1
|
Aldè M, Cantarella G, Zanetti D, Pignataro L, La Mantia I, Maiolino L, Ferlito S, Di Mauro P, Cocuzza S, Lechien JR, Iannella G, Simon F, Maniaci A. Autosomal Dominant Non-Syndromic Hearing Loss (DFNA): A Comprehensive Narrative Review. Biomedicines 2023; 11:1616. [PMID: 37371710 DOI: 10.3390/biomedicines11061616] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Autosomal dominant non-syndromic hearing loss (HL) typically occurs when only one dominant allele within the disease gene is sufficient to express the phenotype. Therefore, most patients diagnosed with autosomal dominant non-syndromic HL have a hearing-impaired parent, although de novo mutations should be considered in all cases of negative family history. To date, more than 50 genes and 80 loci have been identified for autosomal dominant non-syndromic HL. DFNA22 (MYO6 gene), DFNA8/12 (TECTA gene), DFNA20/26 (ACTG1 gene), DFNA6/14/38 (WFS1 gene), DFNA15 (POU4F3 gene), DFNA2A (KCNQ4 gene), and DFNA10 (EYA4 gene) are some of the most common forms of autosomal dominant non-syndromic HL. The characteristics of autosomal dominant non-syndromic HL are heterogenous. However, in most cases, HL tends to be bilateral, post-lingual in onset (childhood to early adulthood), high-frequency (sloping audiometric configuration), progressive, and variable in severity (mild to profound degree). DFNA1 (DIAPH1 gene) and DFNA6/14/38 (WFS1 gene) are the most common forms of autosomal dominant non-syndromic HL affecting low frequencies, while DFNA16 (unknown gene) is characterized by fluctuating HL. A long audiological follow-up is of paramount importance to identify hearing threshold deteriorations early and ensure prompt treatment with hearing aids or cochlear implants.
Collapse
Affiliation(s)
- Mirko Aldè
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giovanna Cantarella
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Diego Zanetti
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Lorenzo Pignataro
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Ignazio La Mantia
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Luigi Maiolino
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Ferlito
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Paola Di Mauro
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Cocuzza
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Jérôme René Lechien
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giannicola Iannella
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Francois Simon
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Antonino Maniaci
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| |
Collapse
|
2
|
Homma K. The Pathological Mechanisms of Hearing Loss Caused by KCNQ1 and KCNQ4 Variants. Biomedicines 2022; 10:biomedicines10092254. [PMID: 36140355 PMCID: PMC9496569 DOI: 10.3390/biomedicines10092254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Deafness-associated genes KCNQ1 (also associated with heart diseases) and KCNQ4 (only associated with hearing loss) encode the homotetrameric voltage-gated potassium ion channels Kv7.1 and Kv7.4, respectively. To date, over 700 KCNQ1 and over 70 KCNQ4 variants have been identified in patients. The vast majority of these variants are inherited dominantly, and their pathogenicity is often explained by dominant-negative inhibition or haploinsufficiency. Our recent study unexpectedly identified cell-death-inducing cytotoxicity in several Kv7.1 and Kv7.4 variants. Elucidation of this cytotoxicity mechanism and identification of its modifiers (drugs) have great potential for aiding the development of a novel pharmacological strategy against many pathogenic KCNQ variants. The purpose of this review is to disseminate this emerging pathological role of Kv7 variants and to underscore the importance of experimentally characterizing disease-associated variants.
Collapse
Affiliation(s)
- Kazuaki Homma
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; ; Tel.: +1-312-503-5344
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60608, USA
| |
Collapse
|
3
|
Cui C, Zhang L, Qian F, Chen Y, Huang B, Wang F, Wang D, Lv J, Wang X, Yan Z, Guo L, Li GL, Shu Y, Liu D, Li H. A humanized murine model, demonstrating dominant progressive hearing loss caused by a novel KCNQ4 mutation (p.G228D) from a large Chinese family. Clin Genet 2022; 102:149-154. [PMID: 35599357 DOI: 10.1111/cge.14164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022]
Abstract
The pathogenic variants in KCNQ4 cause DFNA2 nonsyndromic hearing loss. However, the understanding of genotype-phenotype correlations between KCNQ4 and hearing is limited. Here, we identified a novel KCNQ4 mutation p.G228D from a Chinese family, including heterozygotes characterized by high-frequency hearing loss that is progressive across all frequencies and homozygotes with more severe hearing loss. We constructed a novel murine model with humanized homologous Kcnq4 mutation. The heterozygotes had mid-frequency and high-frequency hearing loss at 4 weeks, and moved toward all frequencies hearing loss at 12 weeks, while the homozygotes had severe-to-profound hearing loss at 8 weeks. The degeneration of outer hair cells (OHCs) was observed from basal to apical turn of cochlea. The reduced K+ currents and depolarized resting potentials were revealed in OHCs. Remarkably, we observed the loss of inner hair cells (IHCs) in the region corresponding to the frequency above 32 kHz at 8-12 weeks. The results suggest the degeneration of OHCs and IHCs may contribute to high-frequency hearing loss in DFNA2 over time. Our findings broaden the variants of KCNQ4 and provide a novel mouse model of progressive hearing loss, which contributes to an understanding of pathogenic mechanism and eventually treatment of DFNA2 progressive hearing loss.
