1
|
Xia CH, Lin W, Li R, Xing X, Shang GJ, Zhang H, Gong X. Altered Cell Clusters and Upregulated Aqp1 in Connexin 50 Knockout Lens Epithelium. Invest Ophthalmol Vis Sci 2024; 65:27. [PMID: 39287589 PMCID: PMC11412383 DOI: 10.1167/iovs.65.11.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Purpose To characterize the heterogeneity and cell clusters of postnatal lens epithelial cells (LECs) and to investigate the downstream targets of connexin 50 (Cx50) in the regulation of lens homeostasis and lens growth. To determine differentially expressed genes (DEGs) in the connexin 50 knockout (Cx50KO) lens epithelial cells that shed light on novel mechanism underlying the cataract and small size of the Cx50KO lenses. Methods Single-cell RNA sequencing (scRNA-seq) of lens epithelial cells isolated from one-month-old Cx50KO and wild-type (WT) mice were performed. Differentially expressed genes were identified, and selected DEGs were further studied by quantitative real-time PCR (RT-qPCR) analysis and Western blot analysis. Results The expression profiles of several thousand genes were identified by scRNA-seq data analysis. In comparison to the WT control, many DEGs were identified in the Cx50KO lens epithelial cells, including growth regulating transcriptional factors and genes encoding water channels. Significantly upregulated aquaporin 1 (Aqp1) gene expression was confirmed by RT-qPCR, and upregulated AQP1 protein expression was confirmed by Western blot analysis and immunostaining both in vivo and in vitro. Conclusions Lens epithelial cells exhibit an intrinsic heterogeneity of different cell clusters in regulating lens homeostasis and lens growth. Upregulated Aqp1 in Cx50KO lens epithelial cells suggests that both connexin 50 and AQP1 likely play important roles in regulating water homeostasis in lens epithelial cells.
Collapse
Affiliation(s)
- Chun-Hong Xia
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - William Lin
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Rachel Li
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Xinfang Xing
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Guangdu Jack Shang
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Haiwei Zhang
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Xiaohua Gong
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| |
Collapse
|
2
|
Takashima M, Taniguchi K, Nagaya M, Yamamura S, Takamura Y, Inatani M, Oki M. Gene profiles and mutations in the development of cataracts in the ICR rat model of hereditary cataracts. Sci Rep 2023; 13:18161. [PMID: 37875594 PMCID: PMC10598066 DOI: 10.1038/s41598-023-45088-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
Cataracts are opacifications of the lens that cause loss of visual acuity and ultimately of eyesight. Age-related cataract develops in most elderly people, but the mechanisms of cataract onset are incompletely understood. The Ihara Cataract Rat (ICR) is an animal model of hereditary cataracts showing cortical opacity that commonly develops prematurely. We identified putative mechanisms of cataract onset in the ICR rat model by measuring gene expression changes before and after cortical cataract development and conducting point mutation analysis. Genes differentially expressed between 4-week-old animals without cortical cataracts and 8-10-week-old animals with cortical cataracts were selected from microarray analysis. Three connections were identified by STRING analysis: (i) Epithelial-Mesenchymal Transition (EMT), including Col1a2, and Pik3r1. (ii) Lens homeostasis, including Aqp5, and Cpm. (iii) Lipid metabolism, including Scd1, Srebf1, and Pnpla3. Subsequently, mutation points were selected by comparing ICR rats with 12 different rats that do not develop cataracts. The apolipoprotein Apoc3 was mutated in ICR rats. Analyses of gene expression changes and point and mutations suggested that abnormalities in EMT or lipid metabolism could contribute to cataract development in ICR rats.
Collapse
Affiliation(s)
- Masaru Takashima
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Kei Taniguchi
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Masaya Nagaya
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Shunki Yamamura
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Yoshihiro Takamura
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masaru Inatani
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masaya Oki
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan.
- Life Science Innovation Center, University of Fukui, Fukui, Japan.
| |
Collapse
|
3
|
Zhang K, Di G, Bai Y, Liu A, Bian W, Chen P. Aquaporin 5 in the eye: Expression, function, and roles in ocular diseases. Exp Eye Res 2023; 233:109557. [PMID: 37380095 DOI: 10.1016/j.exer.2023.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/26/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
As a water channel protein, aquaporin 5 (AQP5) is essential for the maintenance of the normal physiological functions of ocular tissues. This review provides an overview of the expression and function of AQP5 in the eye and discusses their role in related eye diseases. Although AQP5 plays a vital role in ocular functions, such as maintaining corneal and lens transparency, regulating water movement, and maintaining homeostasis, some of its functions in ocular tissues are still unclear. Based on the key role of AQP5 in eye function, this review suggests that in the future, eye diseases may be treated by regulating the expression of aquaporin.
