, whether MC3R mutation causes obesity is still controversial. In the present study, we screened for coding variants in the MC3R gene of 176 obese individuals (mean BMI 34.84 ± 0.19 kg/m2) and 170 lean controls (mean BMI 20.70 ± 0.08 kg/m2) to assess the prevalence of MC3R mutations in a Chinese cohort. Two novel mutations, A33D (c.C98 > A) and A259T (c.G775 > A), were identified in two subjects with morbid obesity, respectively. A259T was also identified in the carrier's sibling. In vitro functional studies showed that A33D was defective in the cAMP signaling pathway, whereas A259T MC3R had defective maximal binding and cAMP generation in response to NDP- and α-MSH, likely due to decreased cell surface expression. In addition, we showed that A33D and A259T were biased receptors and defect in constitutive activation of ERK1/2 signaling through MC3R might be a cause for morbid obesity. Our sequencing and co-segregation studies combined with comprehensive functional analysis demonstrated that A259T might be predisposing to obesity. Further investigations in larger cohorts will be needed in order to define this association and the specific phenotypic characteristics resulting from these mutations.
Collapse
Affiliation(s)
- Wei Wang
- Department of Clinical laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., 128 Hetongli Rd, Huli District, Xiamen 361000, China.
| | - Yue-Jun Lin
- Department of Clinical laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., 128 Hetongli Rd, Huli District, Xiamen 361000, China
| | - Zhao-Xia Chen
- Department of Clinical laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., 128 Hetongli Rd, Huli District, Xiamen 361000, China
| | - Dong-Yu Guo
- Department of Clinical laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., 128 Hetongli Rd, Huli District, Xiamen 361000, China.
| |
Collapse
|
4
|
Koya C, Yu T, Strong C, Tsai MC. Association between Two Common Missense Substitutions, Thr6Lys and Val81Ile, in MC3R Gene and Childhood Obesity: A Meta-Analysis. Child Obes 2019; 14:218-226. [PMID: 29688747 DOI: 10.1089/chi.2017.0265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Two common missense variants in the melanocortin-3 receptor (MC3R) gene, Thr6Lys (T6K) and Val81Ile (V81I), are presumably correlated with pediatric obesity. This meta-analysis aimed to examine and synthesize evidence on the association between these two common MC3R polymorphisms and the development of childhood obesity. METHODS A combination of words relevant to the research question was searched on PubMed, EMBASE, Scopus, and the Cochrane database. Results were restricted to human studies, specifically child and adolescent populations. Articles were excluded based on accessibility of full online texts and availability of pertinent data. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using a random effects model to determine the association of the polymorphisms with obesity. RESULTS Searches on the databases using the keywords identified 65 potentially relevant reports. Among them, 32 studies were excluded due to irrelevance, and 28 studies excluded due to lack of access, insufficient data, and investigation of other variants. A final set of five studies included in this meta-analysis found that the risk of overweight/obesity increased by 46.1% per K allele and 21.7% per I allele. Only homozygous genotypes for T6K were associated with a 3.10-fold (95% CI: 1.29-7.43) increased risk of overweight/obesity in children. Data were insufficient to examine if homozygosity for both rare alleles further increases risk. CONCLUSIONS Our results supported a recessive inheritance model for MC3R gene as a potential cause of childhood obesity. High clinical heterogeneity existed among studies and thus requires more research of larger participation for future integration of data.
Collapse
Affiliation(s)
- Charita Koya
- 1 Faculty of Health Sciences, University of Ottawa , Ottawa, Ontario, Canada
| | - Tsung Yu
- 2 Department of Public Health, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Carol Strong
- 2 Department of Public Health, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Meng-Che Tsai
- 3 Division of Genetics, Endocrinology, and Metabolism, Department of Pediatrics, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University , Tainan, Taiwan
| |
Collapse
|
5
|
Yuan XC, Tao YX. Fenoprofen-An Old Drug Rediscovered as a Biased Allosteric Enhancer for Melanocortin Receptors. ACS Chem Neurosci 2019; 10:1066-1074. [PMID: 30168706 DOI: 10.1021/acschemneuro.8b00347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It is time-consuming and costly to bring new drugs to market, making it necessary and urgent to exploit existing drugs for new uses. Recently, fenoprofen was demonstrated as an allosteric modulator at melanocortin receptors (MCRs), although the exact mode of action has not been clarified. MCRs regulate multiple functions, including pigmentation, adrenal steroidogenesis, inflammation, energy homeostasis, and exocrine gland secretion. In this study, we showed that fenoprofen failed to displace the orthosteric agonist Nle4-d-Phe7-α-melanocyte stimulating hormone from binding to MC3-5R while possessing positive allosteric modulator activities at these receptors. In addition, fenoprofen induced biased signaling at MC3-5R, as it selectively activated ERK1/2 cascade but not the canonical cAMP signaling. Notably, fenoprofen stimulated biased signaling at MC3-5R, but not at MC1R, hence acting selectively among this highly conserved family of receptors. Moreover, PAM activity and biased signaling induced by fenoprofen were observed not only at wild-type but also at naturally occurring mutant MC3Rs, suggesting that this biased allosteric enhancer action might constitute as novel therapeutic opportunity for obese patients harboring these mutations. Our study might guide novel therapeutic applications for repurposing current drugs or designing new drugs combining allosteric and biased properties.
Collapse
Affiliation(s)
- Xiao-Chen Yuan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 Anhui, China
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
6
|
Novoselova TV, Chan LF, Clark AJL. Pathophysiology of melanocortin receptors and their accessory proteins. Best Pract Res Clin Endocrinol Metab 2018; 32:93-106. [PMID: 29678289 DOI: 10.1016/j.beem.2018.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The melanocortin receptors (MCRs) and their accessory proteins (MRAPs) are involved in regulation of a diverse range of endocrine pathways. Genetic variants of these components result in phenotypic variation and disease. The MC1R is expressed in skin and variants in the MC1R gene are associated with ginger hair color. The MC2R mediates the action of ACTH in the adrenal gland to stimulate glucocorticoid production and MC2R mutations result in familial glucocorticoid deficiency (FGD). MC3R and MC4R are involved in metabolic regulation and their gene variants are associated with severe pediatric obesity, whereas the function of MC5R remains to be fully elucidated. MRAPs have been shown to modulate the function of MCRs and genetic variants in MRAPs are associated with diseases including FGD type 2 and potentially early onset obesity. This review provides an insight into recent advances in MCRs and MRAPs physiology, focusing on the disorders associated with their dysfunction.