Collapse
Affiliation(s)
- Chong Cui
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Luping Zhang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital, Nantong University, Nantong, China
| | - Fuping Qian
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, China
| | - Yuxin Chen
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Bowei Huang
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fang Wang
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Daqi Wang
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Lv
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xuechun Wang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital, Nantong University, Nantong, China
| | - Zhiqiang Yan
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Luo Guo
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Geng-Lin Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Yilai Shu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dong Liu
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Huawei Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Progression of KCNQ4 related genetic hearing loss: a narrative review. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
5
|
Kojima T, Wasano K, Takahashi S, Homma K. Cell death-inducing cytotoxicity in truncated KCNQ4 variants associated with DFNA2 hearing loss. Dis Model Mech 2021; 14:272416. [PMID: 34622280 PMCID: PMC8628632 DOI: 10.1242/dmm.049015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 09/22/2021] [Indexed: 01/30/2023] Open
Abstract
KCNQ4 encodes the homotetrameric voltage-dependent potassium ion channel Kv7.4, and is the causative gene for autosomal dominant nonsyndromic sensorineural hearing loss, DFNA2. Dominant-negative inhibition accounts for the observed dominant inheritance of many DFNA2-associated KCNQ4 variants. In addition, haploinsufficiency has been presumed as the pathological mechanism for truncated Kv7.4 variants lacking the C-terminal tetramerization region, as they are unlikely to exert a dominant-negative inhibitory effect. Such truncated Kv7.4 variants should result in relatively mild hearing loss when heterozygous; however, this is not always the case. In this study, we characterized Kv7.4Q71fs (c.211delC), Kv7.4W242X (c.725G>A) and Kv7.4A349fs (c.1044_1051del8) in heterologous expression systems and found that expression of these truncated Kv7.4 variants induced cell death. We also found similar cell death-inducing cytotoxic effects in truncated Kv7.1 (KCNQ1) variants, suggesting that the generality of our findings could account for the dominant inheritance of many, if not most, truncated Kv7 variants. Moreover, we found that the application of autophagy inducers can ameliorate the cytotoxicity, providing a novel insight for the development of alternative therapeutic strategies for Kv7.4 variants. Summary: Expression of truncated KCNQ4 variants lacking the C-terminal tetramerization domain results in cell-death inducing cytotoxicity, providing novel insight into the development of alternative therapeutic strategies for DFNA2 hearing loss.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Koichiro Wasano
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Laboratory of Auditory Disorders, Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan
| | - Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60608, USA
| |
Collapse
|
6
|
Molecular basis and restoration of function deficiencies of Kv7.4 variants associated with inherited hearing loss. Hear Res 2020; 388:107884. [PMID: 31995783 DOI: 10.1016/j.heares.2020.107884] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/12/2019] [Accepted: 12/31/2019] [Indexed: 11/20/2022]
Abstract
Deafness non-syndromic autosomal dominant 2 (DFNA2) is characterized by symmetric, predominantly high-frequency sensorineural hearing loss that is progressive across all frequencies. The disease is associated with variants of a potassium voltage-gated channel subfamily Q member 4 gene, KCNQ4 (Kv7.4). Here, we studied nine recently identified Kv7.4 variants in DFNA2 pedigrees, including V230E, E260K, D262V, Y270H, W275R, G287R, P291L, P291S and S680F. We proved that the variant S680F did not alter the channel function while the other eight variants resulted in function deficiencies. We further proved that the two variants E260K and P291S showed reduced cell membrane expressions while the other seven variants showed moderate cell surface expressions. Thus, trafficking deficiency is not a common mechanism underlying channel dysfunction. Next, we studied two variants, V230E and G287R, using molecular dynamics simulation. We showed that V230E stabilized Kv7.4 channel in the closed state by forming an additional hydrogen bond with a basic residue K325, while G287R distorted the selectivity filter and blocked the pore region of Kv7.4 channel. Moreover, by co-expressing wild-type (WT) and variant proteins in vitro, we demonstrated that the heterogeneous Kv7.4 channel currents were reduced compared to the WT channel currents and the reduction could be rescued by a Kv7.4 opener retigabine. Our study provided the underlying mechanisms and suggested a potential alternative therapeutic approach for DFNA2.
