1
|
Nazir A, Uwishema O, Shariff S, Franco WXG, El Masri N, Ayele ND, Munyangaju I, Alzain FE, Wojtara M. A Thorough Navigation of miRNA's Blueprint in Crafting Cardiovascular Fate. Health Sci Rep 2024; 7:e70136. [PMID: 39502130 PMCID: PMC11535861 DOI: 10.1002/hsr2.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Cardiovascular diseases contribute significantly to global morbidity and mortality. MicroRNAs are crucial in the development and progression of these diseases by regulating gene expression in various cells and tissues. Their roles in conditions like atherosclerosis, heart failure, myocardial infarction, and arrhythmias have been widely researched. Materials and Methods The present study provides an overview of existing evidence regarding miRNAs' role in cardiovascular disease pathogenesis. Furthermore, the study examines current state-of-the-art technologies used in the study of miRNAs in cardiovascular disease. As a final point, we examine how miRNAs may serve as disease biomarkers, therapeutic targets, and prognostic indicators. Results In cardiology, microRNAs, small noncoding RNA molecules, are crucial to the posttranscriptional regulation of genes. Their role in regulating cardiac cell differentiation and maturation is critical during the development of the heart. They maintain the cardiac function of an adult heart by contributing to its electrical and contractile activity. By binding to messenger RNA molecules, they inhibit protein translation or degrade mRNA. Several cardiovascular diseases are associated with dysregulation of miRNAs, including arrhythmias, hypertension, atherosclerosis, and heart failure. miRNAs can be used as biomarkers to diagnose and predict diseases as well as therapeutic targets. A variety of state-of-the-art technologies have aided researchers in discovering, profiling, and analyzing miRNAs, including microarray analysis, next-generation sequencing, and others. Conclusion Developing new diagnostics and therapeutic approaches is becoming more feasible as researchers refine their understanding of miRNA function. Ultimately, this will reduce the burden of cardiovascular disease around the world.
Collapse
Affiliation(s)
- Abubakar Nazir
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineKing Edward Medical UniversityPakistan
| | - Olivier Uwishema
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
| | - Sanobar Shariff
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineYerevan State Medical UniversityYerevanArmenia
| | - William Xochitun Gopar Franco
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineUniversity of GuadalajaraGuadalajaraMexico
| | - Noha El Masri
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Faculty of MedicineBeirut Arab UniversityLebanon
| | - Nitsuh Dejene Ayele
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of Internal Medicine, Faculty of MedicineWolkite UniversityWolkiteEthiopia
| | - Isabelle Munyangaju
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Barcelona Institute for Global Health—Hospital ClínicUniversitat de Barcelona
| | - Fatima Esam Alzain
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineCollege of Medicine and General Surgery—Sudan University of Science and Technology
| | - Magda Wojtara
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
2
|
Kuai Z, Ma Y, Gao W, Zhang X, Wang X, Ye Y, Zhang X, Yuan J. Potential diagnostic value of circulating miRNAs in HFrEF and bioinformatics analysis. Heliyon 2024; 10:e37929. [PMID: 39386873 PMCID: PMC11462209 DOI: 10.1016/j.heliyon.2024.e37929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Background Few studies have compared the performances of those reported miRNAs as biomarkers for heart failure with reduced EF (HFrEF) in a population at high risk. The purpose of this study is to investigate comprehensively the performance of those miRNAs as biomarkers for HFrEF. Methods By using bioinformatics methods, we also examined these miRNAs' target genes and possible signal transduction pathways. We collected serum samples from patients with HFrEF at Zhongshan Hospital. Receiver operating characteristic (ROC) curves were used to evaluate the accuracy of those miRNAs as biomarkers for HFrEF. miRWALK2.0, Gene Ontology (GO) analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to predict the target genes and pathways of selected miRNAs. Results The study included 48 participants, of whom 30 had HFrEF and 18 had hypertension with normal left ventricular ejection fraction (LVEF). MiR-378, miR-195-5p were significantly decreased meanwhile ten miRNAs were remarkably elevated (miR-21-3p, miR-21-5p, miR-106-5p, miR-23a-3p, miR-208a-3p, miR-1-3p, miR-126-5p, miR-133a-3p, miR-133b, miR-223-3p) in the serum of the HFrEF group. Conclusion The combination of miR 133a-3p, miR 378, miR 1-3p, miR 106b-5p, and miR 133b has excellent diagnostic performance for HFrEF, and there is a throng of mechanisms and pathways by which regulation of these miRNAs may affect the risk of HFrEF.
Collapse
Affiliation(s)
- Zheng Kuai
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanji Ma
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Gao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoxue Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yangli Ye
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyi Zhang
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Yuan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Alzaabi MA, Abdelsalam A, Alhammadi M, Bani Hani H, Almheiri A, Al Matrooshi N, Al Zaman K. Evaluating Biomarkers as Tools for Early Detection and Prognosis of Heart Failure: A Comprehensive Review. Card Fail Rev 2024; 10:e06. [PMID: 38915376 PMCID: PMC11194781 DOI: 10.15420/cfr.2023.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/19/2024] [Indexed: 06/26/2024] Open
Abstract
There is a high prevalence of heart failure (HF) worldwide, which has significant consequences for healthcare costs, patient death and quality of life. Therefore, there has been much focus on finding and using biomarkers for early diagnosis, prognostication and therapy of HF. This overview of the research presents a thorough examination of the current state of HF biomarkers and their many uses. Their function in diagnosing HF, gauging its severity and monitoring its response to therapy are all discussed. Particularly promising in HF diagnosis and risk stratification are the cardiac-specific biomarkers, B-type natriuretic peptide and N-terminal pro-B-type natriuretic peptide. Markers of oxidative stress, extracellular matrix, renal function, inflammation and cardiac peptides have shown promise in evaluating HF severity and prognosis. MicroRNAs and insulin-like growth factor are two emerging biomarkers that have shown potential in helping with HF diagnosis and prognosis.
Collapse
Affiliation(s)
- Moza A Alzaabi
- Cardiothoracic Surgery, Heart, Vascular & Thoracic Institute, Cleveland Clinic Abu DhabiAbu Dhabi, United Arab Emirates
| | - Amin Abdelsalam
- Department of Cardiology, Al Qassemi HospitalSharjah, United Arab Emirates
| | - Majid Alhammadi
- College of Medicine, University of SharjahSharjah, United Arab Emirates
| | - Hasan Bani Hani
- College of Medicine, University of SharjahSharjah, United Arab Emirates
| | - Ali Almheiri
- College of Medicine, University of SharjahSharjah, United Arab Emirates
| | - Nadya Al Matrooshi
- Cardiothoracic Surgery, Heart, Vascular & Thoracic Institute, Cleveland Clinic Abu DhabiAbu Dhabi, United Arab Emirates
| | - Khaled Al Zaman
- Cardiothoracic Surgery, Heart, Vascular & Thoracic Institute, Cleveland Clinic Abu DhabiAbu Dhabi, United Arab Emirates
- College of Medicine, University of SharjahSharjah, United Arab Emirates
| |
Collapse
|
4
|
Mao Y, Zhao K, Chen N, Fu Q, Zhou Y, Kong C, Li P, Yang C. A 2-decade bibliometric analysis of epigenetics of cardiovascular disease: from past to present. Clin Epigenetics 2023; 15:184. [PMID: 38007493 PMCID: PMC10676610 DOI: 10.1186/s13148-023-01603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) remains a major health killer worldwide, and the role of epigenetic regulation in CVD has been widely studied in recent decades. Herein, we perform a bibliometric study to decipher how research topics in this field have evolved during the past 2 decades. RESULTS Publications on epigenetics in CVD produced during the period 2000-2022 were retrieved from the Web of Science Core Collection (WoSCC). We utilized Bibliometrix to build a science map of the publications and applied VOSviewer and CiteSpace to assess co-authorship, co-citation, co-occurrence, and bibliographic coupling. In total, 27,762 publications were included for bibliometric analysis. The yearly amount of publications experienced exponential growth. The top 3 most influential countries were China, the United States, and Germany, while the most cited institutions were Nanjing Medical University, Harbin Medical University, and Shanghai Jiao Tong University. Four major research trends were identified: (a) epigenetic mechanisms of CVD; (b) epigenetics-based therapies for CVD; (c) epigenetic profiles of specific CVDs; and (d) epigenetic biomarkers for CVD diagnosis/prediction. The latest and most important research topics, including "nlrp3 inflammasome", "myocardial injury", and "reperfusion injury", were determined by detecting citation bursts of co-occurring keywords. The most cited reference was a review of the current knowledge about how miRNAs recognize target genes and modulate their expression and function. CONCLUSIONS The number and impact of global publications on epigenetics in CVD have expanded rapidly over time. Our findings may provide insights into the epigenetic basis of CVD pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Yukang Mao
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, Jiangsu, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Nannan Chen
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, 450 Tengyue Road, Shanghai, 200090, China
| | - Qiangqiang Fu
- Department of General Practice, Clinical Research Center for General Practice, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Yimeng Zhou
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, 450 Tengyue Road, Shanghai, 200090, China
| | - Chuiyu Kong
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing, China.
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Chuanxi Yang
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, 450 Tengyue Road, Shanghai, 200090, China.
| |
Collapse
|
5
|
Asjad E, Dobrzynski H. MicroRNAs: Midfielders of Cardiac Health, Disease and Treatment. Int J Mol Sci 2023; 24:16207. [PMID: 38003397 PMCID: PMC10671258 DOI: 10.3390/ijms242216207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that play a role in post-transcriptional gene regulation. It is generally accepted that their main mechanism of action is the negative regulation of gene expression, through binding to specific regions in messenger RNA (mRNA) and repressing protein translation. By interrupting protein synthesis, miRNAs can effectively turn genes off and influence many basic processes in the body, such as developmental and apoptotic behaviours of cells and cardiac organogenesis. Their importance is highlighted by inhibiting or overexpressing certain miRNAs, which will be discussed in the context of coronary artery disease, atrial fibrillation, bradycardia, and heart failure. Dysregulated levels of miRNAs in the body can exacerbate or alleviate existing disease, and their omnipresence in the body makes them reliable as quantifiable markers of disease. This review aims to provide a summary of miRNAs as biomarkers and their interactions with targets that affect cardiac health, and intersperse it with current therapeutic knowledge. It intends to succinctly inform on these topics and guide readers toward more comprehensive works if they wish to explore further through a wide-ranging citation list.