Collapse
Affiliation(s)
- Kaier Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Guohu Di
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Ying Bai
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Anxu Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Wenhan Bian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China; Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, Shandong Province, China.
| |
Collapse
|
4
|
D’Agostino C, Parisis D, Chivasso C, Hajiabbas M, Soyfoo MS, Delporte C. Aquaporin-5 Dynamic Regulation. Int J Mol Sci 2023; 24:ijms24031889. [PMID: 36768212 PMCID: PMC9915196 DOI: 10.3390/ijms24031889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Aquaporin-5 (AQP5), belonging to the aquaporins (AQPs) family of transmembrane water channels, facilitates osmotically driven water flux across biological membranes and the movement of hydrogen peroxide and CO2. Various mechanisms have been shown to dynamically regulate AQP5 expression, trafficking, and function. Besides fulfilling its primary water permeability function, AQP5 has been shown to regulate downstream effectors playing roles in various cellular processes. This review provides a comprehensive overview of the current knowledge of the upstream and downstream effectors of AQP5 to gain an in-depth understanding of the physiological and pathophysiological processes involving AQP5.
Collapse
Affiliation(s)
- Claudia D’Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Dorian Parisis
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Rheumatology Department, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Maryam Hajiabbas
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Muhammad Shahnawaz Soyfoo
- Rheumatology Department, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Correspondence:
| |
Collapse
|
5
|
Regulation of lens water content: Effects on the physiological optics of the lens. Prog Retin Eye Res 2022:101152. [DOI: 10.1016/j.preteyeres.2022.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/09/2022]
|
6
|
Gletten RB, Cantrell LS, Bhattacharya S, Schey KL. Lens Aquaporin-5 Inserts Into Bovine Fiber Cell Plasma Membranes Via Unconventional Protein Secretion. Invest Ophthalmol Vis Sci 2022; 63:5. [PMID: 35816045 PMCID: PMC9284464 DOI: 10.1167/iovs.63.8.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose To spatially map aquaporin-5 (AQP5) expression in the bovine lens, molecularly characterize cytoplasmic AQP5-containing vesicles in the outer cortex, and elucidate AQP5 membrane trafficking mechanisms. Methods Immunofluorescence was performed on bovine lens cryosections using AQP5, TOMM20, COX IV, calnexin, LC3B, Sec22β, LIMP-2, and connexin 50 antibodies and the membrane dye CM-DiI. AQP5 plasma membrane insertion was defined via line expression profile analysis. Transmission electron microscopy (TEM) was performed on bovine lens sections to examine cytoplasmic organelle morphology and subcellular localization in cortical fiber cells. Bovine lenses were treated with 10-nM bafilomycin A1 or 0.1% dimethyl sulfoxide vehicle control for 24 hours in ex vivo culture to determine changes in AQP5 plasma membrane expression. Results Immunofluorescence analysis revealed cytoplasmic AQP5 expression in lens epithelial cells and differentiating fiber cells. In the lens cortex, complete AQP5 plasma membrane insertion occurs at r/a = 0.951 ± 0.005. AQP5-containing cytoplasmic vesicles are spheroidal in morphology with linear extensions, express TOMM20, and contain LC3B and LIMP-2, but not Sec22β, as fiber cells mature. TEM analysis revealed complex vesicular assemblies with congruent subcellular localization to AQP5-containing cytoplasmic vesicles. AQP5-containing cytoplasmic vesicles appear to dock with the plasma membrane. Bafilomycin A1 treatment reduced AQP5 plasma membrane expression by 27%. Conclusions AQP5 localizes to spheroidal, linear cytoplasmic vesicles in the differentiating bovine lens fiber cells. During fiber cell differentiation, these vesicles incorporate LC3B and presumably fuse with LIMP-2–positive lysosomes. Our data suggest that AQP5 to the plasma membrane through lysosome-associated unconventional protein secretion, a novel mechanism of AQP5 trafficking.