Collapse
|
7
|
D'Aguillo C, Bressler S, Yan D, Mittal R, Fifer R, Blanton SH, Liu X. Genetic screening as an adjunct to universal newborn hearing screening: literature review and implications for non-congenital pre-lingual hearing loss. Int J Audiol 2019; 58:834-850. [PMID: 31264897 DOI: 10.1080/14992027.2019.1632499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: Universal newborn hearing screening (UNHS) uses otoacoustic emissions testing (OAE) and auditory brainstem response testing (ABR) to screen all newborn infants for hearing loss (HL), but may not identify infants with mild HL at birth or delayed onset HL. The purpose of this review is to examine the role of genetic screening to diagnose children with pre-lingual HL that is not detected at birth by determining the rate of children who pass UNHS but have a positive genetic screening. This includes a summary of the current UNHS and its limitations and a review of genetic mutations and screening technologies used to detect patients with an increased risk of undiagnosed pre-lingual HL.Design: Literature review of studies that compare UNHS with concurrent genetic screening.Study sample: Infants and children with HLResults: Sixteen studies were included encompassing 137,895 infants. Pathogenic mutations were detected in 8.66% of patients. In total, 545 patients passed the UNHS but had a positive genetic screening. The average percentage of patients who passed UNHS but had a positive genetic screening was 1.4%.Conclusions: This review demonstrates the positive impact of concurrent genetic screening with UNHS to identify patients with pre-lingual HL.
Collapse
Affiliation(s)
- Christine D'Aguillo
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sara Bressler
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert Fifer
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Susan H Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Human Genetics, Dr. John T. Macdonald Foundation, Miami, FL, USA.,John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Human Genetics, Dr. John T. Macdonald Foundation, Miami, FL, USA.,John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Tsinghua University School of Medicine, Beijing, PR China
| |
Collapse
|
8
|
Whole-exome sequencing identifies two novel mutations in KCNQ4 in individuals with nonsyndromic hearing loss. Sci Rep 2018; 8:16659. [PMID: 30413759 PMCID: PMC6226507 DOI: 10.1038/s41598-018-34876-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/27/2018] [Indexed: 11/09/2022] Open
Abstract
Mutations in potassium voltage-gated channel subfamily Q member 4 (KCNQ4) are etiologically linked to a type of nonsyndromic hearing loss, deafness nonsyndromic autosomal dominant 2 (DFNA2). We performed whole-exome sequencing for 98 families with hearing loss and found mutations in KCNQ4 in five families. In this study, we characterized two novel mutations in KCNQ4: a missense mutation (c.796G>T; p.Asp266Tyr) and an in-frame deletion mutation (c.259_267del; p.Val87_Asn89del). p.Asp266Tyr located in the channel pore region resulted in early onset and moderate hearing loss, whereas p.Val87_Asn89del located in the N-terminal cytoplasmic region resulted in late onset and high frequency-specific hearing loss. When heterologously expressed in HEK 293 T cells, both mutant proteins did not show defects in protein trafficking to the plasma membrane or in interactions with wild-type (WT) KCNQ4 channels. Patch-clamp analysis demonstrated that both p.Asp266Tyr and p.Val87_Asn89del mutant channels lost conductance and were completely unresponsive to KCNQ activators, such as retigabine, zinc pyrithione, and ML213. Channels assembled from WT-p.Asp266Tyr concatemers, like those from WT-WT concatemers, exhibited conductance and responsiveness to KCNQ activators. However, channels assembled from WT-p.Val87_Asn89del concatemers showed impaired conductance, suggesting that p.Val87_Asn89del caused complete loss-of-function with a strong dominant-negative effect on functional WT channels. Therefore, the main pathological mechanism may be related to loss of K+ channel activity, not defects in trafficking.
Collapse
|
9
|
Huang B, Liu Y, Gao X, Xu J, Dai P, Zhu Q, Yuan Y. A novel pore-region mutation, c.887G > A (p.G296D) in KCNQ4, causing hearing loss in a Chinese family with autosomal dominant non-syndromic deafness 2. BMC MEDICAL GENETICS 2017; 18:36. [PMID: 28340560 PMCID: PMC5366164 DOI: 10.1186/s12881-017-0396-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 03/08/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hereditary non-syndromic hearing loss is the most common inherited sensory defect in humans. The KCNQ4 channel belongs to a family of potassium ion channels that play crucial roles in physiology and disease. Mutations in KCNQ4 underlie deafness non-syndromic autosomal dominant 2, a subtype of autosomal dominant, progressive, high-frequency hearing loss. METHODS A six-generation Chinese family from Hebei Province with autosomal dominantly inherited, sensorineural, postlingual, progressive hearing loss was enrolled in this study. Mutation screening of 129 genes associated with hearing loss was performed in five family members by next-generation sequencing (NGS). We also carried out variant analysis on DNA from 531 Chinese individuals with normal hearing as controls. RESULTS This family exhibits postlingual, progressive, symmetrical, bilateral, non-syndromic sensorineural hearing loss. NGS, bioinformatic analysis, and Sanger sequencing confirmed the co-segregation of a novel mutation [c.887G > A (p.G296D)] in KCNQ4 with the disease phenotype in this family. This mutation leads to a glycine-to-aspartic acid substitution at position 296 in the pore region of the KCNQ4 channel. This mutation affects a highly conserved glutamic acid. NGS is a highly efficient tool for identifying gene mutations causing heritable disease. CONCLUSIONS Progressive hearing loss is common in individuals with KCNQ4 mutations. NGS together with Sanger sequencing confirmed that the five affected members of this Chinese family inherited a missense mutation, c.887G > A (p.G296D), in exon 6 of KCNQ4. Our results increase the number of identified KCNQ4 mutations.