Collapse
Affiliation(s)
- T V Novoselova
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, Chartehouse Square, London, EC1M 6BQ, United Kingdom.
| | - L F Chan
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, Chartehouse Square, London, EC1M 6BQ, United Kingdom
| | - A J L Clark
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, Chartehouse Square, London, EC1M 6BQ, United Kingdom
| |
Collapse
|
7
|
Demidowich AP, Jun JY, Yanovski JA. Polymorphisms and mutations in the melanocortin-3 receptor and their relation to human obesity. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2468-2476. [PMID: 28363697 DOI: 10.1016/j.bbadis.2017.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/18/2022]
Abstract
Inactivating mutations in the melanocortin 3 receptor (Mc3r) have been described as causing obesity in mice, but the physiologic effects of MC3R mutations in humans have been less clear. Here we review the MC3R polymorphisms and mutations identified in humans, and the in vitro, murine, and human cohort studies examining their putative effects. Some, but not all, studies suggest that the common human MC3R variant T6K+V81I, as well as several other rare, function-altering mutations, are associated with greater adiposity and hyperleptinemia with altered energy partitioning. In vitro, the T6K+V81I variant appears to decrease MC3R expression and therefore cAMP generation in response to ligand binding. Knockin mouse studies confirm that the T6K+V81I variant increases feeding efficiency and the avidity with which adipocytes derived from bone or adipose tissue stem cells store triglycerides. Other MC3R mutations occur too infrequently in the human population to make definitive conclusions regarding their clinical effects. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
Affiliation(s)
- Andrew P Demidowich
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Joo Yun Jun
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jack A Yanovski
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
8
|
A mouse model for a partially inactive obesity-associated human MC3R variant. Nat Commun 2016; 7:10522. [PMID: 26818770 PMCID: PMC4738366 DOI: 10.1038/ncomms10522] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/22/2015] [Indexed: 12/30/2022] Open
Abstract
We previously reported children homozygous for two MC3R sequence variants (C17A+G241A) have greater fat mass than controls. Here we show, using homozygous knock-in mouse models in which we replace murine Mc3r with wild-type human (MC3RhWT/hWT) and double-mutant (C17A+G241A) human (MC3RhDM/hDM) MC3R, that MC3RhDM/hDM have greater weight and fat mass, increased energy intake and feeding efficiency, but reduced length and fat-free mass compared with MC3RhWT/hWT. MC3RhDM/hDM mice do not have increased adipose tissue inflammatory cell infiltration or greater expression of inflammatory markers despite their greater fat mass. Serum adiponectin levels are increased in MC3RhDM/hDM mice and MC3RhDM/hDM human subjects. MC3RhDM/hDM bone- and adipose tissue-derived mesenchymal stem cells (MSCs) differentiate into adipocytes that accumulate more triglyceride than MC3RhWT/hWT MSCs. MC3RhDM/hDM impacts nutrient partitioning to generate increased adipose tissue that appears metabolically healthy. These data confirm the importance of MC3R signalling in human metabolism and suggest a previously-unrecognized role for the MC3R in adipose tissue development. The melanocortin receptor, MC3R, regulates organismal energy homeostasis. Here, Lee et al. create knock-in mice with the a mutated version of the human MC3R receptor found in obese children, and show these mice have more fat and smaller bone, yet are by and large metabolically healthy.
Collapse
|
9
|
Mutations in Melanocortin-3 Receptor Gene and Human Obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:97-129. [DOI: 10.1016/bs.pmbts.2016.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Abstract
The melanocortin-3 receptor (MC3R) is a member of the family A G protein-coupled receptors (GPCRs). The MC3R remains the most enigmatic of the melanocortin receptors with regard to its physiological functions, especially its role in energy homeostasis. The N/DPxxY motif and the eighth helix (helix 8) in the carboxyl terminus of GPCRs have been identified to be important for receptor expression, ligand binding, signal transduction and internalization. To gain a better understanding of the structure-function relationship of MC3R, we performed a systematic study of all 20 residues in this domain using alanine-scanning mutagenesis. We showed that although all mutants were expressed normally on the cell surface, eleven residues were important for ligand binding and one was indispensable for downstream cAMP generation. F347A showed constitutive activity in cAMP signaling while all the other mutants had normal basal activities. We studied the signaling capacity of nine mutants in the ERK1/2 signaling pathway. All of these mutants showed normal basal ERK1/2 phosphorylation levels. The pERK1/2 levels of six binding- or signaling-defective mutants were enhanced upon agonist stimulation. The unbalanced cAMP and pERK1/2 signaling pathways suggested the existence of biased signaling in MC3R mutants. In summary, we showed that the DPLIY motif and helix 8 was important for MC3R activation and signal transduction. Our data led to a better understanding of the structure-function relationship of MC3R.
Collapse
Affiliation(s)
- Zhao Yang
- Department of AnatomyPhysiology and Pharmacology, College of Veterinary Medicine, Auburn University, 212 Greene Hall, Auburn, Alabama 36849, USASchool of Applied Chemistry and Biological TechnologyShenzhen Polytechnic, Shenzhen 518055, China
| | - Zhi-Li Huang
- Department of AnatomyPhysiology and Pharmacology, College of Veterinary Medicine, Auburn University, 212 Greene Hall, Auburn, Alabama 36849, USASchool of Applied Chemistry and Biological TechnologyShenzhen Polytechnic, Shenzhen 518055, China Department of AnatomyPhysiology and Pharmacology, College of Veterinary Medicine, Auburn University, 212 Greene Hall, Auburn, Alabama 36849, USASchool of Applied Chemistry and Biological TechnologyShenzhen Polytechnic, Shenzhen 518055, China
| | - Ya-Xiong Tao
- Department of AnatomyPhysiology and Pharmacology, College of Veterinary Medicine, Auburn University, 212 Greene Hall, Auburn, Alabama 36849, USASchool of Applied Chemistry and Biological TechnologyShenzhen Polytechnic, Shenzhen 518055, China
| |
Collapse
|
11
|
Shpakov AO, Derkach KV. [Novel achievements in development and application of GPCR-peptides]. J EVOL BIOCHEM PHYS+ 2015; 51:11-6. [PMID: 25859600 DOI: 10.1134/s0022093015010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
One of the approaches to creating the regulators of G-protein-coupled receptors (GPCR) is the development of peptides that structurally correspond to the functionally important regions of the intracellular extracellular loops of the receptors. GPCR-peptides can selectively regulate the functional activity of homologous receptor and affect the hormonal signal transduction via the receptor. Among the peptides corresponding to the intracellular regions of GPCR, their derivatives modified with hydrophobic radicals exhibit the highest activity and selectivity of action in vitro and in vivo. Ample evidence demonstrates that lipophilic GPCR-peptides may be used to treat diseases and various abnormalities that depend on the functional activity of receptors homologous to them. In turn, the peptides corresponding to the extracellular regions of GPCR can be used as functional probes for studying the specific interaction between the receptors and their ligands, as well as for studying the etiology and pathogenesis of autoimmune diseases caused by the production of antibodies to GPCR antigenic determinants that are localized in the receptor extracellular loops. The present review focuses on the recent achievements in development and application of GPCR-peptides and on the prospects for their further use in medicine and fundamental biology.