Collapse
Affiliation(s)
- Romell B Gletten
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Lee S Cantrell
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Sujoy Bhattacharya
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee, United States
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
7
|
Zhao M, Zhao S, Tang M, Sun T, Zheng Z, Ma M. Aqueous Humor Biomarkers of Retinal Glial Cell Activation in Patients With or Without Age-Related Cataracts and With Different Stages of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 35262732 PMCID: PMC8934562 DOI: 10.1167/iovs.63.3.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose To clarify the expression of biomarkers of retinal glial cell activation in the aqueous humor (AH) of patients with and without age-related cataracts (ARCs) at different stages of diabetic retinopathy (DR). Methods Patients were stratified by the presence of ARCs and then grouped by the presence of diabetes mellitus (DM), nonproliferative DR (NPDR), proliferative DR (PDR), and controls. Water channel aquaporin 1 (AQP1), water channel aquaporin 4 (AQP4), inwardly rectifying potassium channel 4.1 (Kir4.1), and glial fibrillary acidic protein (GFAP) were assayed in AH samples by ELISAs. Results We enrolled 82 patients. The AQP1 concentration was higher in AH from cataract control patients than in control patients without cataracts (P < 0.05). The APQ1 concentration was also higher in patients with DM, NPDR, and PDR than in controls (P < 0.05). The concentrations of AQP4 and GFAP were significantly increased in patients with NPDR and PDR (P < 0.05) but not in patients with DM. Kir4.1 concentration was significantly decreased in patients with NPDR and PDR (P < 0.05), but the decrease in patients with DM did not reach significance. There were no differences in AQP4, Kir4.1, and GFAP between patients with and without ARCs. Conclusions Increased AQP1 in AH may be a biomarker for ARCs in patients without diabetes and a biomarker for retinal glial cell activation in patients with diabetes without cataracts. AQP4, Kir4.1, and GFAP levels in AH suggested that retinal glial cell activation was affected by the progression of DR.
Collapse
Affiliation(s)
- Minjie Zhao
- Department of Ophthalmology, Yixing People's Hospital, Jiangsu University, Zhenjiang, China
| | - Shuzhi Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Min Tang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Tao Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.,Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, Shanghai, China
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Mingming Ma
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
8
|
Pierscionek BK. Anti-cataract therapies: is there a need for a new approach based on targeting of aquaporins? Expert Opin Ther Targets 2021; 25:1027-1031. [PMID: 34930082 DOI: 10.1080/14728222.2021.2017423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Barbara K Pierscionek
- Faculty of Health, Education, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford Campus, Chelmsford UK
| |
Collapse
|
9
|
Koç Ş. A possible follow-up method for diabetic heart failure patients. Int J Clin Pract 2021; 75:e14794. [PMID: 34482595 DOI: 10.1111/ijcp.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Plasma osmolarity is maintained through various mechanisms. The osmolarity of the aqueous humor around the crystalline lens is correlated with plasma osmolarity. A vacuole can be formed in the lens upon changes in osmolarity. The sodium-glucose cotransporter 2 inhibitors (SGLT2i) are new in the treatment of heart failure. They can cause osmotic diuresis but do not affect plasma osmolarity. OBJECTIVE It is unclear if the presence or absence of lens vacuole changes can monitor diabetic heart failure and SGLT2i treatment efficacy. METHODS Web of Science, PubMed and Scopus databases were searched for relevant articles about osmolarity, diabetes, transient receptor potential vanilloid channel, diabetic heart failure, lens vacuoles up to May 2021. MAIN MESSAGE The effect of SGLT2i on osmosis underlies its benefit to heart failure, but this in turn affects many other mechanisms. Failure to experience osmolarity changes will reduce the negative changes in terms of heart failure affected by osmolarity. A practical observable method is needed. CONCLUSIONS There is a possibility of using lens vacuoles in the follow-up of diabetic heart failure patients.
Collapse
Affiliation(s)
- Şahbender Koç
- University of Health Sciences, Keçiören Education and Training Hospital, Ankara, Turkey
| |
Collapse
|
10
|
Tang S, Di G, Hu S, Liu Y, Dai Y, Chen P. AQP5 regulates vimentin expression via miR-124-3p.1 to protect lens transparency. Exp Eye Res 2021; 205:108485. [PMID: 33582182 DOI: 10.1016/j.exer.2021.108485] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/18/2022]
Abstract
The pathogenesis of congenital cataract (CC), a major disease associated with blindness in infants, is complex and diverse. Aquaporin 5 (AQP5) represents an essential membrane water channel. In the present study, whole exome sequencing revealed a novel heterozygous missense mutation of AQP5 (c.152 T > C, p. L51P) in the four generations of the autosomal dominant CC (adCC) family. By constructing a mouse model of AQP5 knockout (KO) using the CRISPR/Cas9 technology, we observed that the lens of AQP5-KO mice showed mild opacity at approximately six months of age. miR-124-3p.1 expression was identified to be downregulated in the lens of AQP5-KO mice as evidenced by qRT-PCR analysis. A dual luciferase reporter assay confirmed that vimentin was a target gene of miR-124-3p.1. Organ-cultured AQP5-KO mouse lenses were showed increased opacity compared to those of WT mice, and vimentin expression was upregulated as determined by RT-PCR, western blotting, and immunofluorescence staining. After miR-124-3p.1 agomir was added, the lens opacity in WT mice and AQP5-KO mice decreased, accompanied by the downregulation of vimentin. AQP5-L51P increased vimentin expression of in human lens epithelial cells. Therefore, a missense mutation in AQP5 (c.152 T > C, p. L51P) was associated with adCC, and AQP5 could participate in the maintenance of lens transparency by regulating vimentin expression via miR-124-3p.1.