Collapse
Affiliation(s)
- Bangqing Huang
- Department of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, 572013, China
| | - Yanping Liu
- Department of Otorhinolaryngology, General Hospital of the Rocket Force, Beijing, 100088, China
| | - Xue Gao
- Department of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Otorhinolaryngology, General Hospital of the Rocket Force, Beijing, 100088, China
| | - Jincao Xu
- Department of Otorhinolaryngology, General Hospital of the Rocket Force, Beijing, 100088, China
| | - Pu Dai
- Department of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Qingwen Zhu
- Department of Otolaryngology, The Second Hospital Of Hebei Medical University, Shijiazhuang, 050018, China.
| | - Yongyi Yuan
- Department of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
10
|
Uehara DT, Freitas ÉL, Alves LU, Mazzeu JF, Auricchio MT, Tabith A, Monteiro ML, Rosenberg C, Mingroni-Netto RC. A novel KCNQ4 mutation and a private IMMP2L-DOCK4 duplication segregating with nonsyndromic hearing loss in a Brazilian family. Hum Genome Var 2015; 2:15038. [PMID: 27081546 PMCID: PMC4785540 DOI: 10.1038/hgv.2015.38] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/17/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023] Open
Abstract
Here we describe a novel missense variant in the KCNQ4 gene and a private duplication at 7q31.1 partially involving two genes (IMMP2L and DOCK4). Both mutations segregated with nonsyndromic hearing loss in a family with three affected individuals. Initially, we identified the duplication in a screening of 132 unrelated cases of hearing loss with a multiplex ligation-dependent probe amplification panel of genes that are candidates to have a role in hearing, including IMMP2L. Mapping of the duplication by array-CGH revealed that the duplication also encompassed the 3′-end of DOCK4. Subsequently, whole-exome sequencing identified the breakpoint of the rearrangement, thereby confirming the existence of a fusion IMMP2L-DOCK4 gene. Transcription products of the fusion gene were identified, indicating that they escaped nonsense-mediated messenger RNA decay. A missense substitution (c.701A>T) in KCNQ4 (a gene at the DFNA2A locus) was also identified by whole-exome sequencing. Because the substitution is predicted to be probably damaging and KCNQ4 has been implicated in hearing loss, this mutation might explain the deafness in the affected individuals, although a hypothetical effect of the product of the fusion gene on hearing cannot be completely ruled out.
Collapse
Affiliation(s)
- Daniela T Uehara
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo , São Paulo, Brazil
| | - Érika L Freitas
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo , São Paulo, Brazil
| | - Leandro U Alves
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo , São Paulo, Brazil
| | | | - Maria Tbm Auricchio
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo , São Paulo, Brazil
| | - Alfredo Tabith
- DERDIC, Pontifical Catholic University of São Paulo , São Paulo, Brazil
| | - Mário Lr Monteiro
- Department of Ophthalmology and Otorhinolaryngology, Faculty of Medicine, University of São Paulo , São Paulo, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo , São Paulo, Brazil
| | - Regina C Mingroni-Netto
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo , São Paulo, Brazil
| |
Collapse
|
11
|
A missense variant of the ATP1A2 gene is associated with a novel phenotype of progressive sensorineural hearing loss associated with migraine. Eur J Hum Genet 2014; 23:639-45. [PMID: 25138102 DOI: 10.1038/ejhg.2014.154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 06/25/2014] [Accepted: 07/02/2014] [Indexed: 11/08/2022] Open
Abstract
Hereditary sensorineural hearing loss is an extremely clinical and genetic heterogeneous disorder in humans. Especially, syndromic hearing loss is subdivided by combinations of various phenotypes, and each subtype is related to different genes. We present a new form of progressive hearing loss with migraine found to be associated with a variant in the ATP1A2 gene. The ATP1A2 gene has been reported as the major genetic cause of familial migraine by several previous studies. A Korean family presenting progressive hearing loss with migraine was ascertained. The affected members did not show any aura or other neurologic symptoms during migraine attacks, indicating on a novel phenotype of syndromic hearing loss. To identify the causative gene, linkage analysis and whole-exome sequencing were performed. A novel missense variant, c.571G>A (p.(Val191Met)), was identified in the ATP1A2 gene that showed co-segregation with the phenotype in the family. In silico studies suggest that this variant causes a change in hydrophobic interactions and thereby slightly destabilize the A-domain of Na(+)/K(+)-ATPase. However, functional studies failed to show any effect of the p.(Val191Met) substitution on the catalytic rate of this enzyme. We describe a new phenotype of progressive hearing loss with migraine associated with a variant in the ATP1A2 gene. This study suggests that a variant in Na(+)/K(+)-ATPase can be involved in both migraine and hearing loss.
