1
|
Ripamonte GC, Fonseca EM, Frias AT, Patrone LGA, Vilela-Costa HH, Silva KSC, Szawka RE, Bícego KC, Zangrossi H, Plummer NW, Jensen P, Gargaglioni LH. Locus coeruleus noradrenaline depletion and its differential impact on CO 2-induced panic and hyperventilation in male and female mice. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111063. [PMID: 38908504 PMCID: PMC11323958 DOI: 10.1016/j.pnpbp.2024.111063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/11/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
CO2 exposure has been used to investigate the panicogenic response in patients with panic disorder. These patients are more sensitive to CO2, and more likely to experience the "false suffocation alarm" which triggers panic attacks. Imbalances in locus coeruleus noradrenergic (LC-NA) neurotransmission are responsible for psychiatric disorders, including panic disorder. These neurons are sensitive to changes in CO2/pH. Therefore, we investigated if LC-NA neurons are differentially activated after severe hypercapnia in mice. Further, we evaluated the participation of LC-NA neurons in ventilatory and panic-like escape responses induced by 20% CO2 in male and female wild type mice and two mouse models of altered LC-NA synthesis. Hypercapnia activates the LC-NA neurons, with males presenting a heightened level of activation. Mutant males lacking or with reduced LC-NA synthesis showed hypoventilation, while animals lacking LC noradrenaline present an increased metabolic rate compared to wild type in normocapnia. When exposed to CO2, males lacking LC noradrenaline showed a lower respiratory frequency compared to control animals. On the other hand, females lacking LC noradrenaline presented a higher tidal volume. Nevertheless, no change in ventilation was observed in either sex. CO2 evoked an active escape response. Mice lacking LC noradrenaline had a blunted jumping response and an increased freezing duration compared to the other groups. They also presented fewer racing episodes compared to wild type animals, but not different from mice with reduced LC noradrenaline. These findings suggest that LC-NA has an important role in ventilatory and panic-like escape responses elicited by CO2 exposure in mice.
Collapse
Affiliation(s)
- Gabriel C Ripamonte
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Elisa M Fonseca
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alana T Frias
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Heloísa H Vilela-Costa
- Department of Biochemistry, Pharmacology and Physiology, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Kaoma S C Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Raphael E Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Hélio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto CEP:14049-900, Brazil
| | - Nicholas W Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human Services, Durham, NC, USA
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human Services, Durham, NC, USA
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil.
| |
Collapse
|
2
|
Housley SN, Gardolinski EA, Nardelli P, Reed J, Rich MM, Cope TC. Mechanosensory encoding in ex vivo muscle-nerve preparations. Exp Physiol 2024; 109:35-44. [PMID: 37119460 PMCID: PMC10613129 DOI: 10.1113/ep090763] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
Our objective was to evaluate an ex vivo muscle-nerve preparation used to study mechanosensory signalling by low threshold mechanosensory receptors (LTMRs). Specifically, we aimed to assess how well the ex vivo preparation represents in vivo firing behaviours of the three major LTMR subtypes of muscle primary sensory afferents, namely type Ia and II muscle spindle (MS) afferents and type Ib tendon organ afferents. Using published procedures for ex vivo study of LTMRs in mouse hindlimb muscles, we replicated earlier reports on afferent firing in response to conventional stretch paradigms applied to non-contracting, that is passive, muscle. Relative to in vivo studies, stretch-evoked firing for confirmed MS afferents in the ex vivo preparation was markedly reduced in firing rate and deficient in encoding dynamic features of muscle stretch. These deficiencies precluded conventional means of discriminating type Ia and II afferents. Muscle afferents, including confirmed Ib afferents were often indistinguishable based on their similar firing responses to the same physiologically relevant stretch paradigms. These observations raise uncertainty about conclusions drawn from earlier ex vivo studies that either attribute findings to specific afferent types or suggest an absence of treatment effects on dynamic firing. However, we found that replacing the recording solution with bicarbonate buffer resulted in afferent firing rates and profiles more like those seen in vivo. Improving representation of the distinctive sensory encoding properties in ex vivo muscle-nerve preparations will promote accuracy in assigning molecular markers and mechanisms to heterogeneous types of muscle mechanosensory neurons.