Collapse
Affiliation(s)
- Suzhen Tang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Guohu Di
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Shaohua Hu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Yaning Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Yunhai Dai
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
11
|
Petrova RS, Bavana N, Zhao R, Schey KL, Donaldson PJ. Changes to Zonular Tension Alters the Subcellular Distribution of AQP5 in Regions of Influx and Efflux of Water in the Rat Lens. Invest Ophthalmol Vis Sci 2020; 61:36. [PMID: 32945844 PMCID: PMC7509773 DOI: 10.1167/iovs.61.11.36] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/20/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose The lens uses circulating fluxes of ions and water that enter the lens at both poles and exit at the equator to maintain its optical properties. We have mapped the subcellular distribution of the lens aquaporins (AQP0, AQP1, and AQP5) in these water influx and efflux zones and investigated how their membrane location is affected by changes in tension applied to the lens by the zonules. Methods Immunohistochemistry using AQP antibodies was performed on axial sections obtained from rat lenses that had been removed from the eye and then fixed or were fixed in situ to maintain zonular tension. Zonular tension was pharmacologically modulated by applying either tropicamide (increased) or pilocarpine (decreased). AQP labeling was visualized using confocal microscopy. Results Modulation of zonular tension had no effect on AQP1 or AQP0 labeling in either the water efflux or influx zones. In contrast, AQP5 labeling changed from membranous to cytoplasmic in response to both mechanical and pharmacologically induced reductions in zonular tension in both the efflux zone and anterior (but not posterior) influx zone associated with the lens sutures. Conclusions Altering zonular tension dynamically regulates the membrane trafficking of AQP5 in the efflux and anterior influx zones to potentially change the magnitude of circulating water fluxes in the lens.
Collapse
Affiliation(s)
- Rosica S. Petrova
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Nandini Bavana
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Rusin Zhao
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Kevin L. Schey
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, United States
| | - Paul J. Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Knöpfel EB, Vilches C, Camargo SMR, Errasti-Murugarren E, Stäubli A, Mayayo C, Munier FL, Miroshnikova N, Poncet N, Junza A, Bhattacharya SS, Prat E, Berry V, Berger W, Heon E, Moore AT, Yanes Ó, Nunes V, Palacín M, Verrey F, Kloeckener-Gruissem B. Dysfunctional LAT2 Amino Acid Transporter Is Associated With Cataract in Mouse and Humans. Front Physiol 2019; 10:688. [PMID: 31231240 PMCID: PMC6558864 DOI: 10.3389/fphys.2019.00688] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/16/2019] [Indexed: 11/13/2022] Open
Abstract
Cataract, the loss of ocular lens transparency, accounts for ∼50% of worldwide blindness and has been associated with water and solute transport dysfunction across lens cellular barriers. We show that neutral amino acid antiporter LAT2 (Slc7a8) and uniporter TAT1 (Slc16a10) are expressed on mouse ciliary epithelium and LAT2 also in lens epithelium. Correspondingly, deletion of LAT2 induced a dramatic decrease in lens essential amino acid levels that was modulated by TAT1 defect. Interestingly, the absence of LAT2 led to increased incidence of cataract in mice, in particular in older females, and a synergistic effect was observed with simultaneous lack of TAT1. Screening SLC7A8 in patients diagnosed with congenital or age-related cataract yielded one homozygous single nucleotide deletion segregating in a family with congenital cataract. Expressed in HeLa cells, this LAT2 mutation did not support amino acid uptake. Heterozygous LAT2 variants were also found in patients with cataract some of which showed a reduced transport function when expressed in HeLa cells. Whether heterozygous LAT2 variants may contribute to the pathology of cataract needs to be further investigated. Overall, our results suggest that defects of amino acid transporter LAT2 are implicated in cataract formation, a situation that may be aggravated by TAT1 defects.