Collapse
|
12
|
Wang H, Zhao Y, Yi Y, Gao Y, Liu Q, Wang D, Li Q, Lan L, Li N, Guan J, Yin Z, Han B, Zhao F, Zong L, Xiong W, Yu L, Song L, Yi X, Yang L, Petit C, Wang Q. Targeted high-throughput sequencing identifies pathogenic mutations in KCNQ4 in two large Chinese families with autosomal dominant hearing loss. PLoS One 2014; 9:e103133. [PMID: 25116015 PMCID: PMC4130520 DOI: 10.1371/journal.pone.0103133] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/27/2014] [Indexed: 11/18/2022] Open
Abstract
Autosomal dominant non-syndromic hearing loss (ADNSHL) is highly heterogeneous, among them, KCNQ4 is one of the most frequent disease-causing genes. More than twenty KCNQ4 mutations have been reported, but none of them were detected in Chinese mainland families. In this study, we identified a novel KCNQ4 mutation in a five generation Chinese family with 84 members and a known KCNQ4 mutation in a six generation Chinese family with 66 members. Mutation screening of 30 genes for ADNSHL was performed in the probands from thirty large Chinese families with ADNSHL by targeted region capture and high-throughput sequencing. The candidate variants and the co-segregation of the phenotype were verified by polymerase chain reaction (PCR) amplification and Sanger sequencing in all ascertained family members. Then we identified a novel KCNQ4 mutation p.W275R in exon 5 and a known KCNQ4 mutation p.G285S in exon 6 in two large Chinese ADNSHL families segregating with post-lingual high frequency-involved and progressive sensorineural hearing loss. This is the first report of KCNQ4 mutation in Chinese mainland families. KCNQ4, a member of voltage-gated potassium channel family, is likely to be a common gene in Chinese patients with ADNSHL. The results also support that the combination of targeted enrichment and high-throughput sequencing is a valuable molecular diagnostic tool for autosomal dominant hereditary deafness.
Collapse
Affiliation(s)
- Hongyang Wang
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Yali Zhao
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | | | - Yun Gao
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Qiong Liu
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Dayong Wang
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Qian Li
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Lan Lan
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Na Li
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Jing Guan
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Zifang Yin
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Bing Han
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Feifan Zhao
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Liang Zong
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Wenping Xiong
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Lan Yu
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | | | - Xin Yi
- BGI-Tianjin, Tianjin, China
| | | | - Christine Petit
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Université Pierre et Marie Curie (Paris VI), Paris, France
- Collège de France, Paris, France
| | - Qiuju Wang
- Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
- * E-mail:
| |
Collapse
|
13
|
Wu C, Sharma K, Laster K, Hersi M, Torres C, Lukas TJ, Moore EJ. Kcnq1-5 (Kv7.1-5) potassium channel expression in the adult zebrafish. BMC PHYSIOLOGY 2014; 14:1. [PMID: 24555524 PMCID: PMC4016485 DOI: 10.1186/1472-6793-14-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 02/11/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND KCNQx genes encode slowly activating-inactivating K+ channels, are linked to physiological signal transduction pathways, and mutations in them underlie diseases such as long QT syndrome (KCNQ1), epilepsy in adults (KCNQ2/3), benign familial neonatal convulsions in children (KCNQ3), and hearing loss or tinnitus in humans (KCNQ4, but not KCNQ5). Identification of kcnqx potassium channel transcripts in zebrafish (Danio rerio) remains to be fully characterized although some genes have been mapped to the genome. Using zebrafish genome resources as the source of putative kcnq sequences, we investigated the expression of kcnq1-5 in heart, brain and ear tissues. RESULTS Overall expression of the kcnqx channel transcripts is similar to that found in mammals. We found that kcnq1 expression was highest in the heart, and also present in the ear and brain. kcnq2 was lowest in the heart, while kcnq3 was highly expressed in the brain, heart and ear. kcnq5 expression was highest in the ear. We analyzed zebrafish genomic clones containing putative kcnq4 sequences to identify transcripts and protein for this highly conserved member of the Kcnq channel family. The zebrafish appears to have two kcnq4 genes that produce distinct mRNA species in brain, ear, and heart tissues. CONCLUSIONS We conclude that the zebrafish is an attractive model for the study of the KCNQ (Kv7) superfamily of genes, and are important to processes involved in neuronal excitability, cardiac anomalies, epileptic seizures, and hearing loss or tinnitus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ernest J Moore