Collapse
Affiliation(s)
- Stephen N. Housley
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| | | | - Paul Nardelli
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| | - J'Ana Reed
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| | - Mark M. Rich
- Department of Neuroscience, Cell Biology and PhysiologyWright State UniversityDaytonOHUSA
| | - Timothy C. Cope
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
- W.H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of Technology, Georgia Institute of TechnologyAtlantaGAUSA
| |
Collapse
|
3
|
Amaral-Silva L, Santin JM. Molecular profiling of CO 2/pH-sensitive neurons in the locus coeruleus of bullfrogs reveals overlapping noradrenergic and glutamatergic cell identity. Comp Biochem Physiol A Mol Integr Physiol 2023; 283:111453. [PMID: 37230318 PMCID: PMC10492231 DOI: 10.1016/j.cbpa.2023.111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Locus coeruleus (LC) neurons regulate breathing by sensing CO2/pH. Neurons within the vertebrate LC are the main source of norepinephrine within the brain. However, they also use glutamate and GABA for fast neurotransmission. Although the amphibian LC is recognized as a site involved in central chemoreception for the control of breathing, the neurotransmitter phenotype of these neurons is unknown. To address this question, we combined electrophysiology and single-cell quantitative PCR to detect mRNA transcripts that define norepinephrinergic, glutamatergic, and GABAergic phenotypes in LC neurons activated by hypercapnic acidosis (HA) in American bullfrogs. Most LC neurons activated by HA had overlapping expression of noradrenergic and glutamatergic markers but did not show strong support for GABAergic transmission. Genes that encode the pH-sensitive K+ channel, TASK2, and acid-sensing cation channel, ASIC2, were most abundant, while Kir5.1 was present in 1/3 of LC neurons. The abundance of transcripts related to norepinephrine biosynthesis linearly correlated with those involved in pH sensing. These results suggest that noradrenergic neurons in the amphibian LC also use glutamate as a neurotransmitter and that CO2/pH sensitivity may be linkedto the noradrenergic cell identity.
Collapse
Affiliation(s)
- Lara Amaral-Silva
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA. https://twitter.com/amaralsilva_l
| | - Joseph M Santin
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
4
|
Gonye EC, Bayliss DA. Criteria for central respiratory chemoreceptors: experimental evidence supporting current candidate cell groups. Front Physiol 2023; 14:1241662. [PMID: 37719465 PMCID: PMC10502317 DOI: 10.3389/fphys.2023.1241662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
An interoceptive homeostatic system monitors levels of CO2/H+ and provides a proportionate drive to respiratory control networks that adjust lung ventilation to maintain physiologically appropriate levels of CO2 and rapidly regulate tissue acid-base balance. It has long been suspected that the sensory cells responsible for the major CNS contribution to this so-called respiratory CO2/H+ chemoreception are located in the brainstem-but there is still substantial debate in the field as to which specific cells subserve the sensory function. Indeed, at the present time, several cell types have been championed as potential respiratory chemoreceptors, including neurons and astrocytes. In this review, we advance a set of criteria that are necessary and sufficient for definitive acceptance of any cell type as a respiratory chemoreceptor. We examine the extant evidence supporting consideration of the different putative chemoreceptor candidate cell types in the context of these criteria and also note for each where the criteria have not yet been fulfilled. By enumerating these specific criteria we hope to provide a useful heuristic that can be employed both to evaluate the various existing respiratory chemoreceptor candidates, and also to focus effort on specific experimental tests that can satisfy the remaining requirements for definitive acceptance.