Collapse
Affiliation(s)
- Emman Asjad
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Halina Dobrzynski
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Department of Anatomy, Jagiellonian University Medical College, 31-034 Krakow, Poland
| |
Collapse
|
6
|
Yang P, Yang Q, Yang Y, Tian Q, Zheng Z. miR-221-3p targets Ang-2 to inhibit the transformation of HCMECs to tip cells. J Cell Mol Med 2023; 27:3247-3258. [PMID: 37525394 PMCID: PMC10623524 DOI: 10.1111/jcmm.17892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Postembryonic angiogenesis is mainly induced by various proangiogenic factors derived from the original vascular network. Previous studies have shown that the role of Ang-2 in angiogenesis is controversial. Tip cells play a vanguard role in angiogenesis and exhibit a transdifferentiated phenotype under the action of angiogenic factors. However, whether Ang-2 promotes the transformation of endothelial cells to tip cells remains unknown. Our study found that miR-221-3p was highly expressed in HCMECs cultured for 4 h under hypoxic conditions (1% O2 ). Moreover, miR-221-3p overexpression inhibited HCMECs proliferation and tube formation, which may play an important role in hypoxia-induced angiogenesis. By target gene prediction, we further demonstrated that Ang-2 was a downstream target of miR-221-3p and miR-221-3p overexpression inhibited Ang-2 expression in HCMECs under hypoxic conditions. Subsequently, qRT-PCR and western blotting methods were performed to analyse the role of miR-221-3p and Ang-2 on the regulation of tip cell marker genes. MiR-221-3p overexpression inhibited CD34, IGF1R, IGF-2 and VEGFR2 proteins expression while Ang-2 overexpression induced CD34, IGF1R, IGF-2 and VEGFR2 expression in HCMECs under hypoxic conditions. In addition, we further confirmed that Ang-2 played a dominant role in miR-221-3p inhibitors promoting the transformation of HCMECs to tip cells by using Ang-2 shRNA to interfere with miR-221-3p inhibitor-treated HCMECs under hypoxic conditions. Finally, we found that miR-221-3p expression was significantly elevated in both serum and myocardial tissue of AMI rats. Hence, our data showed that miR-221-3p may inhibit angiogenesis after acute myocardial infarction by targeting Ang-2 to inhibit the transformation of HCMECs to tip cells.
Collapse
Affiliation(s)
- Peng Yang
- Department of CardiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of CardiologyGaoxin Branch of The First Affiliated Hospital of Nanchang universityNanchangChina
| | - Qing Yang
- Department of CardiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of CardiologyGaoxin Branch of The First Affiliated Hospital of Nanchang universityNanchangChina
| | - Yiheng Yang
- Department of CardiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of CardiologyGaoxin Branch of The First Affiliated Hospital of Nanchang universityNanchangChina
| | - Qingshan Tian
- Department of CardiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of CardiologyGaoxin Branch of The First Affiliated Hospital of Nanchang universityNanchangChina
| | - Zhenzhong Zheng
- Department of CardiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of CardiologyGaoxin Branch of The First Affiliated Hospital of Nanchang universityNanchangChina
- Jiangxi Hypertension Research InstituteNanchangChina
| |
Collapse
|
7
|
Du J, Yu D, Li J, Si L, Zhu D, Li B, Gao Y, Sun L, Wang X, Wang X. Asiatic acid protects against pressure overload-induced heart failure in mice by inhibiting mitochondria-dependent apoptosis. Free Radic Biol Med 2023; 208:545-554. [PMID: 37717794 DOI: 10.1016/j.freeradbiomed.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Mitochondrial dysfunction and subsequent cardiomyocyte apoptosis significantly contribute to pressure overload-induced heart failure (HF). A highly oxidative environment leads to mitochondrial damage, further exacerbating this condition. Asiatic acid (AA), a proven antioxidant and anti-hypertrophic agent, might provide a solution, but its role and mechanisms in chronic pressure overload-induced HF remain largely unexplored. METHODS We induced pressure overload in mice using transverse aortic constriction (TAC) and treated them with AA (100 mg/kg/day) or vehicle daily by oral gavage for 8 weeks. The effects of AA on mitochondrial dysfunction, oxidative stress-associated signaling pathways, and overall survival were evaluated. Additionally, an in vitro model using hydrogen peroxide-exposed neonatal rat cardiomyocytes was established to further investigate the role of AA in oxidative stress-induced mitochondrial apoptosis. RESULTS AA treatment significantly improved survival and alleviated cardiac dysfunction in TAC-induced HF mice. It preserved mitochondrial structure, reduced the LVW/BW ratio by 20.24%, mitigated TAC-induced mitochondrial-dependent apoptosis by significantly lowering the Bax/Bcl-2 ratio and cleaved caspase-9/3 levels, and attenuated oxidative stress. AA treatment protected cardiomyocytes from hydrogen peroxide-induced apoptosis, with concurrent modulation of mitochondrial-dependent apoptosis pathway-related proteins and the JNK pathway. CONCLUSIONS Our findings suggest that AA effectively combats chronic TAC-induced and hydrogen peroxide-induced cardiomyocyte apoptosis through a mitochondria-dependent mechanism. AA reduces cellular levels of oxidative stress and inhibits the activation of the JNK pathway, highlighting its potential therapeutic value in the treatment of HF.
Collapse
Affiliation(s)
- Junjie Du
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Dongmin Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jinghang Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Linjie Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Dawei Zhu
- Department of Cardiothoracic Surgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211000, China
| | - Ben Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yizhou Gao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lifu Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xufeng Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
8
|
Sharma AK, Bisht P, Gupta B, Sayeed Akhtar MD, Shaik Alavudeen S, Afzal O, Sa Altamimi A. Investigating miRNA subfamilies: Can they assist in the early diagnosis of acute myocardial infarction? Drug Discov Today 2023; 28:103695. [PMID: 37406730 DOI: 10.1016/j.drudis.2023.103695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/04/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
This report focuses on small non-coding RNA molecules (miRNAs), which have emerged as potential biomarkers with variable diagnostic values and false-positives in different conditions that limit their clinical preference. Current investigations focus on small non-coding RNA molecules (miRNAs), which have emerged as potential biomarkers with variable diagnostic values and false-positives in different conditions that limit their clinical preference. We thoroughly scrutinize the leading pathology of myocardial infarction and contemporary alterations in miRNAs for their specificity, stability and significant prognostic value at the early stage of acute myocardial infarction (AMI). Based on secondary data analysis, we explore common biomarkers and further investigate included miRNA biomarkers for their specificity, stability and area under the curve (AUC) values. We conclude that a group of novel biomarkers, including miRNA-1, miRNA-208a/b and miRNA-499, could help predict the emergence of AMI at an early stage.
Collapse
Affiliation(s)
- Arun K Sharma
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122413, India.
| | - Priyanka Bisht
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122413, India
| | - Bishal Gupta
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122413, India
| | - M D Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha 62223, Saudi Arabia.
| | - Sirajudeen Shaik Alavudeen
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha 62223, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik Sa Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
9
|
Elsakka EGE, Abulsoud AI, El-Mahdy HA, Ismail A, Elballal MS, Mageed SSA, Khidr EG, Mohammed OA, Sarhan OM, Elkhawaga SY, El-Husseiny AA, Abdelmaksoud NM, El-Demerdash AA, Shahin RK, Midan HM, Elrebehy MA, Doghish AA, Doghish AS. miRNAs orchestration of cardiovascular diseases - Particular emphasis on diagnosis, and progression. Pathol Res Pract 2023; 248:154613. [PMID: 37327567 DOI: 10.1016/j.prp.2023.154613] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
MicroRNAs (miRNAs; miRs) are small non-coding ribonucleic acids sequences vital in regulating gene expression. They are significant in many biological and pathological processes and are even detectable in various body fluids such as serum, plasma, and urine. Research has demonstrated that the irregularity of miRNA in multiplying cardiac cells is linked to developmental deformities in the heart's structure. It has also shown that miRNAs are crucial in diagnosing and progressing several cardiovascular diseases (CVDs). The review covers the function of miRNAs in the pathophysiology of CVD. Additionally, the review provides an overview of the potential role of miRNAs as disease-specific diagnostic and prognostic biomarkers for human CVD, as well as their biological implications in CVD.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Omnia M Sarhan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | | | - Aya A El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ayman A Doghish
- Department of Cardiovascular & Thoracic Surgery, Ain-Shams University Hospital, Faculty of Medicine, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
10
|
miRNA Dysregulation in Cardiovascular Diseases: Current Opinion and Future Perspectives. Int J Mol Sci 2023; 24:ijms24065192. [PMID: 36982265 PMCID: PMC10048938 DOI: 10.3390/ijms24065192] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
MicroRNAs (miRNAs), small noncoding RNAs, are post-transcriptional gene regulators that can promote the degradation or decay of coding mRNAs, regulating protein synthesis. Many experimental studies have contributed to clarifying the functions of several miRNAs involved in regulatory processes at the cardiac level, playing a pivotal role in cardiovascular disease (CVD). This review aims to provide an up-to-date overview, with a focus on the past 5 years, of experimental studies on human samples to present a clear background of the latest advances to summarize the current knowledge and future perspectives. SCOPUS and Web of Science were searched using the following keywords: (miRNA or microRNA) AND (cardiovascular diseases); AND (myocardial infarction); AND (heart damage); AND (heart failure), including studies published from 1 January 2018 to 31 December 2022. After an accurate evaluation, 59 articles were included in the present systematic review. While it is clear that miRNAs are powerful gene regulators, all the underlying mechanisms remain unclear. The need for up-to-date data always justifies the enormous amount of scientific work to increasingly highlight their pathways. Given the importance of CVDs, miRNAs could be important both as diagnostic and therapeutic (theranostic) tools. In this context, the discovery of “TheranoMIRNAs” could be decisive in the near future. The definition of well-setout studies is necessary to provide further evidence in this challenging field.
Collapse
|
11
|
Lizcano F, Bustamante L. Molecular perspectives in hypertrophic heart disease: An epigenetic approach from chromatin modification. Front Cell Dev Biol 2022; 10:1070338. [DOI: 10.3389/fcell.2022.1070338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
Epigenetic changes induced by environmental factors are increasingly relevant in cardiovascular diseases. The most frequent molecular component in cardiac hypertrophy is the reactivation of fetal genes caused by various pathologies, including obesity, arterial hypertension, aortic valve stenosis, and congenital causes. Despite the multiple investigations performed to achieve information about the molecular components of this pathology, its influence on therapeutic strategies is relatively scarce. Recently, new information has been taken about the proteins that modify the expression of fetal genes reactivated in cardiac hypertrophy. These proteins modify the DNA covalently and induce changes in the structure of chromatin. The relationship between histones and DNA has a recognized control in the expression of genes conditioned by the environment and induces epigenetic variations. The epigenetic modifications that regulate pathological cardiac hypertrophy are performed through changes in genomic stability, chromatin architecture, and gene expression. Histone 3 trimethylation at lysine 4, 9, or 27 (H3-K4; -K9; -K27me3) and histone demethylation at lysine 9 and 79 (H3-K9; -K79) are mediators of reprogramming in pathologic hypertrophy. Within the chromatin architecture modifiers, histone demethylases are a group of proteins that have been shown to play an essential role in cardiac cell differentiation and may also be components in the development of cardiac hypertrophy. In the present work, we review the current knowledge about the influence of epigenetic modifications in the expression of genes involved in cardiac hypertrophy and its possible therapeutic approach.