- Department of Molecular Pharmacology & Biological Chemistry, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
14
|
Gao Y, Yechikov S, Vázquez AE, Chen D, Nie L. Impaired surface expression and conductance of the KCNQ4 channel lead to sensorineural hearing loss. J Cell Mol Med 2013; 17:889-900. [PMID: 23750663 PMCID: PMC3729637 DOI: 10.1111/jcmm.12080] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/29/2013] [Indexed: 01/21/2023] Open
Abstract
KCNQ4, a voltage-gated potassium channel, plays an important role in maintaining cochlear ion homoeostasis and regulating hair cell membrane potential, both essential for normal auditory function. Mutations in the KCNQ4 gene lead to DFNA2, a subtype of autosomal dominant non-syndromic deafness that is characterized by progressive sensorineural hearing loss across all frequencies. Despite recent advances in the identification of pathogenic KCNQ4 mutations, the molecular aetiology of DFNA2 remains unknown. We report here that decreased cell surface expression and impaired conductance of the KCNQ4 channel are two mechanisms underlying hearing loss in DFNA2. In HEK293T cells, a dramatic decrease in cell surface expression was detected by immunofluorescent microscopy and confirmed by Western blot for the pathogenic KCNQ4 mutants L274H, W276S, L281S, G285C, G285S, G296S and G321S, while their overall cellular levels remained normal. In addition, none of these mutations affected tetrameric assembly of KCNQ4 channels. Consistent with these results, all mutants showed strong dominant-negative effects on the wild-type (WT) channel function. Most importantly, overexpression of HSP90β, a key component of the molecular chaperone network that controls the KCNQ4 biogenesis, significantly increased cell surface expression of the KCNQ4 mutants L281S, G296S and G321S. KCNQ4 surface expression was restored or considerably improved in HEK293T cells mimicking the heterozygous condition of these mutations in DFNA2 patients. Finally, our electrophysiological studies demonstrated that these mutations directly compromise the conductance of the KCNQ4 channel, since no significant change in KCNQ4 current was observed after KCNQ4 surface expression was restored or improved.
Collapse
Affiliation(s)
- Yanhong Gao
- Department of Otolaryngology, University of California Davis, Davis, CA, USA
| | | | | | | | | |
Collapse
|
15
|
Naito T, Nishio SY, Iwasa YI, Yano T, Kumakawa K, Abe S, Ishikawa K, Kojima H, Namba A, Oshikawa C, Usami SI. Comprehensive genetic screening of KCNQ4 in a large autosomal dominant nonsyndromic hearing loss cohort: genotype-phenotype correlations and a founder mutation. PLoS One 2013; 8:e63231. [PMID: 23717403 PMCID: PMC3662675 DOI: 10.1371/journal.pone.0063231] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/02/2013] [Indexed: 11/28/2022] Open
Abstract
The present study of KCNQ4 mutations was carried out to 1) determine the prevalence by unbiased population-based genetic screening, 2) clarify the mutation spectrum and genotype/phenotype correlations, and 3) summarize clinical characteristics. In addition, a review of the reported mutations was performed for better understanding of this deafness gene. The screening using 287 probands from unbiased Japanese autosomal dominant nonsyndromic hearing loss (ADNSHL) families identified 19 families with 7 different disease causing mutations, indicating that the frequency is 6.62% (19/287). While the majority were private mutations, one particular recurrent mutation, c.211delC, was observed in 13 unrelated families. Haplotype analysis in the vicinity of c.211delC suggests existence of a common ancestor. The majority of the patients showed all frequency, but high-frequency predominant, sensorineural hearing loss. The present study adds a new typical audiogram configuration characterized by mid-frequency predominant hearing loss caused by the p.V230E mutation. A variant at the N-terminal site (c. 211delC) showed typical ski-slope type audiogram configuration. Concerning clinical features, onset age was from 3 to 40 years old, and mostly in the teens, and hearing loss was gradually progressive. Progressive nature is a common feature of patients with KCNQ4 mutations regardless of the mutation type. In conclusion, KCNQ4 mutations are frequent among ADNSHL patients, and therefore screening of the gene and molecular confirmation of these mutations have become important in the diagnosis of these conditions.