Collapse
Affiliation(s)
- Elizabeth C. Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| | | |
Collapse
|
5
|
Bueschke N, Amaral-Silva L, Hu M, Santin JM. Lactate ions induce synaptic plasticity to enhance output from the central respiratory network. J Physiol 2021; 599:5485-5504. [PMID: 34761806 DOI: 10.1113/jp282062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
Lactate ion sensing has emerged as a process that regulates ventilation during metabolic challenges. Most work has focused on peripheral sensing of lactate for the control of breathing. However, lactate also rises in the central nervous system (CNS) during disturbances to blood gas homeostasis and exercise. Using an amphibian model, we recently showed that lactate ions, independently of pH and pyruvate metabolism, act directly in the brainstem to increase respiratory-related motor outflow. This response had a long washout time and corresponded with potentiated excitatory synaptic strength of respiratory motoneurons. Thus, we tested the hypothesis that lactate ions enhance respiratory output using cellular mechanisms associated with long-term synaptic plasticity within motoneurons. In this study, we confirm that 2 mM sodium lactate, but not sodium pyruvate, increases respiratory motor output in brainstem-spinal cord preparations, persisting for 2 h upon the removal of lactate. Lactate also led to prolonged increases in the amplitude of AMPA-glutamate receptor (AMPAR) currents in individual motoneurons from brainstem slices. Both motor facilitation and AMPAR potentiation by lactate required classic effectors of synaptic plasticity, L-type Ca2+ channels and NMDA receptors, as part of the transduction process but did not correspond with increased expression of immediate-early genes often associated with activity-dependent neuronal plasticity. Altogether these results show that lactate ions enhance respiratory motor output by inducing conserved mechanisms of synaptic plasticity and suggest a new mechanism that may contribute to coupling ventilation to metabolic demands in vertebrates. KEY POINTS: Lactate ions, independently of pH and metabolism, induce long-term increases in respiratory-related motor outflow in American bullfrogs. Lactate triggers a persistent increase in strength of AMPA-glutamatergic synapses onto respiratory motor neurons. Long-term plasticity of motor output and synaptic strength by lactate involves L-type Ca2+ channels and NMDA-receptors as part of the transduction process. Enhanced AMPA receptor function in response to lactate in the intact network is causal for motor plasticity. In sum, well-conserved synaptic plasticity mechanisms couple the brainstem lactate ion concentration to respiratory motor drive in vertebrates.
Collapse
Affiliation(s)
- Nikolaus Bueschke
- Department of Biology, The University of North Carolina, Greensboro, NC, USA
| | - Lara Amaral-Silva
- Department of Biology, The University of North Carolina, Greensboro, NC, USA
| | - Min Hu
- Department of Biology, The University of North Carolina, Greensboro, NC, USA
| | - Joseph M Santin
- Department of Biology, The University of North Carolina, Greensboro, NC, USA
| |
Collapse
|
6
|
Espejo MS, Orlowski A, Ibañez AM, Di Mattía RA, Velásquez FC, Rossetti NS, Ciancio MC, De Giusti VC, Aiello EA. The functional association between the sodium/bicarbonate cotransporter (NBC) and the soluble adenylyl cyclase (sAC) modulates cardiac contractility. Pflugers Arch 2019; 472:103-115. [PMID: 31754830 DOI: 10.1007/s00424-019-02331-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/15/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022]
Abstract
The soluble adenylyl cyclase (sAC) was identified in the heart as another source of cyclic AMP (cAMP). However, its cardiac physiological function is unknown. On the other hand, the cardiac Na+/HCO3- cotransporter (NBC) promotes the cellular co-influx of HCO3- and Na+. Since sAC activity is regulated by HCO3-, our purpose was to investigate the potential functional relationship between NBC and sAC in the cardiomyocyte. Rat ventricular myocytes were loaded with Fura-2, Fluo-3, or BCECF to measure Ca2+ transient (Ca2+i) by epifluorescence, Ca2+ sparks frequency (CaSF) by confocal microscopy, or intracellular pH (pHi) by epifluorescence, respectively. Sarcomere or cell shortening was measured with a video camera as an index of contractility. The NBC blocker S0859 (10 μM), the selective inhibitor of sAC KH7 (1 μM), and the PKA inhibitor H89 (0.1 μM) induced a negative inotropic effect which was associated with a decrease in Ca2+i. Since PKA increases Ca2+ release through sarcoplasmic reticulum RyR channels, CaSF was measured as an index of RyR open probability. The generation of CaSF was prevented by KH7. Finally, we investigated the potential role of sAC activation on NBC activity. NBC-mediated recovery from acidosis was faster in the presence of KH7 or H89, suggesting that the pathway sAC-PKA is negatively regulating NBC function, consistent with a negative feedback modulation of the HCO3- influx that activates sAC. In summary, the results demonstrated that the complex NBC-sAC-PKA plays a relevant role in Ca2+ handling and basal cardiac contractility.
Collapse
Affiliation(s)
- María S Espejo
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Alejandro Orlowski
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Alejandro M Ibañez
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Romina A Di Mattía
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Fernanda Carrizo Velásquez
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Noelia S Rossetti
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - María C Ciancio
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Verónica C De Giusti
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina.
| | - Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
7
|
Sex differences in breathing. Comp Biochem Physiol A Mol Integr Physiol 2019; 238:110543. [PMID: 31445081 DOI: 10.1016/j.cbpa.2019.110543] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/15/2023]
Abstract
Breathing is a vital behavior that ensures both the adequate supply of oxygen and the elimination of CO2, and it is influenced by many factors. Despite that most of the studies in respiratory physiology rely heavily on male subjects, there is much evidence to suggest that sex is an important factor in the respiratory control system, including the susceptibility for some diseases. These different respiratory responses in males and females may be related to the actions of sex hormones, especially in adulthood. These hormones affect neuromodulatory systems that influence the central medullary rhythm/pontine pattern generator and integrator, sensory inputs to the integrator and motor output to the respiratory muscles. In this article, we will first review the sex dependence on the prevalence of some respiratory-related diseases. Then, we will discuss the role of sex and gonadal hormones in respiratory control under resting conditions and during respiratory challenges, such as hypoxia and hypercapnia, and whether hormonal fluctuations during the estrous/menstrual cycle affect breathing control. We will then discuss the role of the locus coeruleus, a sexually dimorphic CO2/pH-chemosensitive nucleus, on breathing regulation in males and females. Next, we will highlight the studies that exist regarding sex differences in respiratory control during development. Finally, the few existing studies regarding the influence of sex on breathing control in non-mammalian vertebrates will be discussed.
Collapse
|
8
|
The Role of Ca 2+ and BK Channels of Locus Coeruleus (LC) Neurons as a Brake to the CO 2 Chemosensitivity Response of Rats. Neuroscience 2018; 381:59-78. [PMID: 29698749 DOI: 10.1016/j.neuroscience.2018.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/01/2023]
Abstract
The cellular mechanisms by which LC neurons respond to hypercapnia are usually attributed to an "accelerator" whereby hypercapnic acidosis causes an inhibition of K+ channels or activation of Na+ and Ca+2 channels to depolarize CO2-sensitive neurons. Nevertheless, it is still unknown if this "accelerator" mechanism could be controlled by a brake phenomenon. Whole-cell patch clamping, fluorescence imaging microscopy and plethysmography were used to study the chemosensitive response of the LC neurons. Hypercapnic acidosis activates L-type Ca2+ channels and large conductance Ca-activated K+ (BK) channels, which function as a "brake" on the chemosensitive response of LC neurons. Our findings indicate that both Ca2+ and BK currents develop over the first 2 weeks of postnatal life in rat LC slices and that this brake pathway may cause the developmental decrease in the chemosensitive firing rate response of LC neurons to hypercapnic acidosis. Inhibition of this brake by paxilline (BK channel inhibitor) returns the magnitude of the chemosensitive firing rate response from LC neurons in rats older than P10 to high values similar to those in LC neurons from younger rats. Inhibition of BK channels in LC neurons by bilateral injections of paxilline into the LC results in a significant increase in the hypercapnic ventilatory response of adult rats. Our findings indicate that a BK channel-based braking system helps to determine the chemosensitive respiratory drive of LC neurons and contributes to the hypercapnic ventilatory response. Perhaps, abnormalities of this braking system could result in hypercapnia-induced respiratory disorders and panic responses.
Collapse
|
9
|
Patrone LGA, Biancardi V, Marques DA, Bícego KC, Gargaglioni LH. Brainstem catecholaminergic neurones and breathing control during postnatal development in male and female rats. J Physiol 2018; 596:3299-3325. [PMID: 29479699 DOI: 10.1113/jp275731] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/21/2018] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS The brainstem catecholaminergic (CA) modulation on ventilation changes with development. We determined the role of the brainstem CA system in ventilatory control under normocapnic and hypercapnic conditions during different phases of development [postnatal day (P)7-8, P14-15 and P20-21] in male and female Wistar rats. Brainstem CA neurones produce a tonic inhibitory drive that affects breathing frequency in P7-8 rats and provide an inhibitory drive during hypercapnic conditions in both males and females at P7-8 and P14-15. In pre-pubertal rats, brainstem CA neurones become excitatory for the CO2 ventilatory response in males but remain inhibitory in females. Diseases such as sudden infant death syndrome, congenital central hypoventilation syndrome and Rett syndrome have been associated with abnormalities in the functioning of CA neurones; therefore, the results of the present study contribute to a better understanding of this system. ABSTRACT The respiratory network undergoes significant development during the postnatal phase, including the maturation of the catecholaminergic (CA) system. However, postnatal development of this network and its effect on the control of pulmonary ventilation ( V̇E ) is not fully understood. We investigated the involvement of brainstem CA neurones in respiratory control during postnatal development [postnatal day (P)7-8, P14-15 and P20-21], in male and female rats, through chemical injury with conjugated saporin anti-dopamine β-hydroxylase (DβH-SAP). Thus, DβH-SAP (420 ng μL-1 ), saporin (SAP) or phosphate buffered solution (PBS) was injected into the fourth ventricle of neonatal Wistar rats of both sexes. V̇E and oxygen consumption were recorded 1 week after the injections in unanaesthetized neonatal and juvenile rats during room air and hypercapnia. The resting ventilation was higher in both male and female P7-8 lesioned rats by 33%, with a decrease in respiratory variability being observed in males. The hypercapnic ventilatory response (HCVR) was altered in male and female lesioned rats at all postnatal ages. At P7-8, the HCVR for males and females was increased by 37% and 30%, respectively. For both sexes at P14-15 rats, the increase in V̇E during hypercapnia was 37% higher for lesioned rats. A sex-specific difference in HCRV was observed at P20-21, with lesioned males showing a 33% decrease, and lesioned females showing an increase of 33%. We conclude that brainstem CA neurones exert a tonic inhibitory effect on V̇E in the early postnatal days of the life of a rat, increase variability in P7-8 males and modulate HCRV during the postnatal phase.