Collapse
|
12
|
Ma Z, Chen B, Zhang Y, Zeng J, Tao J, Hu Y. Integration of RNA molecules data with prior-knowledge driven Joint Deep Semi-Negative Matrix Factorization for heart failure study. Front Genet 2022; 13:967363. [PMID: 36299595 PMCID: PMC9589260 DOI: 10.3389/fgene.2022.967363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
Heart failure (HF) is the main manifestation of cardiovascular disease. Recent studies have shown that various RNA molecules and their complex connections play an essential role in HF’s pathogenesis and pathological progression. This paper aims to mine key RNA molecules associated with HF. We proposed a Prior-knowledge Driven Joint Deep Semi-Negative Matrix Factorization (PD-JDSNMF) model that uses a hierarchical nonlinear feature extraction method that integrates three types of data: mRNA, lncRNA, and miRNA. The PPI information is added to the model as prior knowledge, and the Laplacian constraint is used to help the model resist the noise in the genetic data. We used the PD-JDSNMF algorithm to identify significant co-expression modules. The elements in the module are then subjected to bioinformatics analysis and algorithm performance analysis. The results show that the PD-JDSNMF algorithm can robustly select biomarkers associated with HF. Finally, we built a heart failure diagnostic model based on multiple classifiers and using the Top 13 genes in the significant module, the AUC of the internal test set was up to 0.8714, and the AUC of the external validation set was up to 0.8329, which further confirmed the effectiveness of the PD-JDSNMF algorithm.
Collapse
|
13
|
Reis-Ferreira A, Neto-Mendes J, Brás-Silva C, Lobo L, Fontes-Sousa AP. Emerging Roles of Micrornas in Veterinary Cardiology. Vet Sci 2022; 9:533. [PMID: 36288146 PMCID: PMC9607079 DOI: 10.3390/vetsci9100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Over the last years, the importance of microRNAs (miRNAs) has increasingly been recognised. Each miRNA is a short sequence of non-coding RNA that influences countless genes' expression and, thereby, contributes to several physiological pathways and diseases. It has been demonstrated that miRNAs participate in the development of many cardiovascular diseases (CVDs). This review synopsises the most recent studies emphasising miRNA's influence in several CVDs affecting dogs and cats. It provides a concise outline of miRNA's biology and function, the diagnostic potential of circulating miRNAs as biomarkers, and their role in different CVDs. It also discusses known and future roles for miRNAs as potential clinical biomarkers and therapeutic targets. So, this review gives a comprehensive outline of the most relevant miRNAs related to CVDs in Veterinary Medicine.
Collapse
Affiliation(s)
- Ana Reis-Ferreira
- Hospital Veterinário do Porto, Travessa Silva Porto 174, 4250-475 Porto, Portugal
- ICBAS-UP, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Joana Neto-Mendes
- ICBAS-UP, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carmen Brás-Silva
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Luís Lobo
- Hospital Veterinário do Porto, Travessa Silva Porto 174, 4250-475 Porto, Portugal
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
- Centro de Estudos de Ciência Animal, Campus Agrário de Vairão, 4480-009 Vila do Conde, Portugal
| | - Ana Patrícia Fontes-Sousa
- ICBAS-UP, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Departamento de Imuno-Fisiologia e Farmacologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Universidade do Porto, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UPVET, Hospital Veterinário da Universidade do Porto, Rua Jorge de Viterbo Ferreira 132, 4050-313 Porto, Portugal
| |
Collapse
|
14
|
Sadat-Ebrahimi SR, Rezabakhsh A, Aslanabadi N, Asadi M, Zafari V, Shanebandi D, Zarredar H, Enamzadeh E, Taghizadeh H, Badalzadeh R. Novel diagnostic potential of miR-1 in patients with acute heart failure. PLoS One 2022; 17:e0275019. [PMID: 36149935 PMCID: PMC9506628 DOI: 10.1371/journal.pone.0275019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Background A number of circulating micro-ribonucleic acids (miRNAs) have been introduced as convincing predictive determinants in a variety of cardiovascular diseases. This study aimed to evaluate some miRNAs’ diagnostic and prognostic value in patients with acute heart failure (AHF). Method Forty-four AHF patients were randomly selected from a tertiary heart center, and 44 healthy participants were included in the control group. Plasma levels of assessed miRNAs, including miR -1, -21, -23, and -423-5-p were measured in both groups. The patients were followed for one year, and several clinical outcomes, including in-hospital mortality, one-year mortality, and the number of readmissions, were recorded. Results An overall 88 plasma samples were evaluated. There was no significant difference in terms of demographic characteristics between the AHF and healthy groups. Our findings revealed that mean levels of miR-1, -21, -23, and -423-5-p in AHF patients were significantly higher than in the control group. Although all assessed miRNAs demonstrated high diagnostic potential, the highest sensitivity (77.2%) and specificity (97.7%) is related to miR-1 for the values above 1.22 (p = 0.001, AUC = 0.841; 95%CI, 0.751 to 946). Besides, the levels of miR-21 and -23 were significantly lower in patients with ischemia-induced HF. However, the follow-up data demonstrated no significant association between miRNAs and prognostic outcomes including in-hospital mortality, one-year mortality, and the number of readmissions. Conclusion The result of our study demonstrated that miR-1, -21, -23, and -423-5-p can be taken into account as diagnostic aids for AHF. Nevertheless, there was no evidence supporting the efficacy of these miRNAs as prognostic factors in our study.
Collapse
Affiliation(s)
| | - Aysa Rezabakhsh
- Hematology, Immune Cell Therapy, and Stem Cells Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Emergency Medicine & Trauma Care Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Aslanabadi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Venus Zafari
- Tuberculosis and Lung Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanebandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elgar Enamzadeh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Taghizadeh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Physiology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- * E-mail:
| |
Collapse
|
15
|
Knockdown of miR-372-3p Inhibits the Development of Diabetic Cardiomyopathy by Accelerating Angiogenesis via Activating the PI3K/AKT/mTOR/HIF-1α Signaling Pathway and Suppressing Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4342755. [PMID: 36160704 PMCID: PMC9507772 DOI: 10.1155/2022/4342755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Background DCM is the most common and malignant complication of diabetes. It is characterized by myocardial dilatation, hypertrophy, fibrosis, ventricular remodeling, and contractile dysfunction. Although many studies have demonstrated the function of miRNAs in the progression of DCM, but the specific role of miR-372-3p in DCM remains unknown. Methods C57/BL6J mice were used to construct mouse models of DCM by intraperitoneal injection of STZ (50 mg/kg/d) for 5 consecutive days. Then the mice were randomly divided into model group (intramyocardial injection of empty lentivirus) and miR-372-3p KD group (intramyocardial injection of miR-372-3p KD lentivirus at 109/mouse). Besides, the control group (injection of 0.9% normal saline) was also set up. LY294002, a PI3K inhibitor, was employed in the current study. Western blotting, immunofluorescence staining, quantitative ultrasound method, Masson's trichrome staining, and bioinformatics analysis were performed. Results It was found that miR-372-3p KD significantly improved left ventricular dysfunction and cardiac hypertrophy in DCM mice. Furthermore, it also improved myocardial interstitial fibrosis and remodeling in DCM mice. Immunofluorescence staining and RT-qPCR revealed that miR-372-3p KD might accelerate cardiac remodeling by increasing angiogenesis in DCM mice. Western blotting results revealed that miR-372-3p was an upstream target of the PI3K/AKT-mTOR and HIF-1α signals, as well as NOX2, NOX4, which were responsible for angiogenesis in DCM mice. Besides, the in vitro experiment showed that LY294002 markedly diminished the increased expression levels of p-PI3K, AKT, p-mTOR, p-P70S6K, HIF-1α, NOX2, and NOX4 in the model group and the miR-372-3p KD group, suggesting that PI3K signaling pathway and oxidative stress are involved in miR-372-3p KD-induced angiogenesis in HG-stimulated C166 cells. Conclusions MiR-372-3p KD inhibits the development of DCM via activating the PI3K/AKT/mTOR/HIF-1α signaling pathway or suppressing oxidative stress. This offers an applicable biomarker for DCM treatment.
Collapse
|
16
|
miR-212 Promotes Cardiomyocyte Hypertrophy through Regulating Transcription Factor 7 Like 2. Mediators Inflamm 2022; 2022:5187218. [PMID: 36060928 PMCID: PMC9433300 DOI: 10.1155/2022/5187218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/06/2022] [Indexed: 11/23/2022] Open
Abstract
To explore the role and possible mechanism of miRNA-212 in heart failure (HF). The rat model of abdominal aortic constriction was constructed, the changes of myocardial morphology were observed by hematoxylin-eosin (HE) staining, and the hypertrophy-related marker molecules were detected by quantitative real-time polymerase chain reaction (qRT-PCR). At the cellular level, phenylephrine and angiotensin II were added to induce cardiomyocyte hypertrophy. The overexpression of miR-212 adenovirus was constructed, and the expression of miR-212 was overexpressed, and its effect on cardiac hypertrophy (CH) was detected by immunofluorescence and qRT-PCR. Then, the mechanism of miR-212 regulating CH was verified by website prediction, luciferase reporter gene assay, qRT-PCR, and western blotting assay. In the successfully constructed rat model of abdominal aortic constriction and cardiomyocyte hypertrophy, ANP and myh7 were dramatically increased, myh6 expression was decreased, and miRNA-212 expression was increased. Overexpression of miRNA-212 in cardiomyocytes can promote cardiomyocyte hypertrophy, while knocking down miR-212 in cardiomyocytes can partially reverse cell hypertrophy. In addition, miR-212 targets TCF7L2 and inhibits the expression of this gene. miRNA-212 targets TCF7L2 and inhibits the expression of this gene, possibly through this pathway to promote cardiomyocyte hypertrophy.