Collapse
|
12
|
Yang F, Huang H, Tao YX. Biased signaling in naturally occurring mutations in human melanocortin-3 receptor gene. Int J Biol Sci 2015; 11:423-33. [PMID: 25798062 PMCID: PMC4366641 DOI: 10.7150/ijbs.11032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/21/2015] [Indexed: 12/17/2022] Open
Abstract
The melanocortin-3 receptor (MC3R) is primarily expressed in the hypothalamus and plays an important role in the regulation of energy homeostasis. Recently, some studies demonstrated that MC3R also signals through mitogen-activated protein kinases (MAPKs), especially extracellular signal-regulated kinases 1 and 2 (ERK1/2). ERK1/2 signaling is known to alter gene expression, potentially contributing to the prolonged action of melanocortins on energy homeostasis regulation. In the present study, we performed detailed functional studies on 8 novel naturally occurring MC3R mutations recently reported, and the effects of endogenous MC3R agonist, α-melanocyte stimulating hormone (MSH), on ERK1/2 signaling on all 22 naturally occurring MC3R mutations reported to date. We found that mutants D158Y and L299V were potential pathogenic causes to obesity. Four residues, F82, D158, L249 and L299, played critical roles in different aspects of MC3R function. α-MSH exhibited balanced activity in Gs-cAMP and ERK1/2 signaling pathways in 15 of the 22 mutant MC3Rs. The other 7 mutant MC3Rs were biased to either one of the signaling pathways. In summary, we provided novel data about the structure-function relationship of MC3R, identifying residues important for receptor function. We also demonstrated that some mutations exhibited biased signaling, preferentially activating one intracellular signaling pathway, adding a new layer of complexity to MC3R pharmacology.
Collapse
Affiliation(s)
- Fan Yang
- 1. Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA. ; 2. Current address: College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Hui Huang
- 1. Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Ya-Xiong Tao
- 1. Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
13
|
Zegers D, Beckers S, Hendrickx R, Van Camp JK, Van Hoorenbeeck K, Desager KN, Massa G, Van Gaal LF, Van Hul W. Prevalence of rare MC3R variants in obese cases and lean controls. Endocrine 2013; 44:386-90. [PMID: 23264184 DOI: 10.1007/s12020-012-9862-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/12/2012] [Indexed: 01/13/2023]
Abstract
The role of mutations in the melanocortin-3 receptor (MC3R) gene, which is implicated in the regulation of energy homeostasis, is still under debate. Animal studies have clearly proven that, together with the melanocortin-4 receptor (MC4R), the MC3R is a critical receptor for melanocortin peptides within the leptin-melanocortin signaling cascade. However, as several mutations have been found in lean individuals and not all mutations seem to cause receptor dysfunction, results from mutation screens in obese humans remain controversial. In the present study, we screened for rare variants in the MC3R gene of obese children and lean controls to assess the prevalence of MC3R mutations in the Belgian population. We screened 249 severely overweight and obese children and adolescents and 239 lean adults for mutations in the coding region of MC3R. Mutation screening was performed by high resolution melting curve analysis and direct sequencing. We identified four non-synonymous coding variations in the obese population, all of which had been reported previously. In addition, we also found four novel rare MC3R variants in the lean control population, suggesting that not all MC3R mutations are disease-causing. Overall, the total prevalence of rare MC3R variants was 1 % in Belgian obese children and adolescents compared to 1.02 % in lean controls. Ultimately, cosegregation studies combined with comprehensive functional analysis is required to determine the potential pathogenic role of rare MC3R variants in causing human obesity.
Collapse
Affiliation(s)
- Doreen Zegers
- Department of Medical Genetics, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Girardet C, Butler AA. Neural melanocortin receptors in obesity and related metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2013; 1842:482-94. [PMID: 23680515 DOI: 10.1016/j.bbadis.2013.05.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/16/2013] [Accepted: 05/03/2013] [Indexed: 12/11/2022]
Abstract
Obesity is a global health issue, as it is associated with increased risk of developing chronic conditions associated with disorders of metabolism such as type 2 diabetes and cardiovascular disease. A better understanding of how excessive fat accumulation develops and causes diseases of the metabolic syndrome is urgently needed. The hypothalamic melanocortin system is an important point of convergence connecting signals of metabolic status with the neural circuitry that governs appetite and the autonomic and neuroendocrine system controling metabolism. This system has a critical role in the defense of body weight and maintenance of homeostasis. Two neural melanocortin receptors, melanocortin 3 and 4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy balance. Mutations in the MC4R gene are the most common cause of monogenic obesity in humans, and a large literature indicates a role in regulating both energy intake through the control of satiety and energy expenditure. In contrast, MC3Rs have a more subtle role in energy homeostasis. Results from our lab indicate an important role for MC3Rs in synchronizing rhythms in foraging behavior with caloric cues and maintaining metabolic homeostasis during periods of nutrient scarcity. However, while deletion of the Mc3r gene in mice alters nutrient partitioning to favor accumulation of fat mass no obvious role for MC3R haploinsufficiency in human obesity has been reported. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
MESH Headings
- Animals
- Body Weight/genetics
- Cardiovascular Diseases/complications
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Humans
- Metabolic Diseases/genetics
- Metabolic Diseases/metabolism
- Metabolic Diseases/pathology
- Mice
- Obesity/complications
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
Collapse
Affiliation(s)
- Clemence Girardet
- Department of Metabolism and Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Andrew A Butler
- Department of Metabolism and Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
15
|
Pérusse L, Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Snyder EE, Bouchard C. The Human Obesity Gene Map: The 2004 Update. ACTA ACUST UNITED AC 2012; 13:381-490. [PMID: 15833932 DOI: 10.1038/oby.2005.50] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This paper presents the eleventh update of the human obesity gene map, which incorporates published results up to the end of October 2004. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTLs) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2004, 173 human obesity cases due to single-gene mutations in 10 different genes have been reported, and 49 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 166 genes which, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 221. The number of human obesity QTLs derived from genome scans continues to grow, and we have now 204 QTLs for obesity-related phenotypes from 50 genome-wide scans. A total of 38 genomic regions harbor QTLs replicated among two to four studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably with 358 findings of positive associations with 113 candidate genes. Among them, 18 genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, >600 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful publications and genomic and other relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Louis Pérusse
- Division of Kinesiology, Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Sainte-Foy, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yang F, Tao YX. Functional characterization of nine novel naturally occurring human melanocortin-3 receptor mutations. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1752-61. [PMID: 22884546 DOI: 10.1016/j.bbadis.2012.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/12/2012] [Accepted: 07/27/2012] [Indexed: 12/20/2022]
Abstract
The melanocortin-3 receptor (MC3R) is a member of family A rhodopsin-like G protein-coupled receptors. Mouse genetic studies suggested that MC3R and the related MC4R are non-redundant regulators of energy homeostasis. Lack of Mc3r leads to higher feed efficiency and fat mass. However, until now only a few MC3R mutations have been identified in humans and the role of MC3R in the pathogenesis of obesity was unclear. In the present study, we performed detailed functional studies on nine naturally occurring MC3R mutations recently reported. We found that all nine mutants had decreased cell surface expression. A260V, M275T, and L297V had decreased total expression whereas the other six mutants had normal total expression. Mutants S69C and T280S exhibited significant defects in ligand binding and signaling. The dramatic defects of T280S might be partially caused by decreased cell surface expression. In addition, we found mutants M134I and M275T had decreased maximal binding but displayed similar signaling properties as wild-type MC3R. All the other mutants had normal binding and signaling activities. Co-expression studies showed that all mutants except L297V did not affect wild-type MC3R signaling. Multiple mutations at T280 demonstrated the necessity of Thr for cell surface expression, ligand binding, and signaling. In summary, we provided detailed data of these novel human MC3R mutations leading to a better understanding of structure-function relationship of MC3R and the role of MC3R mutation in obesity.