Collapse
Affiliation(s)
- Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Vivian Biancardi
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Danuzia A Marques
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV at Jaboticabal, SP, Brazil
| |
Collapse
|
10
|
Quintero MC, Putnam RW, Cordovez JM. Theoretical perspectives on central chemosensitivity: CO2/H+-sensitive neurons in the locus coeruleus. PLoS Comput Biol 2017; 13:e1005853. [PMID: 29267284 PMCID: PMC5755939 DOI: 10.1371/journal.pcbi.1005853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 01/05/2018] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Central chemoreceptors are highly sensitive neurons that respond to changes in pH and CO2 levels. An increase in CO2/H+ typically reflects a rise in the firing rate of these neurons, which stimulates an increase in ventilation. Here, we present an ionic current model that reproduces the basic electrophysiological activity of individual CO2/H+-sensitive neurons from the locus coeruleus (LC). We used this model to explore chemoreceptor discharge patterns in response to electrical and chemical stimuli. The modeled neurons showed both stimulus-evoked activity and spontaneous activity under physiological parameters. Neuronal responses to electrical and chemical stimulation showed specific firing patterns of spike frequency adaptation, postinhibitory rebound, and post-stimulation recovery. Conversely, the response to chemical stimulation alone (based on physiological CO2/H+ changes), in the absence of external depolarizing stimulation, showed no signs of postinhibitory rebound or post-stimulation recovery, and no depolarizing sag. A sensitivity analysis for the firing-rate response to the different stimuli revealed that the contribution of an applied stimulus current exceeded that of the chemical signals. The firing-rate response increased indefinitely with injected depolarizing current, but reached saturation with chemical stimuli. Our computational model reproduced the regular pacemaker-like spiking pattern, action potential shape, and most of the membrane properties that characterize CO2/H+-sensitive neurons from the locus coeruleus. This validates the model and highlights its potential as a tool for studying the cellular mechanisms underlying the altered central chemosensitivity present in a variety of disorders such as sudden infant death syndrome, depression, and anxiety. In addition, the model results suggest that small external electrical signals play a greater role in determining the chemosensitive response to changes in CO2/H+ than previously thought. This highlights the importance of considering electrical synaptic transmission in studies of intrinsic chemosensitivity. The sensory mechanism by which changes in CO2 and H+ levels are detected in the brain is known as central chemoreception. Altered chemoreception is common to a wide variety of clinical conditions, including sleep apnea, sudden infant death syndrome, hyperventilation, depression, anxiety and asthma. In addition, CO2/H+-sensitive neurons are present in some regions of the brain that have been identified as drug targets for the treatment of anxiety and panic disorders. We are interested in understanding the cellular mechanisms that determine and modulate the behavior of these neurons. We previously investigated possible mechanisms underlying their behavior in rats to elucidate whether they respond to changes in intracellular or extracellular pH, CO2, or a combination of these stimuli. To study the roles that signals and ion channel targets play in individual neurons we develop mathematical models that simulate their electrochemical behavior and their responses to hypercapnic and/or acidotic stimuli. Nowadays, we are focused on using computational tools to explore the firing pattern of such neurons in response to chemical (CO2/H+) and electrical (synaptic) stimulation. Our results reveal significant effects of electrical stimulation on the responses of brainstem neurons and highlight the importance of considering synaptic transmission in experimental studies of chemosensitivity.