Collapse
Affiliation(s)
- Takehiko Naito
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoh-ichiro Iwasa
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takuya Yano
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kozo Kumakawa
- Department of Otolaryngology, Toranomon Hospital, Tokyo, Japan
| | - Satoko Abe
- Department of Otolaryngology, Toranomon Hospital, Tokyo, Japan
| | - Kotaro Ishikawa
- Department of Otorhinolaryngology, Jichi Medical University, Tochigi, Japan
| | - Hiromi Kojima
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Atsushi Namba
- Department of Otorhinolaryngology, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Chie Oshikawa
- Department of Otorhinolaryngology, Kyushu University School of Medicine, Fukuoka, Japan
| | - Shin-ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- * E-mail:
| |
Collapse
|
16
|
Abdelfatah N, McComiskey DA, Doucette L, Griffin A, Moore SJ, Negrijn C, Hodgkinson KA, King JJ, Larijani M, Houston J, Stanton SG, Young TL. Identification of a novel in-frame deletion in KCNQ4 (DFNA2A) and evidence of multiple phenocopies of unknown origin in a family with ADSNHL. Eur J Hum Genet 2013; 21:1112-9. [PMID: 23443030 DOI: 10.1038/ejhg.2013.5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 12/12/2012] [Accepted: 12/28/2012] [Indexed: 11/09/2022] Open
Abstract
Autosomal dominant sensorineural hearing loss (ADSNHL) is extremely genetically heterogeneous, making it difficult to molecularly diagnose. We identified a multiplex (n=28 affected) family from the genetic isolate of Newfoundland, Canada with variable SNHL and used a targeted sequencing approach based on population-specific alleles in WFS1, TMPRSS3 and PCDH15; recurrent mutations in GJB2 and GJB6; and frequently mutated exons of KCNQ4, COCH and TECTA. We identified a novel, in-frame deletion (c.806_808delCCT: p.S269del) in the voltage-gated potassium channel KCNQ4 (DFNA2), which in silico modeling predicts to disrupt multimerization of KCNQ4 subunits. Surprisingly, 10/23 deaf relatives are non-carriers of p.S269del. Further molecular characterization of the DFNA2 locus in deletion carriers ruled out the possibility of a pathogenic mutation other than p.S269del at the DFNA2A/B locus and linkage analysis showed significant linkage to DFNA2 (maximum LOD=3.3). Further support of genetic heterogeneity in family 2071 was revealed by comparisons of audio profiles between p.S269del carriers and non-carriers suggesting additional and as yet unknown etiologies. We discuss the serious implications that genetic heterogeneity, in this case observed within a single family, has on molecular diagnostics and genetic counseling.
Collapse
Affiliation(s)
- Nelly Abdelfatah
- Discipline of Genetics, Faculty of Medicine, Memorial University, St John's, Newfoundland and Labrador, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gao Y, Yechikov S, Vazquez AE, Chen D, Nie L. Distinct roles of molecular chaperones HSP90α and HSP90β in the biogenesis of KCNQ4 channels. PLoS One 2013; 8:e57282. [PMID: 23431407 PMCID: PMC3576372 DOI: 10.1371/journal.pone.0057282] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/21/2013] [Indexed: 01/30/2023] Open
Abstract
Loss-of-function mutations in the KCNQ4 channel cause DFNA2, a subtype of autosomal dominant non-syndromic deafness that is characterized by progressive sensorineural hearing loss. Previous studies have demonstrated that the majority of the pathogenic KCNQ4 mutations lead to trafficking deficiency and loss of KCNQ4 currents. Over the last two decades, various strategies have been developed to rescue trafficking deficiency of pathogenic mutants; the most exciting advances have been made by manipulating activities of molecular chaperones involved in the biogenesis and quality control of the target protein. However, such strategies have not been established for KCNQ4 mutants and little is known about the molecular chaperones governing the KCNQ4 biogenesis. To identify KCNQ4-associated molecular chaperones, a proteomic approach was used in this study. As a result, two major molecular chaperones, HSP70 and HSP90, were identified and then confirmed by reciprocal co-immunoprecipitation assays, suggesting that the HSP90 chaperone pathway might be involved in the KCNQ4 biogenesis. Manipulating chaperone expression further revealed that two different isoforms of HSP90, the inducible HSP90α and the constitutive HSP90β, had opposite effects on the cellular level of the KCNQ4 channel; that HSP40, HSP70, and HOP, three key components of the HSP90 chaperone pathway, were crucial in facilitating KCNQ4 biogenesis. In contrast, CHIP, a major E3 ubiquitin ligase, had an opposite effect. Collectively, our data suggest that HSP90α and HSP90β play key roles in controlling KCNQ4 homeostasis via the HSP40-HSP70-HOP-HSP90 chaperone pathway and the ubiquitin-proteasome pathway. Most importantly, we found that over-expression of HSP90β significantly improved cell surface expression of the trafficking-deficient, pathogenic KCNQ4 mutants L274H and W276S. KCNQ4 surface expression was restored by HSP90β in cells mimicking heterozygous conditions of the DFNA2 patients, even though it was not sufficient to rescue the function of KCNQ4 channels.
Collapse
Affiliation(s)
- Yanhong Gao
- Department of Otolaryngology, University of California Davis, Davis, California, United States of America
| | - Sergey Yechikov
- Department of Otolaryngology, University of California Davis, Davis, California, United States of America
| | - Ana E. Vazquez
- Department of Otolaryngology, University of California Davis, Davis, California, United States of America
- * E-mail: (AEV); (LN)
| | - Dongyang Chen
- Department of Otolaryngology, University of California Davis, Davis, California, United States of America
| | - Liping Nie
- Department of Otolaryngology, University of California Davis, Davis, California, United States of America
- * E-mail: (AEV); (LN)
| |
Collapse
|
18
|
Abstract
The purpose of this review is to assess the current literature on deafness nonsyndromic autosomal dominant 2 (DFNA2) hearing loss and the mutations linked to this disorder. Hearing impairment, particularly nonsyndromic hearing loss, affects multiple families across the world. After the identification of the DFNA2 locus on chromosome 1p34, multiple pathogenic mutations in two genes (GJB3 and KCNQ4) have been reported. The overwhelming majority of pathogenic mutations linked to this form of nonsyndromic hearing loss have been identified in the KCNQ4 gene encoding a voltage-gated potassium channel. It is believed that KCNQ4 channels are present in outer hair cells and possibly inner hair cells and the central auditory pathway. This form of hearing loss is both phenotypically and genetically heterogeneous and there are still DFNA2 pedigrees that have not been associated with changes in either GJB3 or KCNQ4, suggesting that a possible third gene exists at this locus. Further studies of the DFNA2 locus will lead to a better understanding of progressive hearing loss and provide a better means of early detection and treatment.