Collapse
Affiliation(s)
- Fan Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
17
|
Biebermann H, Kühnen P, Kleinau G, Krude H. The neuroendocrine circuitry controlled by POMC, MSH, and AGRP. Handb Exp Pharmacol 2012:47-75. [PMID: 22249810 DOI: 10.1007/978-3-642-24716-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Obesity is one of the most challenging health problems worldwide. Over the past few decades, our knowledge concerning mechanisms of weight regulation has increased tremendously leading to the identification of the leptin-melanocortin pathway. The filling level of energy stores is signaled to the brain, and the information is integrated by hypothalamic nuclei, resulting in a well-orchestrated response to food intake and energy expenditure to ensure constant body weight. One of the key players in this system is proopiomelanocortin (POMC), a precursor of a variety of neuropeptides. POMC-derived alpha- and beta-MSH play an important role in energy homeostasis by activating melanocortin receptors expressed in the arcuate nucleus (MC3R) and in the nucleus paraventricularis (MC4R). Activation of these two G protein-coupled receptors is antagonized by agouti-related peptide (AgRP). Naturally occurring mutations in this system were identified in patients suffering from common obesity as well as in patients demonstrating a phenotype of severe early-onset obesity, adrenal insufficiency, red hair, and pale skin. Detailed understanding of the complex system of POMC-AgRP-MC3R-MC4R and their interaction with other hypothalamic as well as peripheral signals is a prerequisite to combat the obesity epidemic.
Collapse
Affiliation(s)
- Heike Biebermann
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | |
Collapse
|
18
|
Tarnow P, Rediger A, Schulz A, Grüters A, Biebermann H. Identification of the translation start site of the human melanocortin 3 receptor. Obes Facts 2012; 5:45-51. [PMID: 22433616 DOI: 10.1159/000336070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 10/12/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The melanocortin-3-receptor (MC3R) is a G-protein coupled receptor participating in hypothalamic energy metabolism. So far, it was assumed that the translation of the human MC3R starts at the non-conserved first ATG, however, a second evolutionary conserved ATG is located 37 amino acids downstream. One frequent polymorphism, T6K, is located between these two ATGs. METHODS For characterization of the two potential start ATGs, COS-7 cells were transfected with plasmids encoding the longer and the shorter form of the human MC3R. For signal transduction properties, cAMP was measured. Cell surface expression was determined by using an ELISA method. The translational start point of the MC3R was investigated by a GFP-based method. RESULTS Signal transduction was comparable for the long and the short receptor form. Cell surface expression via aminoterminal hemagglutinin tag could only be detected in the shorter form, but not in the longer one. In our study we show that the translation of the human MC3R protein starts at the evolutionary conserved ATG codon which results in a shorter protein than previously assumed. CONCLUSION The polymorphism T6K is not located in the coding region of the human MC3R and has no influence on translation initiation which makes an impact on body weight unlikely.
Collapse
Affiliation(s)
- Patrick Tarnow
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Humboldt University, Augustenburger Platz 1, Berlin, Germany
| | | | | | | | | |
Collapse
|
19
|
Rediger A, Piechowski CL, Yi CX, Tarnow P, Strotmann R, Grüters A, Krude H, Schöneberg T, Tschöp MH, Kleinau G, Biebermann H. Mutually opposite signal modulation by hypothalamic heterodimerization of ghrelin and melanocortin-3 receptors. J Biol Chem 2011; 286:39623-31. [PMID: 21940628 PMCID: PMC3234785 DOI: 10.1074/jbc.m111.287607] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/03/2011] [Indexed: 12/22/2022] Open
Abstract
Interaction and cross-talk of G-protein-coupled receptors (GPCRs) are of considerable interest because an increasing number of examples implicate a profound functional and physiological relevance of homo- or hetero-oligomeric GPCRs. The ghrelin (growth hormone secretagogue receptor (GHSR)) and melanocortin-3 (MC3R) receptors are both known to have orexigenic effects on the hypothalamic control of body weight. Because in vitro studies indicate heterodimerization of GHSR and MC3R, we investigated their functional interplay. Combined in situ hybridization and immunohistochemistry indicated that the vast majority of GHSR-expressing neurons in the arcuate nucleus also express MC3R. In vitro coexpression of MC3R and GHSR promoted enhanced melanocortin-induced intracellular cAMP accumulation compared with activation of MC3R in the absence of GHSR. In contrast, agonist-independent basal signaling activity and ghrelin-induced signaling of GHSR were impaired, most likely due to interaction with MC3R. By taking advantage of naturally occurring GHSR mutations and an inverse agonist for GHSR, we demonstrate that the observed enhanced MC3R signaling capability depends directly on the basal activity of GHSR. In conclusion, we demonstrate a paradigm-shifting example of GPCR heterodimerization allowing for mutually opposite functional influence of two hypothalamic receptors controlling body weight. We found that the agonist-independent active conformation of one GPCR can determine the signaling modalities of another receptor in a heterodimer. Our discovery also implies that mutations within one of two interacting receptors might affect both receptors and different pathways simultaneously. These findings uncover mechanisms of important relevance for pharmacological targeting of GPCR in general and hypothalamic body weight regulation in particular.