Collapse
Affiliation(s)
- Emilia Boiadjieva Knöpfel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research Kidney.CH, University of Zurich, Zurich, Switzerland
| | - Clara Vilches
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory – IDIBELL, Barcelona, Spain
- U730 and U731, Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Simone M. R. Camargo
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Ekaitz Errasti-Murugarren
- U730 and U731, Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andrina Stäubli
- Institute of Medical Molecular Genetics, University of Zurich, Zurich, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Clara Mayayo
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory – IDIBELL, Barcelona, Spain
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Francis L. Munier
- Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Nadège Poncet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Alexandra Junza
- Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Shomi S. Bhattacharya
- Andalusian Molecular Biology and Regenerative Medicine Centre – CABIMER, Seville, Spain
- UCL Institute of Ophthalmology, London, United Kingdom
| | - Esther Prat
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory – IDIBELL, Barcelona, Spain
- U730 and U731, Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
- Genetics Section, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Vanita Berry
- Andalusian Molecular Biology and Regenerative Medicine Centre – CABIMER, Seville, Spain
| | - Wolfgang Berger
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Institute of Medical Molecular Genetics, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich – ZNZ, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anthony T. Moore
- Andalusian Molecular Biology and Regenerative Medicine Centre – CABIMER, Seville, Spain
- Moorfields Eye Hospital, London, United Kingdom
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Óscar Yanes
- Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Virginia Nunes
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory – IDIBELL, Barcelona, Spain
- U730 and U731, Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
- Genetics Section, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Manuel Palacín
- U730 and U731, Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Francois Verrey
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research Kidney.CH, University of Zurich, Zurich, Switzerland
| | - Barbara Kloeckener-Gruissem
- Institute of Medical Molecular Genetics, University of Zurich, Zurich, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Schey KL, Petrova RS, Gletten RB, Donaldson PJ. The Role of Aquaporins in Ocular Lens Homeostasis. Int J Mol Sci 2017; 18:E2693. [PMID: 29231874 PMCID: PMC5751294 DOI: 10.3390/ijms18122693] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022] Open
Abstract
Abstract: Aquaporins (AQPs), by playing essential roles in the maintenance of ocular lens homeostasis, contribute to the establishment and maintenance of the overall optical properties of the lens over many decades of life. Three aquaporins, AQP0, AQP1 and AQP5, each with distinctly different functional properties, are abundantly and differentially expressed in the different regions of the ocular lens. Furthermore, the diversity of AQP functionality is increased in the absence of protein turnover by age-related modifications to lens AQPs that are proposed to alter AQP function in the different regions of the lens. These regional differences in AQP functionality are proposed to contribute to the generation and directionality of the lens internal microcirculation; a system of circulating ionic and fluid fluxes that delivers nutrients to and removes wastes from the lens faster than could be achieved by passive diffusion alone. In this review, we present how regional differences in lens AQP isoforms potentially contribute to this microcirculation system by highlighting current areas of investigation and emphasizing areas where future work is required.
Collapse
Affiliation(s)
- Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA.
| | - Rosica S Petrova
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand.
| | - Romell B Gletten
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA.
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand.
- School of Optometry and Vison Sciences, New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
14
|
Human rotavirus strain Wa downregulates NHE1 and NHE6 expressions in rotavirus-infected Caco-2 cells. Virus Genes 2017; 53:367-376. [PMID: 28289928 DOI: 10.1007/s11262-017-1444-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/04/2017] [Indexed: 12/26/2022]
Abstract
Rotavirus (RV) is the most common cause of severe gastroenteritis and fatal dehydration in human infants and neonates of different species. However, the pathogenesis of rotavirus-induced diarrhea is poorly understood. Secretory diarrhea caused by rotavirus may lead to a combination of excessive secretion of fluid and electrolytes into the intestinal lumen. Fluid absorption in the small intestine is driven by Na+-coupled transport mechanisms at the luminal membrane, including Na+/H+ exchanger (NHE). Here, we performed qRT-PCR to detect the transcription of NHEs. Western blotting was employed for protein detection. Furthermore, immunocytochemistry was used to validate the NHE's protein expression. Finally, intracellular Ca2+ concentration was detected by confocal laser scanning microscopy. The results demonstrated that the NHE6 mRNA and protein expressed in the human colon adenocarcinoma cell line (Caco-2). Furthermore, RV-Wa induced decreased expression of the NHE1 and NHE6 in Caco-2 cell in a time-dependent manner. In addition, intracellular Ca2+ concentration in RV-Wa-infected Caco-2 cells was higher than that in the mock-infected cells. Furthermore, RV-Wa also can downregulate the expression of calmodulin (CaM) and calmodulin kinase II (CaMKII) in Caco-2 cells. These findings provides important insights into the mechanisms of rotavirus-induced diarrhea. Further studies on the underlying pathophysiological mechanisms that downregulate NHEs in RV-induced diarrhea are required.
Collapse
|