Collapse
|
17
|
Gómez-Ochoa SA, Bautista-Niño PK, Rojas LZ, Hunziker L, Muka T, Echeverría LE. Circulating MicroRNAs and myocardial involvement severity in chronic Chagas cardiomyopathy. Front Cell Infect Microbiol 2022; 12:922189. [PMID: 36004323 PMCID: PMC9393411 DOI: 10.3389/fcimb.2022.922189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/18/2022] [Indexed: 12/18/2022] Open
Abstract
Background Chronic Chagas Cardiomyopathy (CCM) is characterized by a unique pathophysiology in which inflammatory, microvascular and neuroendocrine processes coalesce in the development of one of the most severe cardiomyopathies affecting humans. Despite significant advances in understanding the molecular mechanisms involved in this disease, scarce information is available regarding microRNAs and clinical parameters of disease severity. We aimed to evaluate the association between circulating levels of six microRNAs with markers of myocardial injury and prognosis in this population. Methods Patients with CCM and reduced ejection fraction were included in a prospective exploratory cohort study. We assessed the association of natural log-transformed values of six circulating microRNAs (miR-34a-5p, miR-208a-5p, miR-185-5p, miR-223-5p, let-7d-5p, and miR-454-5p) with NT-proBNP levels and echocardiographic variables using linear regression models adjusted for potential confounders. By using Cox Proportional Hazard models, we examined whether levels of microRNAs could predict a composite outcome (CO), including all-cause mortality, cardiac transplantation, and implantation of a left ventricular assist device (LVAD). Finally, for mRNAs showing significant associations, we predicted the target genes and performed pathway analyses using Targetscan and Reactome Pathway Browser. Results Seventy-four patients were included (59% males, median age: 64 years). After adjustment for age, sex, body mass index, and heart failure medications, only increasing miR-223-5p relative expression levels were significantly associated with better myocardial function markers, including left atrium area (Coef. -10.2; 95% CI -16.35; -4.09), end-systolic (Coef. -45.3; 95% CI -74.06; -16.61) and end-diastolic volumes (Coef. -46.1; 95% CI -81.99; -10.26) of the left ventricle. Moreover, we observed that higher miR-223-5p levels were associated with better left-ventricle ejection fraction and lower NT-proBNP levels. No associations were observed between the six microRNAs and the composite outcome. A total of 123 target genes for miR-223-5p were obtained. From these, several target pathways mainly related to signaling by receptor tyrosine kinases were identified. Conclusions The present study found an association between miR-223-5p and clinical parameters of CCM, with signaling pathways related to receptor tyrosine kinases as a potential mechanism linking low levels of miR-223-5p with CCM worsening.
Collapse
Affiliation(s)
| | | | - Lyda Z. Rojas
- Research Group and Development of Nursing Knowledge (GIDCEN-FCV), Research Center, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| | - Lukas Hunziker
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Taulant Muka
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
- *Correspondence: Taulant Muka,
| | - Luis E. Echeverría
- Heart Failure and Heart Transplant Clinic, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| |
Collapse
|
18
|
Huang JP, Chang CC, Kuo CY, Huang KJ, Sokal EM, Chen KH, Hung LM. Exosomal microRNAs miR-30d-5p and miR-126a-5p Are Associated with Heart Failure with Preserved Ejection Fraction in STZ-Induced Type 1 Diabetic Rats. Int J Mol Sci 2022; 23:ijms23147514. [PMID: 35886860 PMCID: PMC9318774 DOI: 10.3390/ijms23147514] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/10/2022] Open
Abstract
Exosomal microRNAs (EXO-miRNAs) are promising non-invasive diagnostic biomarkers for cardiovascular disease. Heart failure with preserved ejection fraction (HFpEF) is a poorly understood cardiovascular complication of diabetes mellitus (DM). Little is known about whether EXO-miRNAs can be used as biomarkers for HFpEF in DM. We aimed to investigate the relationship between EXO-miRNAs and HFpEF in STZ-induced diabetic rats. We prepared STZ-induced diabetic rats exhibiting a type 1 DM phenotype with low body weight, hyperglycemia, hyperlipidemia and hypoinsulinemia. Histological sections confirmed atrophy and fibrosis of the heart, with collagen accumulation representing diabetic cardiomyopathy. Significant decreases in end-diastolic volume, stroke volume, stroke work, end-systolic elastance and cardiac output indicated impaired cardiac contractility, as well as mRNA conversion of two isoforms of myosin heavy chain (α-MHC and β-MHC) and increased atrial natriuretic factor (ANF) mRNA indicating heart failure, were consistent with the features of HFpEF. In diabetic HFpEF rats, we examined a selected panel of 12 circulating miRNAs associated with HF (miR-1-3p, miR-21-5p, miR-29a-5p, miR-30d-5p, miR-34a-5p, miR-126a-5p, miR-143-3p, miR-145-5p, miR-195-5p, miR-206-3p, miR-320-3p and miR-378-3p). Although they were all expressed at significantly lower levels in the heart compared to non-diabetic controls, only six miRNAs (miR-21-5p, miR-30d-5p, miR-126a-5p, miR-206-3p, miR-320-3p and miR-378-3p) were also reduced in exosomal content, while one miRNA (miR-34a-5p) was upregulated. Similarly, although all miRNAs were correlated with reduced cardiac output as a measure of cardiovascular performance, only three miRNAs (miR-30d-5p, miR-126a-5p and miR-378-3p) were correlated in exosomal content. We found that miR-30d-5p and miR-126a-5p remained consistently correlated with significant reductions in exosomal expression, cardiac expression and cardiac output. Our findings support their release from the heart and association with diabetic HFpEF. We propose that these two EXO-miRNAs may be important for the development of diagnostic tools for diabetic HFpEF.
Collapse
Affiliation(s)
- Jiung-Pang Huang
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (J.-P.H.); (C.-Y.K.)
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Chih-Chun Chang
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei 220, Taiwan;
- Graduate Institute of Clinical Medicine Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, Yilan 266, Taiwan
| | - Chao-Yu Kuo
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (J.-P.H.); (C.-Y.K.)
| | - Kuang-Jing Huang
- Microscopy Center, Chang Gung University, Taoyuan 333, Taiwan;
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Etienne M. Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Kuan-Hsing Chen
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan;
| | - Li-Man Hung
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (J.-P.H.); (C.-Y.K.)
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan;
- Correspondence: ; Tel.: +886-3-211-8800 (ext. 3338)
| |
Collapse
|
19
|
Katwa LC, Mendoza C, Clements M. CVD and COVID-19: Emerging Roles of Cardiac Fibroblasts and Myofibroblasts. Cells 2022; 11:cells11081316. [PMID: 35455995 PMCID: PMC9031661 DOI: 10.3390/cells11081316] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. Current data suggest that patients with cardiovascular diseases experience more serious complications with coronavirus disease-19 (COVID-19) than those without CVD. In addition, severe COVID-19 appears to cause acute cardiac injury, as well as long-term adverse remodeling of heart tissue. Cardiac fibroblasts and myofibroblasts, being crucial in response to injury, may play a pivotal role in both contributing to and healing COVID-19-induced cardiac injury. The role of cardiac myofibroblasts in cardiac fibrosis has been well-established in the literature for decades. However, with the emergence of the novel coronavirus SARS-CoV-2, new cardiac complications are arising. Bursts of inflammatory cytokines and upregulation of TGF-β1 and angiotensin (AngII) are common in severe COVID-19 patients. Cytokines, TGF-β1, and Ang II can induce cardiac fibroblast differentiation, potentially leading to fibrosis. This review details the key information concerning the role of cardiac myofibroblasts in CVD and COVID-19 complications. Additionally, new factors including controlling ACE2 expression and microRNA regulation are explored as promising treatments for both COVID-19 and CVD. Further understanding of this topic may provide insight into the long-term cardiac manifestations of the COVID-19 pandemic and ways to mitigate its negative effects.
Collapse
|
20
|
Abdelwahid E, de Carvalho KAT. Editorial: MicroRNAs in Heart Regeneration: Regulatory Mechanisms and Therapeutic Applications. Front Cardiovasc Med 2022; 9:863332. [PMID: 35295258 PMCID: PMC8920091 DOI: 10.3389/fcvm.2022.863332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eltyeb Abdelwahid
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- *Correspondence: Eltyeb Abdelwahid
| | - Katherine Athayde Teixeira de Carvalho
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research and Pequeno Príncipe Faculties, Curitiba, Brazil
- Katherine Athayde Teixeira de Carvalho
| |
Collapse
|
21
|
Duan X, Miao Z, Chen J. LncRNA KCNQ1OT1 attenuates myocardial injury induced by hip fracture via regulating of miR-224-3p/GATA4 axis. Int Immunopharmacol 2022; 107:108627. [PMID: 35217336 DOI: 10.1016/j.intimp.2022.108627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE This article aims to discuss the role of l KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) in myocardial injury caused by a hip fracture and further investigate its potential molecular mechanisms. METHODS X-Ray and H&E staining are used to observe hip fracture and pathological changes of myocardial tissue. ELISA and kits are used to detect inflammatory cytokines, lactate dehydrogenase (LDH), and creatine kinase (CK) in serum. The proliferation and apoptosis of H9c2 are determined by CCK-8 and flow cytometry. RT-qPCR and Western blot are applied to quantitatively assess the expression of related genes. Bioinformatics analysis is performed to search the downstream target of KCNQ1OT1 and miR-224-3p. Furthermore, the interaction is verified by a luciferase reporter assay. RESULTS A hip fracture model was successfully established. The high expression of inflammatory cytokines and cardiac injury markers indicated that hip fracture successfully induced myocardial injury. In TNF-ɑ treated cardiomyocyte model, high expression of KCNQ1OT1 promoted H9c2 cell proliferation and inhibited apoptosis. Furthermore, in the myocardial injury model rats induced by hip fracture, a high expression of KCNQ1OT1 reduced pathological damage in the myocardial tissue. Further research illustrated that miR-224-3p was the direct target of KCNQ1OT1, and GATA4 was the direct target of miR-224-3p. Importantly, functional research findings indicated that KCNQ1OT1 regulated myocardial injury caused by hip fracture via targeting the miR-224-3p/GATA4 axis. CONCLUSION Our study demonstrates that the KCNQ1OT1 suppresses myocardial injury via mediating miR-224-3p/GATA4, which provides a latent target for myocardial injury treatment.
Collapse
Affiliation(s)
- Xuzhou Duan
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, 168 Changhai Road, Yangpu District 200433, Shanghai, China
| | - Zhijing Miao
- Department of Cardiology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, 181 Friendship Road, Baoshan District 201901, Shanghai, China
| | - Jia Chen
- Department of Cardiology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, 181 Friendship Road, Baoshan District 201901, Shanghai, China.
| |
Collapse
|
22
|
Eyyupkoca F, Ercan K, Kiziltunc E, Ugurlu IB, Kocak A, Eyerci N. Determination of microRNAs associated with adverse left ventricular remodeling after myocardial infarction. Mol Cell Biochem 2022; 477:781-791. [PMID: 35048282 DOI: 10.1007/s11010-021-04330-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022]
Abstract
Increasing evidence indicates that microRNA (miRNA) regulated mechanisms in myocardial healing and ventricular remodeling following acute myocardial infarction (AMI). We aim to comprehensively investigate changes of exosomal miRNA profile during the post-MI period and determine potential miRNAs associated to adverse left ventricular remodeling (ALVR). We prospectively evaluated ST-elevated MI patients with cardiac magnetic resonance imaging at the 2 weeks and 6 months after AMI (n = 10). ALVR was defined as an increase in LV end-diastolic and end-systolic volume > 13%. The blood samples were taken for miRNA measurements at the baseline, 2 and 6 weeks after AMI. In the miRNA profile assessment, 8 miRNAs were identified that were associated ALVR (miR-199a-5p, miR-23b-3p, miR-26b-5p, miR-301a-3p, miR-374a-5p, miR-423-5p, miR-483-5p and miR-652-3p). Three of them (miR-301a-3p, miR-374a-5p and miR-423-5p) differed significantly between patients with and without ALVR during follow-up period and the rest of them during the acute phase of AMI. The detection of these miRNAs, which have different role in various pathways, necessitate future mechanistic studies unravel the complex remodeling process after AMI.