Collapse
Affiliation(s)
- Maria C. Quintero
- Biomedical Engineering Department, Universidad de Los Andes, Bogotá, Colombia
- * E-mail: (MQ); (JC)
| | - Robert W. Putnam
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Juan M. Cordovez
- Biomedical Engineering Department, Universidad de Los Andes, Bogotá, Colombia
- * E-mail: (MQ); (JC)
| |
Collapse
|
11
|
Roa JN, Tresguerres M. Bicarbonate-sensing soluble adenylyl cyclase is present in the cell cytoplasm and nucleus of multiple shark tissues. Physiol Rep 2017; 5:5/2/e13090. [PMID: 28108644 PMCID: PMC5269408 DOI: 10.14814/phy2.13090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/31/2022] Open
Abstract
The enzyme soluble adenylyl cyclase (sAC) is directly stimulated by bicarbonate (HCO3−) to produce the signaling molecule cyclic adenosine monophosphate (cAMP). Because sAC and sAC‐related enzymes are found throughout phyla from cyanobacteria to mammals and they regulate cell physiology in response to internal and external changes in pH, CO2, and HCO3−, sAC is deemed an evolutionarily conserved acid‐base sensor. Previously, sAC has been reported in dogfish shark and round ray gill cells, where they sense and counteract blood alkalosis by regulating the activity of V‐type H+‐ ATPase. Here, we report the presence of sAC protein in gill, rectal gland, cornea, intestine, white muscle, and heart of leopard shark Triakis semifasciata. Co‐expression of sAC with transmembrane adenylyl cyclases supports the presence of cAMP signaling microdomains. Furthermore, immunohistochemistry on tissue sections, and western blots and cAMP‐activity assays on nucleus‐enriched fractions demonstrate the presence of sAC protein in and around nuclei. These results suggest that sAC modulates multiple physiological processes in shark cells, including nuclear functions.
Collapse
Affiliation(s)
- Jinae N Roa
- Marine Biology Research Division, Scripps Institution of Oceanography University of California San Diego, 9500 Gilman Drive La Jolla, California, 92093, USA
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography University of California San Diego, 9500 Gilman Drive La Jolla, California, 92093, USA
| |
Collapse
|
12
|
Santin JM, Hartzler LK. Activation state of the hyperpolarization-activated current modulates temperature-sensitivity of firing in locus coeruleus neurons from bullfrogs. Am J Physiol Regul Integr Comp Physiol 2015; 308:R1045-61. [PMID: 25833936 DOI: 10.1152/ajpregu.00036.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/30/2015] [Indexed: 12/18/2022]
Abstract
Locus coeruleus neurons of anuran amphibians contribute to breathing control and have spontaneous firing frequencies that, paradoxically, increase with cooling. We previously showed that cooling inhibits a depolarizing membrane current, the hyperpolarization-activated current (I h) in locus coeruleus neurons from bullfrogs, Lithobates catesbeianus (Santin JM, Watters KC, Putnam RW, Hartzler LK. Am J Physiol Regul Integr Comp Physiol 305: R1451-R1464, 2013). This suggests an unlikely role for I h in generating cold activation, but led us to hypothesize that inhibition of I h by cooling functions as a physiological brake to limit the cold-activated response. Using whole cell electrophysiology in brain slices, we employed 2 mM Cs(+) (an I h antagonist) to isolate the role of I h in spontaneous firing and cold activation in neurons recorded with either control or I h agonist (cyclic AMP)-containing artificial intracellular fluid. I h did not contribute to the membrane potential (V m) and spontaneous firing at 20°C. Although voltage-clamp analysis confirmed that cooling inhibits I h, its lack of involvement in setting baseline firing and V m precluded its ability to regulate cold activation as hypothesized. In contrast, neurons dialyzed with cAMP exhibited greater baseline firing frequencies at 20°C due to I h activation. Our hypothesis was supported when the starting level of I h was enhanced by elevating cAMP because cold activation was converted to more ordinary cold inhibition. These findings indicate that situations leading to enhancement of I h facilitate firing at 20°C, yet the hyperpolarization associated with inhibiting a depolarizing cation current by cooling blunts the net V m response to cooling to oppose normal cold-depolarizing factors. This suggests that the influence of I h activation state on neuronal firing varies in the poikilothermic neuronal environment.
Collapse
Affiliation(s)
- Joseph M Santin
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| | - Lynn K Hartzler
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| |
Collapse
|