Collapse
MESH Headings
- Animals
- Arcuate Nucleus of Hypothalamus/metabolism
- COS Cells
- Chlorocebus aethiops
- Cyclic AMP/genetics
- Cyclic AMP/metabolism
- Gene Expression Regulation/physiology
- Ghrelin/genetics
- Ghrelin/metabolism
- HEK293 Cells
- Humans
- Mice
- Mice, Knockout
- Mutation
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/metabolism
- Protein Multimerization/physiology
- Receptor, Melanocortin, Type 3/agonists
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptors, Ghrelin/agonists
- Receptors, Ghrelin/genetics
- Receptors, Ghrelin/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Anne Rediger
- From the Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Carolin L. Piechowski
- From the Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Chun-Xia Yi
- the Metabolic Diseases Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267, and
| | - Patrick Tarnow
- From the Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Rainer Strotmann
- the Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Annette Grüters
- From the Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Heiko Krude
- From the Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Torsten Schöneberg
- the Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Matthias H. Tschöp
- the Metabolic Diseases Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267, and
| | - Gunnar Kleinau
- From the Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Heike Biebermann
- From the Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
20
|
Polymorphisms in MC3R promoter and CTSZ 3'UTR are associated with tuberculosis susceptibility. Eur J Hum Genet 2011; 19:676-81. [PMID: 21368909 DOI: 10.1038/ejhg.2011.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have validated the association of two genes on chromosome 20q13.31-33 with tuberculosis susceptibility. A previous genome-wide linkage study performed by Cooke et al identified the genes melanocortin-3-receptor (MC3R) and cathepsin Z (CTSZ) as possible candidates in tuberculosis susceptibility. MC3R has been implicated in obesity studies and is known to play a role in many biological systems including the regulation of energy homeostasis and fat metabolism. CTSZ has been detected in immune cells, such as macrophages and monocytes, and it is hypothesized that the protein may play a role in the immune response. In our South African population a case-control study confirmed the previously reported association with a single-nucleotide polymorphism (SNP) in CTSZ and found an association in MC3R with a SNP not previously implicated in tuberculosis susceptibility. Six SNPs in MC3R and eight in CTSZ were genotyped and haplotypes were inferred. SNP rs6127698 in the promoter region of MC3R (cases = 498; controls = 506) and rs34069356 in the 3'UTR of CTSZ (cases = 396; controls = 298) both showed significant association with tuberculosis susceptibility (P = 0.0004 and < 0.0001, respectively), indicating that pathways involving these proteins, not previously researched in this disease, could yield novel therapies for tuberculosis.
Collapse
|
21
|
Physiological roles of the melanocortin MC₃ receptor. Eur J Pharmacol 2011; 660:13-20. [PMID: 21211527 DOI: 10.1016/j.ejphar.2010.12.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/11/2010] [Accepted: 12/15/2010] [Indexed: 11/23/2022]
Abstract
The melanocortin MC(3) receptor remains the most enigmatic of the melanocortin receptors with regard to its physiological functions. The receptor is expressed both in the CNS and in multiple tissues in the periphery. It appears to be an inhibitory autoreceptor on proopiomelanocortin neurons, yet global deletion of the receptor causes an obesity syndrome. Knockout of the receptor increases adipose mass without a readily measurable increase in food intake or decrease in energy expenditure. And finally, no melanocortin MC(3) receptor null humans have been identified and associations between variant alleles of the melanocortin MC(3) receptor and diseases remain controversial, so the physiological role of the receptor in humans remains to be determined.
Collapse
|
22
|
Zegers D, Beckers S, de Freitas F, Peeters AV, Mertens IL, Verhulst SL, Rooman RP, Timmermans JP, Desager KN, Massa G, Van Gaal LF, Van Hul W. Identification of three novel genetic variants in the melanocortin-3 receptor of obese children. Obesity (Silver Spring) 2011; 19:152-9. [PMID: 20539302 DOI: 10.1038/oby.2010.127] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The melanocortin-3 receptor (MC3R), a G-protein-coupled receptor expressed in the hypothalamus, is a key component of the leptin-melanocortin pathway that regulates energy homeostasis. It is suggested that an MC3R defect leads to an increased feed efficiency, by which nutrients are partitioned preferentially into fat. In this study, we hypothesized that early-onset obesity could be induced by mutations in MC3R. To investigate this hypothesis, we screened the entire coding region of the MC3R gene for mutations in obese subjects. A total of 404 overweight and obese children and adolescents, 86 severely obese adults (BMI ≥40 kg/m²), and 150 normal-weight control adults were included. Besides three synonymous coding variations in the MC3R gene (S69S, L95L, I226I), we were able to identify three novel heterozygous, nonsynonymous, coding mutations (N128S, V211I, L299V) in three unrelated obese children. None of these mutations were found in any of the control subjects. Functional studies assessing localization and signaling properties of the mutant receptors provided proof for impaired function of the L299V mutated receptor, whereas no conclusive evidence for functional impairment of the N128S and V211I mutated receptors could be established. First, these results provide supporting evidence for a role of the MC3R gene in the pathogenesis of obesity in a small subset of patients. Second, they show that caution is called for the interpretation of newly discovered mutations in MC3R.
Collapse
Affiliation(s)
- Doreen Zegers
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mencarelli M, Dubern B, Alili R, Maestrini S, Benajiba L, Tagliaferri M, Galan P, Rinaldi M, Simon C, Tounian P, Hercberg S, Liuzzi A, Di Blasio AM, Clement K. Rare melanocortin-3 receptor mutations with in vitro functional consequences are associated with human obesity. Hum Mol Genet 2010; 20:392-9. [PMID: 21047972 DOI: 10.1093/hmg/ddq472] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In contrast to the melanocortin 4 receptor, the possible role of the melanocortin 3 receptor (MC3R) in regulating body weight is still debated. We have previously reported three mutations in the MC3R gene showing association with human obesity, but these results were not confirmed in a study of severe obese North American adults. In this study, we evaluated the entire coding region of MC3R in 839 severely obese subjects and 967 lean controls of Italian and French origin. In vitro functional analysis of the mutations detected was also performed. The total prevalence of rare MC3R variants was not significantly different in obese subjects when compared with controls (P= 0.18). However, the prevalence of mutations with functional alterations was significantly higher in the obese group (P= 0.022). In conclusions, the results of this large study demonstrate that in the populations studied functionally significant MC3R variants are associated with obesity supporting the current hypothesis that rare variants might have a stronger impact on the individual susceptibility to gain weight. They also underline the importance of detailed in vitro functional studies in order to prove the pathogenic effect of such variants. Further investigations in larger cohorts will be needed in order to define the specific phenotypic characteristics potentially correlated with reduced MC3R signalling.