Collapse
Affiliation(s)
- Ferhat Eyyupkoca
- Department of Cardiology, Dr. Nafiz Korez Sincan State Hospital, Fatih District, Gazi Mustafa Kemal Boulevard, 06930, Ankara, Turkey.
| | - Karabekir Ercan
- Department of Radiology, Ankara City Hospital, Ankara, Turkey
| | - Emrullah Kiziltunc
- Department of Cardiology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ilgin Burcu Ugurlu
- Department of Cardiology, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Ajar Kocak
- Department of Cardiology, Dr. Nafiz Korez Sincan State Hospital, Fatih District, Gazi Mustafa Kemal Boulevard, 06930, Ankara, Turkey
| | - Nilnur Eyerci
- Department of Medical Biology, Kafkas University Faculty of Medicine, Kars, Turkey
| |
Collapse
|
23
|
Mascolo A, di Mauro G, Cappetta D, De Angelis A, Torella D, Urbanek K, Berrino L, Nicoletti GF, Capuano A, Rossi F. Current and future therapeutic perspective in chronic heart failure. Pharmacol Res 2021; 175:106035. [PMID: 34915125 DOI: 10.1016/j.phrs.2021.106035] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
The incidence of heart failure is primarily flat or declining for a presumably reflecting better management of cardiovascular diseases, but that of heart failure with preserved ejection fraction (HFpEF) is probably increasing for the lack of an established effective treatment. Moreover, there is no specific pharmacological treatment for patients with heart failure with mildly reduced ejection fraction (HFmrEF) since no substantial prospective randomized clinical trial has been performed exclusively in such population. According to the recent 2021 European Society of Cardiology (ESC) guidelines, the triad composed of an Angiotensin Converting Enzyme inhibitor or Angiotensin Receptor-Neprilysin Inhibitor (ARNI), a beta-blocker, and a Mineralcorticoid Receptor Antagonist is the cornerstone therapy for all patients with heart failure with reduced ejection fraction (HFrEF) but a substantial gap exists for patients with HFpEF/HFmrEF. Despite the important role of the Renin-Angiotensin-Aldosterone System (RAAS) in heart failure pathophysiology, RAAS blockers were found ineffective for HFpEF patients. Indeed, even the new drug class of ARNI was found effective only in HFrEF patients. In this regard, a therapeutic alternative may be represented by drug stimulating the non-classic RAAS (ACE2 and A1-7) as well as other emerging drug classes (such as SGLT2 inhibitors). Reflecting on this global health burden and the gap in treatments among heart failure phenotypes, we summarize the leading players of heart failure pathophysiology, the available pharmacological treatments for each heart failure phenotype, and that in future development.
Collapse
Affiliation(s)
- Annamaria Mascolo
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Via Costantinopoli 16, 80138 Naples, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy.
| | - Gabriella di Mauro
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Via Costantinopoli 16, 80138 Naples, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Daniele Torella
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Konrad Urbanek
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Liberato Berrino
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Giovanni Francesco Nicoletti
- Plastic Surgery Unit, University of Campania "Luigi Vanvitelli, Multidisciplinary Department of Medical Surgical and Dental Sciences, Napoli, Italy
| | - Annalisa Capuano
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Via Costantinopoli 16, 80138 Naples, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Francesco Rossi
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Via Costantinopoli 16, 80138 Naples, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
24
|
Zhu Z, Huang P, Sun R, Li X, Li W, Gong W. A Novel Long-Noncoding RNA LncZFAS1 Prevents MPP +-Induced Neuroinflammation Through MIB1 Activation. Mol Neurobiol 2021; 59:778-799. [PMID: 34775541 PMCID: PMC8857135 DOI: 10.1007/s12035-021-02619-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022]
Abstract
Parkinson's disease remains one of the leading neurodegenerative diseases in developed countries. Despite well-defined symptomology and pathology, the complexity of Parkinson's disease prevents a full understanding of its etiological mechanism. Mechanistically, α-synuclein misfolding and aggregation appear to be central for disease progression, but mitochondrial dysfunction, dysfunctional protein clearance and ubiquitin/proteasome systems, and neuroinflammation have also been associated with Parkinson's disease. Particularly, neuroinflammation, which was initially thought to be a side effect of Parkinson's disease pathogenesis, has now been recognized as driver of Parkinson's disease exacerbation. Next-generation sequencing has been used to identify a plethora of long noncoding RNAs (lncRNA) with important transcriptional regulatory functions. Moreover, a myriad of lncRNAs are known to be regulators of inflammatory signaling and neurodegenerative diseases, including IL-1β secretion and Parkinson's disease. Here, LncZFAS1 was identified as a regulator of inflammasome activation, and pyroptosis in human neuroblast SH-SY5Y cells following MPP+ treatment, a common in vitro Parkinson's disease cell model. Mechanistically, TXNIP ubiquitination through MIB1 E3 ubiquitin ligase regulates NLRP3 inflammasome activation in neuroblasts. In contrast, MPP+ activates the NLPR3 inflammasome through miR590-3p upregulation and direct interference with MIB1-dependent TXNIP ubiquitination. LncZFAS overexpression inhibits this entire pathway through direct interference with miR590-3p, exposing a novel research idea regarding the mechanism of Parkinson's disease.
Collapse
Affiliation(s)
- Ziman Zhu
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, 100144, China
| | - Peiling Huang
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Ruifeng Sun
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, 100144, China
| | - Xiaoling Li
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, 100144, China
| | - Wenshan Li
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, 100144, China
| | - Weijun Gong
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China.
| |
Collapse
|
25
|
Gao F, Chen X, Xu B, Luo Z, Liang Y, Fang S, Li M, Wang X, Lin X. Inhibition of MicroRNA-92 alleviates atherogenesis by regulation of macrophage polarization through targeting KLF4. J Cardiol 2021; 79:432-438. [PMID: 34750028 DOI: 10.1016/j.jjcc.2021.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease in which macrophage polarization plays an important role in contribution to atherosclerotic plaque formation and stability. Here we tested the effect of miR-92 regulation on the development of atherosclerosis beyond tumorigenesis and explored the potential mechanism. METHODS AND RESULTS In the present study, bone marrow derived macrophages (BMDMs), mouse peritoneal macrophages (MPMs), and human macrophages were used to test the expression of miR-92. Here we noticed miR-92 levels were enhanced in classic M1 macrophage but decreased in alternative M2 macrophage, respectively. In vitro, we demonstrated that macrophages transfected with miR-92 inhibitor attenuated proinflammatory cytokine secretion represented by polarized M1 markers but promoted anti-inflammatory state that was indicative of an M2 phenotype. Mechanistically, miR-92 was found to directly interact with KLF4 and we further identified a requirement role of KLF4 in mediating the effect of miR-92 silencing macrophage polarization. Concomitantly, miR-92 inhibition treated ApoE-/- mice promoted macrophage polarization toward alternative M2 macrophage, thus protecting against atherosclerotic plaque formation and preventing a vulnerable phenotype. CONCLUSION miR-92 inhibition promoted alternative macrophage activation and attenuated atherosclerosis regression partially regulated in a KLF4-dependent manner, which indicated that miR-92/KLF4 axis may serve as a promising strategy for prevention of atherosclerotic diseases.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiology, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic Development District, Hefei 230601, Anhui Province, China
| | - Xueying Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Banglong Xu
- Department of Cardiology, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic Development District, Hefei 230601, Anhui Province, China
| | - Zhidan Luo
- Department of Geriatrics, Chongqing People's Hospital, Chongqing, China
| | - Yi Liang
- Houston Methodist Research Institute, Center for Cardiovascular Regeneration, Houston, TX, USA
| | - Sihua Fang
- Department of Cardiology, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic Development District, Hefei 230601, Anhui Province, China
| | - Mengli Li
- Department of Cardiology, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic Development District, Hefei 230601, Anhui Province, China
| | - Xiaochen Wang
- Department of Cardiology, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic Development District, Hefei 230601, Anhui Province, China.
| | - Xianhe Lin
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei city 230601, Anhui Province, China.
| |
Collapse
|
26
|
Ionescu RF, Cretoiu SM. MicroRNAs as monitoring markers for right-sided heart failure and congestive hepatopathy. J Med Life 2021; 14:142-147. [PMID: 34104236 PMCID: PMC8169151 DOI: 10.25122/jml-2021-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The last decades showed a worrying increase in the evolution of cardiovascular diseases towards different stages of heart failure (HF), as a stigma of the western lifestyle. MicroRNAs (miRNAs), non-coding RNAs, which are approximately 22-nucleotide long, were shown to regulate gene expression at the post-transcriptional level and play a role in the pathogenesis and progression of HF. miRNAs research is of high interest nowadays, as these molecules display mechanisms of action that can influence the course of evolution of common chronic diseases, including HF. The potential of post-transcriptional regulation by miRNAs concerning the diagnosis, management, and therapy for HF represents a new promising approach in the accurate assessment of cardiovascular diseases. This review aims to assess the current knowledge of miRNAs in cardiovascular diseases, especially right-sided heart failure and hepatomegaly. Moreover, attention is focused on their role as potential molecular biomarkers and more promising aspects involving miRNAs as future therapeutic targets in the pathophysiology of HF.