Collapse
Affiliation(s)
- Laura M Dominguez
- Department of Otolaryngology, Head and Neck Surgery, Virginia Commonwealth University, Richmond, VA
| | - Kelley M Dodson
- Department of Otolaryngology, Head and Neck Surgery, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
19
|
Baek JI, Oh SK, Kim DB, Choi SY, Kim UK, Lee KY, Lee SH. Targeted massive parallel sequencing: the effective detection of novel causative mutations associated with hearing loss in small families. Orphanet J Rare Dis 2012; 7:60. [PMID: 22938506 PMCID: PMC3495859 DOI: 10.1186/1750-1172-7-60] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/21/2012] [Indexed: 01/24/2023] Open
Abstract
Background Hereditary hearing loss is one of the most common heterogeneous disorders, and genetic variants that can cause hearing loss have been identified in over sixty genes. Most of these hearing loss genes have been detected using classical genetic methods, typically starting with linkage analysis in large families with hereditary hearing loss. However, these classical strategies are not well suited for mutation analysis in smaller families who have insufficient genetic information. Methods Eighty known hearing loss genes were selected and simultaneously sequenced by targeted next-generation sequencing (NGS) in 8 Korean families with autosomal dominant non-syndromic sensorineural hearing loss. Results Five mutations in known hearing loss genes, including 1 nonsense and 4 missense mutations, were identified in 5 different genes (ACTG1, MYO1F, DIAPH1, POU4F3 and EYA4), and the genotypes for these mutations were consistent with the autosomal dominant inheritance pattern of hearing loss in each family. No mutational hot-spots were revealed in these Korean families. Conclusion Targeted NGS allowed for the detection of pathogenic mutations in affected individuals who were not candidates for classical genetic studies. This report is the first documenting the effective use of an NGS technique to detect pathogenic mutations that underlie hearing loss in an East Asian population. Using this NGS technique to establish a database of common mutations in Korean patients with hearing loss and further data accumulation will contribute to the early diagnosis and fundamental therapies for hereditary hearing loss.
Collapse
Affiliation(s)
- Jeong-In Baek
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Leitner MG, Feuer A, Ebers O, Schreiber DN, Halaszovich CR, Oliver D. Restoration of ion channel function in deafness-causing KCNQ4 mutants by synthetic channel openers. Br J Pharmacol 2012; 165:2244-59. [PMID: 21951272 DOI: 10.1111/j.1476-5381.2011.01697.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE DFNA2 is a frequent hereditary hearing disorder caused by loss-of-function mutations in the voltage-gated potassium channel KCNQ4 (Kv7.4). KCNQ4 mediates the predominant K(+) conductance, I(K,n) , of auditory outer hair cells (OHCs), and loss of KCNQ4 function leads to degeneration of OHCs resulting in progressive hearing loss. Here we explore the possible recovery of channel activity of mutant KCNQ4 induced by synthetic KCNQ channel openers. EXPERIMENTAL APPROACH Whole cell patch clamp recordings were performed on CHO cells transiently expressing KCNQ4 wild-type (wt) and DFNA2-relevant mutants, and from acutely isolated OHCs. KEY RESULTS Various known KCNQ channel openers robustly enhanced KCNQ4 currents. The strongest potentiation was observed with a combination of zinc pyrithione plus retigabine. A similar albeit less pronounced current enhancement was observed with native I(K,n) currents in rat OHCs. DFNA2 mutations located in the channel's pore region abolished channel function and these mutant channels were completely unresponsive to channel openers. However, the function of a DFNA2 mutation located in the proximal C-terminus was restored by the combined application of both openers. Co-expression of wt and KCNQ4 pore mutants suppressed currents to barely detectable levels. In this dominant-negative situation, channel openers essentially restored currents back to wt levels, most probably through strong activation of only the small fraction of homomeric wt channels. CONCLUSIONS AND IMPLICATIONS Our data suggest that by stabilizing the KCNQ4-mediated conductance in OHCs, chemical channel openers can protect against OHC degeneration and progression of hearing loss in DFNA2.
Collapse
Affiliation(s)
- Michael G Leitner
- Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Tune in to KCNQ. Nat Neurosci 2011; 15:8-10. [PMID: 22193251 DOI: 10.1038/nn.3012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|