Collapse
Affiliation(s)
- Monica Mencarelli
- Molecular Biology Laboratory, Istituto Auxologico Italiano, Verbania, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shariat-Madar B, Kolte D, Verlangieri A, Shariat-Madar Z. Prolylcarboxypeptidase (PRCP) as a new target for obesity treatment. Diabetes Metab Syndr Obes 2010; 3:67-78. [PMID: 20694162 PMCID: PMC2916657 DOI: 10.2147/dmsott.s7290] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Recently, we serendipitously discovered that mice with the deficiency of the enzyme prolylcarboxypeptidase (PRCP) have elevated alpha-melanocyte-stimulating hormone (alpha-MSH) levels which lead to decreased food intake and weight loss. This suggests that PRCP is an endogenous inactivator of alpha-MSH and an appetite stimulant. Since a modest weight loss can have the most profound influence on reducing cardiovascular risk factors, the inhibitors of PRCP would be emerging as a possible alternative for pharmacotherapy in high-risk patients with obesity and obesity-related disorders. The discovery of a new biological activity of PRCP in the PRCP-deficient mice and studies of alpha-MSH function indicate the importance and complexity of the hypothalamic pro-opiomelanocortin (POMC) system in altering food intake. Identifying a role for PRCP in regulating alpha-MSH in the brain may be a critical step in enhancing our understanding of how the brain controls food intake and body weight. In light of recent findings, the potential role of PRCP in regulating fuel homeostasis is critically evaluated. Further studies of the role of PRCP in obesity are much needed.
Collapse
Affiliation(s)
- B Shariat-Madar
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor MI, USA
| | - D Kolte
- School of Pharmacy, Department of Pharmacology, University of Mississippi, University, MS, USA
| | - A Verlangieri
- School of Pharmacy, Department of Pharmacology, University of Mississippi, University, MS, USA
| | - Z Shariat-Madar
- School of Pharmacy, Department of Pharmacology, University of Mississippi, University, MS, USA
- Correspondence: Zia Shariat-Madar, University of Mississippi, 219 B, Faser Hall, University, MS 38677–1848, USA, Tel +662 915 5150, Fax +662 915 5148, Email
| |
Collapse
|
25
|
Valli-Jaakola K, Suviolahti E, Schalin-Jäntti C, Ripatti S, Silander K, Oksanen L, Salomaa V, Peltonen L, Kontula K. Further evidence for the role of ENPP1 in obesity: association with morbid obesity in Finns. Obesity (Silver Spring) 2008; 16:2113-9. [PMID: 18551113 DOI: 10.1038/oby.2008.313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate a series of single-nucleotide polymorphisms (SNPs) in the genes MC2R, MC3R, MC4R, MC5R, POMC, and ENPP1 for association with obesity. Twenty-five SNPs (2-7 SNPs/gene) were genotyped in 246 Finns with extreme obesity (BMI > or = 40 kg/m2) and in 481 lean subjects (BMI 20-25 kg/m2). Of the obese subjects, 23% had concomitant type 2 diabetes. SNPs and SNP haplotypes were tested for association with obesity and type 2 diabetes. Allele frequencies differed between obese and lean subjects for two SNPs in the ENPP1 gene, rs1800949 (P = 0.006) and rs943003 (P = 0.0009). These SNPs are part of a haplotype (rs1800949 C-rs943003 A), which was observed more frequently in lean subjects compared to obese subjects (P = 0.0007). Weaker associations were detected between the SNPs rs1541276 in the MC5R, rs1926065 in the MC3R genes and obesity (P = 0.04 and P = 0.03, respectively), and between SNPs rs2236700 in the MC5R, rs2118404 in the POMC, rs943003 in the ENPP1 genes and type 2 diabetes (P = 0.03, P = 0.02 and P = 0.02, respectively); these associations did not, however, remain significant after correction for multiple testing. In conclusion, a previously unexplored ENPP1 haplotype composed of SNPs rs1800949 and rs943003 showed suggestive evidence for association with adult-onset morbid obesity in Finns. In this study, we did not find association between the frequently studied ENPP1 K121Q variant, nor SNPs in the MCR or POMC genes and obesity or type 2 diabetes.
Collapse
Affiliation(s)
- Kaisa Valli-Jaakola
- Department of Medicine and Research Program for Molecular Medicine, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gout J, Sarafian D, Tirard J, Blondet A, Vigier M, Rajas F, Mithieux G, Begeot M, Naville D. Leptin infusion and obesity in mouse cause alterations in the hypothalamic melanocortin system. Obesity (Silver Spring) 2008; 16:1763-9. [PMID: 18551122 DOI: 10.1038/oby.2008.303] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The objectives of this study were to identify potential alterations in gene expression of melanocortin-4 receptor (MC4-R), proopiomelanocortin (POMC), and Agouti-related protein (AgRP) in mouse hypothalamus under a chronic peripheral infusion of leptin or at early (8 weeks) and advanced (16 weeks) phases of diet-induced obesity. Control or diet-induced obesity mice (8 or 16 weeks of high-fat diet) were either treated or not treated with leptin. Metabolic features were analyzed and expression of the genes of interest was measured by quantitative reverse transcriptase-PCR (RT-qPCR) and western blot. We reported that in control mice, but not in obese mice, leptin infusion induced an increase in POMC mRNA level as well as in MC4-R mRNA level suggesting that leptin could act directly and/or through alpha-melanocyte-stimulating hormone (alpha-MSH). This hypothesis was reinforced after in vitro studies, using the mouse hypothalamic GT1-7 cell line, since both leptin and Norleucine(4), D-Phenylalanine(7)-alpha-MSH (NDP-alpha-MSH) treatments increased MC4-R expression. After 8 weeks of high-fat diet, nondiabetic obese mice became resistant to the central action of leptin and their hypothalamic content of POMC and AgRP mRNA were decreased without modification of MC4-R mRNA level. After 16 weeks of high-fat diet, mice exhibited more severe metabolic disorders with type 2 diabetes. Moreover, hypothalamic expression of MC4-R was highly increased. In conclusion, several alterations of the melanocortin system were found in obese mice that are probably consecutive to their central resistance to leptin. Moreover, when the metabolic status is highly degraded (with all characteristics of a type 2 diabetes), other regulatory mechanisms (independent of leptin) can also take place.