Collapse
Affiliation(s)
- Ruxandra Florentina Ionescu
- Department of Cardiology I, Central Military Emergency University Hospital Dr. Carol Davila, Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
27
|
Wang X, Zhang C, Gong M, Jiang C. A Novel Identified Long Non-coding RNA, lncRNA MEF2C-AS1, Inhibits Cervical Cancer via Regulation of miR-592/RSPO1. Front Mol Biosci 2021; 8:687113. [PMID: 34169096 PMCID: PMC8217607 DOI: 10.3389/fmolb.2021.687113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose: Our purpose was to investigate the effect of lncRNA MEF2C antisense RNA 1 (MEF2C-AS1) on cervical cancer and further explore its underlying molecular mechanisms. Methods: The proliferation, migration and invasion of CC cells were determined by counting Kit-8 (CCK-8), colony formation assay, and transwell assays, respectively. qRT-PCR and western blot were conducted to quantitatively detect the expression of lncRNA MEF2C-AS1, miR-592 and R-spondin1 (RSPO1). Kaplan-Meier survival curve from the Cancer Genome Atlas (TCGA) database and the Gene Expression Profiling Interactive Analysis (GEPIA) website was used to describe the overall survival. Bioinformatics analysis was performed to search the downstream target of lncRNA MEF2C-AS1 and miR-592. Luciferase reporter assay was conducted to detect the interaction between lncRNA MEF2C-AS1 and miR-592 or miR-592 and RSPO1. Results: The data from GEPIA website showed that lncRNA MEF2C-AS1 expression was down-regulated in CC tissues and also associated with survival rate of CC patients. Moreover, the results of qRT-PCR also showed lncRNA MEF2C-AS1 was lowly expressed in CC cells. Subsequently, we confirmed that overexpression of lncRNA MEF2C-AS1 inhibited the proliferation, migration and invasion of CC cells. Further research illustrated that lncRNA MEF2C-AS1 was the target of miR-592, and RSPO1 was the downstream target gene of miR-592. Importantly, functional research findings indicated that lncRNA MEF2C-AS1 inhibited CC via suppressing miR-592 by targeting RSPO1. Conclusion: In our study, we demonstrated the functional role of the lncRNA MEF2C-AS1-miR-592-RSPO1 axis in the progression of CC, which provides a latent target for CC treatment.
Collapse
Affiliation(s)
- Xiaoping Wang
- Department of Gynaecology, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University/ Jinan Maternity and Child Care Hospital, Jinan, China
| | - Changhong Zhang
- Department of Gynaecology, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University/ Jinan Maternity and Child Care Hospital, Jinan, China
| | - Meixuan Gong
- Department of Gynaecology, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University/ Jinan Maternity and Child Care Hospital, Jinan, China
| | - Chen Jiang
- Department of Gynaecology, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University/ Jinan Maternity and Child Care Hospital, Jinan, China
| |
Collapse
|
28
|
Giordo R, Ahmed YMA, Allam H, Abusnana S, Pappalardo L, Nasrallah GK, Mangoni AA, Pintus G. EndMT Regulation by Small RNAs in Diabetes-Associated Fibrotic Conditions: Potential Link With Oxidative Stress. Front Cell Dev Biol 2021; 9:683594. [PMID: 34095153 PMCID: PMC8170089 DOI: 10.3389/fcell.2021.683594] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetes-associated complications, such as retinopathy, nephropathy, cardiomyopathy, and atherosclerosis, the main consequences of long-term hyperglycemia, often lead to organ dysfunction, disability, and increased mortality. A common denominator of these complications is the myofibroblast-driven excessive deposition of extracellular matrix proteins. Although fibroblast appears to be the primary source of myofibroblasts, other cells, including endothelial cells, can generate myofibroblasts through a process known as endothelial to mesenchymal transition (EndMT). During EndMT, endothelial cells lose their typical phenotype to acquire mesenchymal features, characterized by the development of invasive and migratory abilities as well as the expression of typical mesenchymal products such as α-smooth muscle actin and type I collagen. EndMT is involved in many chronic and fibrotic diseases and appears to be regulated by complex molecular mechanisms and different signaling pathways. Recent evidence suggests that small RNAs, in particular microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are crucial mediators of EndMT. Furthermore, EndMT and miRNAs are both affected by oxidative stress, another key player in the pathophysiology of diabetic fibrotic complications. In this review, we provide an overview of the primary redox signals underpinning the diabetic-associated fibrotic process. Then, we discuss the current knowledge on the role of small RNAs in the regulation of EndMT in diabetic retinopathy, nephropathy, cardiomyopathy, and atherosclerosis and highlight potential links between oxidative stress and the dyad small RNAs-EndMT in driving these pathological states.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Yusra M. A. Ahmed
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Hilda Allam
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Salah Abusnana
- Department of Diabetes and Endocrinology, University Hospital Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Lucia Pappalardo
- Department of Biology, Chemistry and Environmental Studies, American University of Sharjah, Sharjah, United Arab Emirates
| | - Gheyath K. Nasrallah
- Department of Biomedical Sciences, College of Health Sciences Member of QU Health, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Arduino Aleksander Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Flinders Medical Centre, Adelaide, SA, Australia
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
29
|
Abstract
The number of rTOF patients who survive into adulthood is steadily rising, with currently more than 90% reaching the third decade of life. However, rTOF patients are not cured, but rather have a lifelong increased risk for cardiac and non-cardiac complications. Heart failure is recognized as a significant complication. Its occurrence is strongly associated with adverse outcome. Unfortunately, conventional concepts of heart failure may not be directly applicable in this patient group. This article presents a review of the current knowledge on HF in rTOF patients, including incidence and prevalence, the most common mechanisms of heart failure, i.e., valvular pathologies, shunt lesions, left atrial hypertension, primary left heart and right heart failure, arrhythmias, and coronary artery disease. In addition, we will review information regarding extracardiac complications, risk factors for the development of heart failure, clinical impact and prognosis, and assessment possibilities, particularly of the right ventricle, as well as management strategies. We explore potential future concepts that may stimulate further research into this field.
Collapse
|
30
|
Combined detection of miR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 for screening of early heart failure diseases. Biosci Rep 2021; 40:222270. [PMID: 32124924 PMCID: PMC7080642 DOI: 10.1042/bsr20191653] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 02/17/2020] [Accepted: 03/01/2020] [Indexed: 12/16/2022] Open
Abstract
The use of circulating microRNAs as biomarkers opens up new opportunities for the diagnosis of cardiovascular diseases because of their specific expression profiles. The aim of the present study was to identify circulating microRNAs in human plasma as potential biomarkers of heart failure and related diseases. We used real-time quantitative PCR to screen microRNA in plasma samples from 62 normal controls and 62 heart failure samples. We found that circulating miR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 expressed differently between healthy controls and heart failure patients. Plasma levels of miR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 were unaffected by hemolysis. Correlation analysis showed any two of these miRNAs possess a strong correlation, indicating a possibility of combined analysis. MiR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 could be combined in two or three or more combinations. The results suggest that miR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 may be a new diagnostic biomarker for heart failure and related diseases.
Collapse
|
31
|
Gong FH, Long L, Yang YS, Shen DH, Zhang YS, Wang XS, Zhang XP, Xiao XQ. Attenuated macrophage activation mediated by microRNA-183 knockdown through targeting NR4A2. Exp Ther Med 2021; 21:300. [PMID: 33717243 DOI: 10.3892/etm.2021.9731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is considered a chronic inflammatory disease, and macrophages function as important mediators in the development of atherogenesis. MicroRNA (miR)-183 is a small non-coding RNA that acts as a novel tumor suppressor and has recently been proposed to affect cardiac hypertrophy. However, the exact role and underlying mechanism of miR-183 in macrophage activation remain unknown. In the present study, miR-183 showed upregulated expression in atheromatous plaques and in bone marrow-derived macrophages (BMDMs) subjected to stimulation with oxidized low-density lipoproteins. Using a miR-183 loss-of-function strategy, it was demonstrated that miR-183 knockdown significantly increased resolving M2 macrophage marker expression but decreased proinflammatory M1 macrophage marker expression, as well as attenuated NF-κB activation. Moreover, decreased foam-cell formation accompanied by upregulation of genes involved in cholesterol efflux and downregulation of genes implicated in cholesterol influx was found in BMDMs transfected with a miR-183 inhibitor. Mechanistically, macrophage activation mediated by miR-183 silencing was partially attributed to direct upregulation of NR4A2 expression in BMDMs. Thus, the present study suggests that neutralizing miR-183 may be a potential therapeutic strategy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Fu-Han Gong
- Department of Cardiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| | - Li Long
- Department of Clinical Laboratory, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| | - Yong-Sheng Yang
- Department of Cardiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| | - De-Hong Shen
- Department of Cardiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| | - Yu-Song Zhang
- Department of Cardiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| | - Xue-Sheng Wang
- Department of Cardiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| | - Xue-Ping Zhang
- Department of Cardiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| | - Xiao-Qiang Xiao
- Department of Cardiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| |
Collapse
|
32
|
Saadat S, Noureddini M, Mahjoubin-Tehran M, Nazemi S, Shojaie L, Aschner M, Maleki B, Abbasi-Kolli M, Rajabi Moghadam H, Alani B, Mirzaei H. Pivotal Role of TGF-β/Smad Signaling in Cardiac Fibrosis: Non-coding RNAs as Effectual Players. Front Cardiovasc Med 2021; 7:588347. [PMID: 33569393 PMCID: PMC7868343 DOI: 10.3389/fcvm.2020.588347] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
Unintended cardiac fibroblast proliferation in many pathophysiological heart conditions, known as cardiac fibrosis, results in pooling of extracellular matrix (ECM) proteins in the heart muscle. Transforming growth factor β (TGF-β) as a pivotal cytokine/growth factor stimulates fibroblasts and hastens ECM production in injured tissues. The TGF-β receptor is a heterodimeric receptor complex on the plasma membrane, made up from TGF-β type I, as well as type II receptors, giving rise to Smad2 and Smad3 transcription factors phosphorylation upon canonical signaling. Phosphorylated Smad2, Smad3, and cytoplasmic Smad4 intercommunicate to transfer the signal to the nucleus, culminating in provoked gene transcription. Additionally, TGF-β receptor complex activation starts up non-canonical signaling that lead to the mitogen-stimulated protein kinase cascade activation, inducing p38, JNK1/2 (c-Jun NH2-terminal kinase 1/2), and ERK1/2 (extracellular signal–regulated kinase 1/2) signaling. TGF-β not only activates fibroblasts and stimulates them to differentiate into myofibroblasts, which produce ECM proteins, but also promotes fibroblast proliferation. Non-coding RNAs (ncRNAs) are important regulators of numerous pathways along with cellular procedures. MicroRNAs and circular long ncRNAs, combined with long ncRNAs, are capable of affecting TGF-β/Smad signaling, leading to cardiac fibrosis. More comprehensive knowledge based on these processes may bring about new diagnostic and therapeutic approaches for different cardiac disorders.
Collapse
Affiliation(s)
- Somayeh Saadat
- Physiology Research Centre, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdi Noureddini
- Physiology Research Centre, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Nazemi
- Vascular and Thorax Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Layla Shojaie
- Department of Medicine, Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Behnaz Maleki
- Physiology Research Centre, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hasan Rajabi Moghadam
- Department of Cardiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Behrang Alani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
33
|
Gholaminejad A, Zare N, Dana N, Shafie D, Mani A, Javanmard SH. A meta-analysis of microRNA expression profiling studies in heart failure. Heart Fail Rev 2021; 26:997-1021. [PMID: 33443726 DOI: 10.1007/s10741-020-10071-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) is a major consequence of many cardiovascular diseases with high rate of morbidity and mortality. Early diagnosis and prevention are hampered by the lack of informative biomarkers. The aim of this study was to perform a meta-analysis of the miRNA expression profiling studies in HF to identify novel candidate biomarkers or/and therapeutic targets. A comprehensive literature search of the PubMed for miRNA expression studies related to HF was carried out. The vote counting and robust rank aggregation meta-analysis methods were used to identify significant meta-signatures of HF-miRs. The targets of HF-miRs were identified, and network construction and gene set enrichment analysis (GSEA) were performed to identify the genes and cognitive pathways most affected by the dysregulation of the miRNAs. The literature search identified forty-five miRNA expression studies related to CHF. Shared meta-signature was identified for 3 up-regulated (miR-21, miR-214, and miR-27b) and 13 down-regulated (miR-133a, miR-29a, miR-29b, miR-451, miR-185, miR-133b, miR-30e, miR-30b, miR-1, miR-150, miR-486, miR-149, and miR-16-5p) miRNAs. Network properties showed miR-29a, miR-21, miR-29b, miR-1, miR-16, miR-133a, and miR-133b have the most degree centrality. GESA identified functionally related sets of genes in signaling and community pathways in HF that are the targets of HF-miRs. The miRNA expression meta-analysis identified sixteen highly significant HF-miRs that are differentially expressed in HF. Further validation in large patient cohorts is required to confirm the significance of these miRs as HF biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Zare
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical, Isfahan, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical, Isfahan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arya Mani
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical, Isfahan, Iran. .,Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
34
|
Li Y, Yan C, Fan J, Hou Z, Han Y. MiR-221-3p targets Hif-1α to inhibit angiogenesis in heart failure. J Transl Med 2021; 101:104-115. [PMID: 32873879 DOI: 10.1038/s41374-020-0450-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/07/2020] [Accepted: 06/07/2020] [Indexed: 12/24/2022] Open
Abstract
Angiogenesis is involved in ischemic heart disease as well as the prognosis of heart failure (HF), and endothelial cells are the main participants in angiogenesis. In this study, we found that miR-221-3p is highly expressed in vascular tissue, especially in endothelial cells, and increased miR-221-3p was observed in heart tissue of HF patients and transverse aortic constriction (TAC)-induced HF mice. To explore the role of miR-221-3p in endothelial cells, microRNA (miRNA) mimics and inhibitors were employed in vitro. Overexpression of miR-221-3p inhibited endothelial cell proliferation, migration, and cord formation in vitro, while inhibition of miR-221-3p showed the opposite effect. Anti-argonaute 2 (Ago2) coimmunoprecipitation, dual-luciferase reporter assay, and western blotting were performed to verify the target of miR-221-3p. Hypoxia-inducible factor-1α (HIF-1α) was identified as a miR-221-3p target, and the adverse effects of miR-221-3p on endothelial cells were alleviated by HIF-1α re-expression. In vivo, a mouse model of hindlimb ischemia (HLI) was developed to demonstrate the effect of miR-221-3p on angiogenesis. AntagomiR-221-3p increased HIF-1α expression and promoted angiogenesis in mouse ischemic hindlimbs. Using the TAC model, we clarified that antagomiR-221-3p improved cardiac function in HF mice by promoting cardiac angiogenesis. Furthermore, serum miR-221-3p was detected to be negatively correlated with heart function in chronic heart failure (CHF) patients. Our results conclude that miR-221-3p inhibits angiogenesis of endothelial cells by targeting HIF-1α and that inhibition of miR-221-3p improves cardiac function of TAC-induced HF mice. Furthermore, miR-221-3p might be a potential prognostic marker of HF.
Collapse
Affiliation(s)
- Yuying Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Chenghui Yan
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Jiahui Fan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiwei Hou
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Yaling Han
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| |
Collapse
|
35
|
Topf A, Mirna M, Ohnewein B, Jirak P, Kopp K, Fejzic D, Haslinger M, Motloch LJ, Hoppe UC, Berezin A, Lichtenauer M. The Diagnostic and Therapeutic Value of Multimarker Analysis in Heart Failure. An Approach to Biomarker-Targeted Therapy. Front Cardiovasc Med 2020; 7:579567. [PMID: 33344515 PMCID: PMC7746655 DOI: 10.3389/fcvm.2020.579567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Heart failure is a pathophysiological state, which is still associated with high morbidity and mortality despite established therapies. Diverse well-known biomarkers fail to assess the variety of individual pathophysiology in the context of heart failure. Methods: An analysis of prospective, multimarker-specific therapeutic approaches to heart failure based on studies in current literature was performed. A total of 159 screened publications in the field of biomarkers in heart failure were hand-selected and found to be eligible for this study by a team of experts. Results: Established biomarkers of the inflammatory axis, matrix remodeling, fibrosis and oxidative stress axis, as well as potential therapeutic interventions were investigated. Interaction with end organs, such as cardio-hepatic, cardio-renal and cardio-gastrointestinal interactions show the complexity of the syndrome and could be of further therapeutic value. MicroRNAs are involved in a wide variety of physiologic and pathophysiologic processes in heart failure and could be useful in diagnostic as well as therapeutic setting. Conclusion: Based on our analysis by a biomarker-driven approach in heart failure therapy, patients could be treated more specifically in long term with a consideration of different aspects of heart failure. New studies evaluating a multimarker – based therapeutic approach could lead in a decrease in the morbidity and mortality of heart failure patients.
Collapse
Affiliation(s)
- Albert Topf
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Moritz Mirna
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Bernhard Ohnewein
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Peter Jirak
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Kristen Kopp
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Dzeneta Fejzic
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Michael Haslinger
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Lukas J Motloch
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Uta C Hoppe
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Alexander Berezin
- Internal Medicine Department, State Medical University, Zaporozhye, Ukraine
| | - Michael Lichtenauer
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| |
Collapse
|
36
|
Savonnet M, Rolland T, Cubizolles M, Roupioz Y, Buhot A. Recent advances in cardiac biomarkers detection: From commercial devices to emerging technologies. J Pharm Biomed Anal 2020; 194:113777. [PMID: 33293175 DOI: 10.1016/j.jpba.2020.113777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 01/09/2023]
Abstract
Although cardiac pathologies are the major cause of death in the world, it remains difficult to provide a reliable diagnosis to prevent heart attacks. Rapid patient care and management in emergencies are critical to prevent dramatic consequences. Thus, relevant biomarkers such as cardiac troponin and natriuretic peptides are currently targeted by commercialized Point-Of-Care immunoassays. Key points still to be addressed concern cost, lack of standardization, and poor specificity, which could limit the reliability of the assays. Consequently, alternatives are emerging to address these issues. New probe molecules such as aptamers or molecularly imprinted polymers should allow a reduction in cost of the assays and an increase in reproducibility. In addition, the assay specificity and reliability could be improved by enabling multiplexing through the detection of several molecular targets in a single device.
Collapse
Affiliation(s)
- Maud Savonnet
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France; Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, F-38000, Grenoble, France
| | - Tristan Rolland
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, F-38000, Grenoble, France
| | - Myriam Cubizolles
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, F-38000, Grenoble, France
| | - Yoann Roupioz
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France
| | - Arnaud Buhot
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France.
| |
Collapse
|
37
|
Abstract
Heart failure (HF) remains a major cause of death and disability worldwide. Currently, B-type natriuretic peptide and N-terminal pro-brain natriuretic peptide are diagnostic biomarkers used in HF. Although very sensitive, they are not specific enough and do not allow the prediction or early diagnosis of HF. Many ongoing studies focus on determining the underlying cause and understanding the mechanisms of HF on the cellular level. MicroRNAs (miRNAs) are non-coding RNAs which control the majority of cellular processes and therefore are considered to have a potential clinical application in HF. In this review, we aim to provide synthesized information about miRNAs associated with ejection fraction, HF etiology, diagnosis, and prognosis, as well as outline therapeutic application of miRNAs in HF. Further, we discuss methodological challenges associated with the analysis of miRNAs and provide recommendations for defining a study population, collecting blood samples, and selecting detection methods to study miRNAs in a reliable and reproducible way. This review is intended to be an accessible tool for clinicians interested in the field of miRNAs and HF.
Collapse
|
38
|
Su X, Xiao D, Huang L, Li S, Ying J, Tong Y, Ye Q, Mu D, Qu Y. MicroRNA Alteration in Developing Rat Oligodendrocyte Precursor Cells Induced by Hypoxia-Ischemia. J Neuropathol Exp Neurol 2020; 78:900-909. [PMID: 31403686 DOI: 10.1093/jnen/nlz071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
microRNAs (miRNAs) are involved in the pathogenesis of white matter injury (WMI). However, their roles in developing rat brains under hypoxia-ischemia (HI) insult remain unknown. Here, we examined the expression profiles of miRNAs in oligodendrocyte precursor cells using microarray analysis. We identified 162 miRNAs and only 6 were differentially regulated in HI compared with sham. Next, we used these 6 miRNAs and 525 extensively changed coding genes (fold change absolute: FC(abs) ≥2, p < 0.05) to establish the coexpression network, the result revealed that only 3 miRNAs (miR-142-3p, miR-466b-5p, and miR-146a-5p) have differentially expressed targeted mRNAs. RT-PCR analysis showed that the expression of the miRNAs was consistent with the microarray analysis. Further gene ontology and KEGG pathway analysis of the targets of these 3 miRNAs indicated that they were largely associated with neural activity. Furthermore, we found that 2 of the 3 miRNAs, miR-142-3p, and miR-466b-5p, have the same target gene, Capn6, an antiapoptotic gene that is tightly regulated in the pathogenesis of neurological diseases. Collectively, we have shown that a number of miRNAs change in oligodendrocyte precursor cells in response to HI insult in developing brains, and miR-142-3p/miR-466b-5p/Capn6 pathway might affect the pathogenesis of WMI, providing us new clues for the diagnosis and therapy for WMI.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Dongqiong Xiao
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Lingyi Huang
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Shiping Li
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Yu Tong
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Qianghua Ye
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| |
Collapse
|
39
|
Wang Y, Liang Y, Zhao W, Fu G, Li Q, Min X, Guo Y. Circulating miRNA-21 as a diagnostic biomarker in elderly patients with type 2 cardiorenal syndrome. Sci Rep 2020; 10:4894. [PMID: 32184430 PMCID: PMC7078306 DOI: 10.1038/s41598-020-61836-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/04/2020] [Indexed: 12/30/2022] Open
Abstract
Circulating miRNAs have attracted attention as serum biomarkers for several diseases. In this study, we aimed to evaluate the diagnostic value of circulating miRNA-21 (miR-21) as a novel biomarker for elderly patients with type 2 cardiorenal syndrome (CRS-2). A total of 157 elderly patients with chronic heart failure (CHF) were recruited for the study. According to an estimated glomerular filtration rate (eGFR) cut-off of 60 ml/min/1.73 m2, 84 patients (53.5%) and 73 patients (46.5%) were assigned to the CRS group and the CHF group, respectively. Expression levels of serum miR-21 and biomarkers for CRS, such as kidney injury factor-1 (KIM-1), neutrophil gelatinase-related apolipoprotein (NGAL), cystatin C (Cys C), amino-terminal pro-B-type natriuretic peptide (NT-proBNP), N-acetyl-κ-D-glucosaminidase (NAG), and heart-type fatty acid-binding protein (H-FABP), were detected. Serum miR-21, KIM-1, NGAL, Cys C, NT-proBNP and H-FABP levels were significantly higher in the CRS group than in the CHF group (P < 0.01), whereas NAG expression was not significantly different between the two groups (P > 0.05). Cys C, H-FABP and eGFR correlated significantly with miR-21 expression, but correlations with miR-21 were not significant for NT-proBNP, NGAL, NAG and KIM-1. Moreover, multivariate logistic regression found that serum miR-21, increased serum Cys C, serum KIM-1, hyperlipidaemia and ejection fraction (EF) were independent influencing factors for CRS (P < 0.05). The AUC of miR-21 based on the receiver operating characteristic (ROC) curve was 0.749, with a sensitivity of 55.95% and a specificity of 84.93%. Furthermore, combining miR-21 with Cys C enhanced the AUC to 0.902, with a sensitivity of 88.1% and a specificity of 83.6% (P < 0.001). Our findings suggest that circulating miR-21 has medium diagnostic value in CRS-2. The combined assessment of miR-21 and Cys C has good clinical value in elderly patients with CRS-2.