Collapse
|
27
|
Wang SX, Fan ZC, Tao YX. Functions of acidic transmembrane residues in human melanocortin-3 receptor binding and activation. Biochem Pharmacol 2008; 76:520-30. [PMID: 18614155 DOI: 10.1016/j.bcp.2008.05.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/22/2008] [Accepted: 05/23/2008] [Indexed: 10/22/2022]
Abstract
The melanocortin-3 receptor (MC3R) is an important regulator of energy homeostasis, inflammation, and cardiovascular function. Inactivating mutations in MC3R gene are associated with childhood obesity. How MC3R binds to its ligands has rarely been studied. In the present study, we systematically mutated all ten acidic residues in transmembrane (TM) domains and measured the cell surface expression levels as well as ligand binding and signaling properties of these mutants. Our results showed that of the 19 mutants stably expressed in HEK293 cells, all were expressed on the cell surface, although some mutants had decreased levels of cell surface expression. We showed that with the superpotent analog [Nle(4), D-Phe(7)]-alpha-melanocyte stimulating hormone (MSH), E92, E131, D154, D158, D178, and D332 are important for ligand binding. D121 and D332 are important for binding and signaling. Further experiments using other ligands such as D-Trp(8)-gamma-MSH, alpha-MSH and gamma-MSH showed that different ligands induce or select different conformations. In summary, we showed that acidic residues in TMs 1 and 3 are important for ligand binding whereas the acidic residues in TMs 2 and 7 are important for both ligand binding and signaling.
Collapse
Affiliation(s)
- Shu-Xiu Wang
- Department of Anatomy, Physiology and Pharmacology, 213 Greene Hall, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | | | | |
Collapse
|
28
|
Targeting melanocortin receptors: an approach to treat weight disorders and sexual dysfunction. Nat Rev Drug Discov 2008; 7:307-23. [PMID: 18323849 DOI: 10.1038/nrd2331] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The melanocortin system has multifaceted roles in the control of body weight homeostasis, sexual behaviour and autonomic functions, and so targeting this pathway has immense promise for drug discovery across multiple therapeutic areas. In this Review, we first outline the physiological roles of the melanocortin system, then discuss the potential of targeting melanocortin receptors by using MC3 and MC4 agonists for treating weight disorders and sexual dysfunction, and MC4 antagonists to treat anorectic and cachectic conditions. Given the complexity of the melanocortin system, we also highlight the challenges and opportunities for future drug discovery in this area.
Collapse
|
29
|
Tao YX. Functional characterization of novel melanocortin-3 receptor mutations identified from obese subjects. Biochim Biophys Acta Mol Basis Dis 2007; 1772:1167-74. [DOI: 10.1016/j.bbadis.2007.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 08/27/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
|
30
|
Abstract
OBJECTIVE Melanocortin 3 receptor (MC3R) plays a critical role in weight regulation of rodents, but its role in humans remains unclear. The objective of this study was to identify genetic variants of the MC3R gene and determine its association with childhood obesity. RESEARCH DESIGN AND METHODS We screened 201 obese children for MC3R gene mutations with anthropometric measurements, blood tests, feeding behavior, and body composition assessment. We identified three novel heterozygous mutations (Ile183Asn, Ala70Thr, and Met134Ile) in three unrelated subjects, which were not found in 188 control subjects, and two common polymorphisms Thr6Lys and Val81Ile. RESULTS In vitro functional studies of the resultant mutant receptors revealed impaired signaling activity but normal ligand binding and cell surface expression. The heterozygotes demonstrated higher leptin levels and adiposity and less hunger compared with obese control subjects, reminiscent of the MC3R knockout mice. Family studies showed that these mutations may be associated with childhood or early-onset obesity. The common variants Thr6Lys and Val81Ile were in complete linkage disequilibrium, and in vitro studies revealed reduced signaling activity compared with wild-type MC3R. Obese subjects with the 6Lys/81Ile haplotype had significantly higher leptin levels, percentage body fat, and insulin sensitivity, and the causative role of the 6Lys/81Ile variants is supported by the presence of an additive effect in which heterozygotes had an intermediate phenotype compared with homozygotes. CONCLUSIONS MC3R mutations may not result in autosomal dominant forms of obesity but may contribute as a predisposing factor to childhood obesity and exert an effect on the human phenotype. Our report supports the role of MC3R in human weight regulation.
Collapse
Affiliation(s)
- Yung Seng Lee
- Department of Paediatrics, National University of Singapore, and the Children's Medical Institute, National University Hospital, Singapore.
| | | | | | | |
Collapse
|
31
|
Tao YX. Inactivating mutations of G protein-coupled receptors and diseases: Structure-function insights and therapeutic implications. Pharmacol Ther 2006; 111:949-73. [PMID: 16616374 DOI: 10.1016/j.pharmthera.2006.02.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 02/21/2006] [Indexed: 12/20/2022]
Abstract
Since the discovery of the first rhodopsin mutation that causes retinitis pigmentosa in 1990, significant progresses have been made in elucidating the pathophysiology of diseases caused by inactivating mutations of G protein-coupled receptors (GPCRs). This review aims to compile the compelling evidence accumulated during the past 15 years demonstrating the etiologies of more than a dozen diseases caused by inactivating GPCR mutations. A generalized classification scheme, based on the life cycle of GPCRs, is proposed. Insights gained through detailed studies of these naturally occurring mutations into the structure-function relationship of these receptors are reviewed. Therapeutic approaches directed against the different classes of mutants are being developed. Since intracellular retention emerges as the most common defect, recent progresses aimed at correcting this defect through membrane permeable pharmacological chaperones are highlighted.
Collapse
MESH Headings
- Animals
- Diabetes Insipidus, Nephrogenic/etiology
- Dwarfism/etiology
- Humans
- Hypogonadism/etiology
- Mutation
- Obesity/etiology
- Receptor, Melanocortin, Type 1/genetics
- Receptor, Melanocortin, Type 2/genetics
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptors, CCR5/genetics
- Receptors, Calcium-Sensing/genetics
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Receptors, LHRH/genetics
- Receptors, Vasopressin/genetics
- Retinitis Pigmentosa/etiology
- Rhodopsin/genetics
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, 213 Greene Hall, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
32
|
Grosse J, Tarnow P, Römpler H, Schneider B, Sedlmeier R, Huffstadt U, Korthaus D, Nehls M, Wattler S, Schöneberg T, Biebermann H, Augustin M. N-ethyl-N-nitrosourea-based generation of mouse models for mutant G protein-coupled receptors. Physiol Genomics 2006; 26:209-17. [PMID: 16720677 DOI: 10.1152/physiolgenomics.00289.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chemical random mutagenesis techniques with the germ line supermutagen N-ethyl-N-nitrosourea (ENU) have been established to provide comprehensive collections of mouse models, which were then mined and analyzed in phenotype-driven studies. Here, we applied ENU mutagenesis in a high-throughput fashion for a gene-driven identification of new mutations. Selected members of the large superfamily of G protein-coupled receptors (GPCR), melanocortin type 3 (Mc3r) and type 4 (Mc4r) receptors, and the orphan chemoattractant receptor GPR33, were used as model targets to prove the feasibility of this approach. Parallel archives of DNA and sperm from mice mutagenized with ENU were screened for mutations in these GPCR, and in vitro assays served as a preselection step before in vitro fertilization was performed to generate the appropriate mouse model. For example, mouse models for inherited obesity were established by selecting fully or partially inactivating mutations in Mc4r. Our technology described herein has the potential to provide mouse models for a GPCR dysfunction of choice within <4 mo and can be extended to other gene classes of interest.
Collapse
MESH Headings
- Alkylating Agents/toxicity
- Animals
- COS Cells
- Chlorocebus aethiops
- DNA Mutational Analysis/methods
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Ethylnitrosourea/toxicity
- Female
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mutagenesis/drug effects
- Mutation/genetics
- Phylogeny
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/physiology
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/physiology
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Signal Transduction/physiology
- Transfection
Collapse
|
33
|
Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Pérusse L, Bouchard C. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 2006; 14:529-644. [PMID: 16741264 DOI: 10.1038/oby.2006.71] [Citation(s) in RCA: 685] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper presents the 12th update of the human obesity gene map, which incorporates published results up to the end of October 2005. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTL) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2005, 176 human obesity cases due to single-gene mutations in 11 different genes have been reported, 50 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 244 genes that, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 408. The number of human obesity QTLs derived from genome scans continues to grow, and we now have 253 QTLs for obesity-related phenotypes from 61 genome-wide scans. A total of 52 genomic regions harbor QTLs supported by two or more studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably, with 426 findings of positive associations with 127 candidate genes. A promising observation is that 22 genes are each supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. The electronic version of the map with links to useful publications and relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808-4124, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Rached M, El Mourabit H, Buronfosse A, Blondet A, Naville D, Begeot M, Penhoat A. Expression of the human melanocortin-2 receptor in different eukaryotic cells. Peptides 2005; 26:1842-7. [PMID: 15982783 DOI: 10.1016/j.peptides.2004.11.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 11/17/2004] [Indexed: 11/30/2022]
Abstract
The human melanocortin-2 receptor (hMC2R) is mainly present in the adrenal cortex and has been difficult to express in heterologous cells. The hMC2R fused to the EGFP at its C-terminus has been stably transfected in the murine M3 melanoma and HEK293 cells. In the M3 cells, the hMC2R-EGFP was well-addressed to the cell membrane and functional whereas in the HEK293 cells, the hMC2R-EGFP was retained intracellularly. These results suggest that some specific factors, missing in cells, which do not express any melanocortin receptor, are involved in the correct addressing of the hMC2R to the cell membrane.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Cells, Cultured
- Humans
- Mice
- Microscopy, Confocal
- Microscopy, Fluorescence
- RNA, Messenger/metabolism
- Receptor, Melanocortin, Type 2/biosynthesis
- Receptor, Melanocortin, Type 2/genetics
- Receptor, Melanocortin, Type 2/metabolism
- Receptor, Melanocortin, Type 3/biosynthesis
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/biosynthesis
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Transfection
Collapse
Affiliation(s)
- Mohamed Rached
- INSERM, U418/INRA UMR 1245, IFR Laënnec, Lyon F-69005, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Feng N, Young SF, Aguilera G, Puricelli E, Adler-Wailes DC, Sebring NG, Yanovski JA. Co-occurrence of two partially inactivating polymorphisms of MC3R is associated with pediatric-onset obesity. Diabetes 2005; 54:2663-7. [PMID: 16123355 PMCID: PMC1861848 DOI: 10.2337/diabetes.54.9.2663] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Both human linkage studies and MC3R knockout mouse models suggest that the MC3R may play an important role in energy homeostasis. Here we show that among 355 overweight and nonoverweight children, 8.2% were double homozygous for a pair of missense MC3R sequence variants (Thr6Lys and Val81Ile). Such children were significantly heavier (BMI and BMI SD score: P < 0.0001), had more body fat (body fat mass and percentage fat mass: P < 0.001), and had greater plasma leptin (P < 0.0001) and insulin concentrations (P < 0.001) and greater insulin resistance (P < 0.008) than wild-type or heterozygous children. Both sequence variants were more common in African-American than Caucasian children. In vitro expression studies found the double mutant MC3R was partially inactive, with significantly fewer receptor binding sites, decreased signal transduction, and less protein expression. We conclude that diminished MC3R expression in this double MC3R variant may be a predisposing factor for excessive body weight gain in children.
Collapse
Affiliation(s)
- Ningping Feng
- Unit on Growth and Obesity, National Institutes of Health, Bethesda, Maryland
| | - Sharla F. Young
- Section on Endocrine Physiology, Developmental Endocrinology Branch, National Institute of Child Health and Development, Rockville, Maryland
| | - Greti Aguilera
- Section on Endocrine Physiology, Developmental Endocrinology Branch, National Institute of Child Health and Development, Rockville, Maryland
| | - Elena Puricelli
- Unit on Growth and Obesity, National Institutes of Health, Bethesda, Maryland
- Pediatric Department, University of Insubria, Varese, Italy
| | | | - Nancy G. Sebring
- Nutrition Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jack A. Yanovski
- Unit on Growth and Obesity, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
36
|
Tao YX. Molecular mechanisms of the neural melanocortin receptor dysfunction in severe early onset obesity. Mol Cell Endocrinol 2005; 239:1-14. [PMID: 15975705 DOI: 10.1016/j.mce.2005.04.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 04/10/2005] [Accepted: 04/20/2005] [Indexed: 11/23/2022]
Abstract
The neural melanocortin receptors, melanocortin-3 and -4 receptors (MC3R and MC4R), have been shown to regulate different aspects of energy homeostasis in rodents. Human genetic studies showed that mutations in the MC4R gene are the most common monogenic form of obesity. Functional analyses of the mutant receptors revealed multiple defects. A classification scheme is presented for cataloguing the ever-increasing array of MC4R mutations. Functional analysis of the only inactivating MC3R mutation is also summarized. Insights from the analyses of the naturally occurring mutations in the MC3R and MC4R on the structure and function of these receptors are highlighted.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849, USA.
| |
Collapse
|
37
|
|