Collapse
Affiliation(s)
- Yan Wang
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yi Liang
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Hebei Medical University, major in Cardiovascular Medicine, Shijiazhuang, Hebei, China
| | - WenJun Zhao
- Hebei Medical University, major in Cardiovascular Medicine, Shijiazhuang, Hebei, China
- Department of International Medical, the First Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - GuangPing Fu
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medical, Hebei Medical University, Shijiazhuang, Hebei, China
| | - QingQuan Li
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - XuChen Min
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - YiFang Guo
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
40
|
The Role of Cardiac T-Cadherin in the Indicating Heart Failure Severity of Patients with Non-Ischemic Dilated Cardiomyopathy. ACTA ACUST UNITED AC 2020; 56:medicina56010027. [PMID: 31936691 PMCID: PMC7023024 DOI: 10.3390/medicina56010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
Abstract
Background and objectives: T-cadherin (T-cad) is one of the adiponectin receptors abundantly expressed in the heart and blood vessels. Experimental studies show that T-cad sequesters adiponectin in cardiovascular tissues and is critical for adiponectin-mediated cardio-protection. However, there are no data connecting cardiac T-cad levels with human chronic heart failure (HF). The aim of this study was to assess whether myocardial T-cad concentration is associated with chronic HF severity and whether the T-cad levels in human heart tissue might predict outcomes in patients with non-ischemic dilated cardiomyopathy (NI-DCM). Materials and Methods: 29 patients with chronic NI-DCM and advanced HF were enrolled. Patients underwent regular laboratory investigations, echocardiography, coronary angiography, and right heart catheterization. TNF-α and IL6 in serum were detected by enzyme-linked immunosorbent assay (ELISA). Additionally, endomyocardial biopsies were obtained, and the levels of T-cad were assessed by ELISA and CD3, CD45Ro, CD68, and CD4- immunohistochemically. Mean pulmonary capillary wedge pressure (PCWP) was used as a marker of HF severity, subdividing patients into two groups: mean PCWP > 19 mmHg vs. mean PCWP < 19 mmHg. Patients were followed-up for 5 years. The study outcome was composite: left ventricular assist device implantation, heart transplantation, or death from cardiovascular causes. Results: T-cad shows an inverse correlation with the mean PCWP (rho = −0.397, p = 0.037). There is a tendency towards a lower T-cad concentration in patients with more severe HF, as indicated by the mean PCWP > 19 mmHg compared to those with mean PCWP ≤ 19 mmHg (p = 0.058). Cardiac T-cad levels correlate negatively with myocardial CD3 cell count (rho = −0.423, p = 0.028). Conclusions: Univariate Cox regression analysis did not prove T-cad to be an outcome predictor (HR = 1, p = 0.349). However, decreased T-cad levels in human myocardium can be an additional indicator of HF severity. T-cad in human myocardium has an anti-inflammatory role. More studies are needed to extend the role of T-cad in the outcome prediction of patients with NI-DCM.
Collapse
|
41
|
Kura B, Szeiffova Bacova B, Kalocayova B, Sykora M, Slezak J. Oxidative Stress-Responsive MicroRNAs in Heart Injury. Int J Mol Sci 2020; 21:E358. [PMID: 31948131 PMCID: PMC6981696 DOI: 10.3390/ijms21010358] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are important molecules in the living organisms as a part of many signaling pathways. However, if overproduced, they also play a significant role in the development of cardiovascular diseases, such as arrhythmia, cardiomyopathy, ischemia/reperfusion injury (e.g., myocardial infarction and heart transplantation), and heart failure. As a result of oxidative stress action, apoptosis, hypertrophy, and fibrosis may occur. MicroRNAs (miRNAs) represent important endogenous nucleotides that regulate many biological processes, including those involved in heart damage caused by oxidative stress. Oxidative stress can alter the expression level of many miRNAs. These changes in miRNA expression occur mainly via modulation of nuclear factor erythroid 2-related factor 2 (Nrf2), sirtuins, calcineurin/nuclear factor of activated T cell (NFAT), or nuclear factor kappa B (NF-κB) pathways. Up until now, several circulating miRNAs have been reported to be potential biomarkers of ROS-related cardiac diseases, including myocardial infarction, hypertrophy, ischemia/reperfusion, and heart failure, such as miRNA-499, miRNA-199, miRNA-21, miRNA-144, miRNA-208a, miRNA-34a, etc. On the other hand, a lot of studies are aimed at using miRNAs for therapeutic purposes. This review points to the need for studying the role of redox-sensitive miRNAs, to identify more effective biomarkers and develop better therapeutic targets for oxidative-stress-related heart diseases.
Collapse
Affiliation(s)
- Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (B.K.); (B.S.B.); (B.K.); (M.S.)
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (B.K.); (B.S.B.); (B.K.); (M.S.)
| | - Barbora Kalocayova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (B.K.); (B.S.B.); (B.K.); (M.S.)
| | - Matus Sykora
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (B.K.); (B.S.B.); (B.K.); (M.S.)
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (B.K.); (B.S.B.); (B.K.); (M.S.)
| |
Collapse
|
42
|
Horman S, Dechamps M, Octave M, Lepropre S, Bertrand L, Beauloye C. Platelet Function and Coronary Microvascular Dysfunction. Microcirculation 2020. [DOI: 10.1007/978-3-030-28199-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Kumar G, Saleem N, Kumar S, Maulik SK, Ahmad S, Sharma M, Goswami SK. Transcriptomic Validation of the Protective Effects of Aqueous Bark Extract of Terminalia arjuna (Roxb.) on Isoproterenol-Induced Cardiac Hypertrophy in Rats. Front Pharmacol 2019; 10:1443. [PMID: 31920643 PMCID: PMC6916006 DOI: 10.3389/fphar.2019.01443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
Aqueous extract of the bark of Terminalia arjuna (TA) is used by a large population in the Indian subcontinent for treating various cardiovascular conditions. Animal experiments have shown its anti-atherogenic, anti-hypertensive, and anti-inflammatory effects. It has several bioactive ingredients with hemodynamic, ROS scavenging, and anti-inflammatory properties. Earlier we have done limited proteomic and transcriptomic analysis to show its efficacy in ameliorating cardiac hypertrophy induced by isoproterenol (ISO) in rats. In the present study we have used high-throughput sequencing of the mRNA from control and treated rat heart to further establish its efficacy. ISO (5 mg/kg/day s.c.) was administered in male adult rats for 14 days to induce cardiac hypertrophy. Standardized aqueous extract TA bark extract was administered orally. Total RNA were isolated from control, ISO, ISO + TA, and TA treated rat hearts and subjected to high throughput sequence analysis. The modulations of the transcript levels were then subjected to bio-informatics analyses using established software. Treatment with ISO downregulated 1,129 genes and upregulated 204 others. Pre-treatment with the TA bark extracts markedly restored that expression pattern with only 97 genes upregulated and 85 genes downregulated. The TA alone group had only 88 upregulated and 26 downregulated genes. The overall profile of expression in ISO + TA and TA alone groups closely matched with the control group. The genes that were modulated included those involved in metabolism, activation of receptors and cell signaling, and cardiovascular and other diseases. Networks associated with those genes included those involved in angiogenesis, extracellular matrix organization, integrin binding, inflammation, drug metabolism, redox metabolism, oxidative phosphorylation, and organization of myofibril. Overlaying of the networks in ISO and ISO_TA group showed that those activated in ISO group were mostly absent in ISO_TA and TA group, suggesting a global effect of the TA extracts. This study for the first time reveals that TA partially or completely restores the gene regulatory network perturbed by ISO treatment in rat heart; signifying its efficacy in checking ISO-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Gaurav Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nikhat Saleem
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Santosh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Subir K Maulik
- Department of Pharmacology, All India Institute of Medical Sciences (A.I.I.M.S.), New Delhi, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, New Delhi, India
| | - Manish Sharma
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation, New Delhi, India
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
44
|
Martinez M, Rossetto IMU, Arantes RMS, Lizarte FSN, Tirapelli LF, Tirapelli DPC, Chuffa LGA, Martinez FE. Serum miRNAs are differentially altered by ethanol and caffeine consumption in rats. Toxicol Res (Camb) 2019; 8:842-849. [PMID: 32055392 PMCID: PMC7003974 DOI: 10.1039/c9tx00069k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
Alcoholism is a multifactorial disease with high risk for dependence determined by genetic background, environmental factors and neuroadaptations. The excessive consumption of this substance is related to psychiatric problems, epilepsy, cardiovascular disease, cirrhosis and cancers. Caffeine is one of the most popular psychostimulants currently consumed in the world. The combination of ethanol and caffeine ingested by consuming "energy drinks" is becoming increasingly popular among young people. We analyzed the effect of simultaneous consumption of ethanol and caffeine on the serum profile of miRNAs differentially expressed in the ethanol-drinking rat model (UChB strain). Adult rats were divided into three groups (n = 5 per group): UChB group (rats fed with 1 : 10 (v/v) ethanol ad libitum); UChB + caffeine group (rats fed with 1 : 10 (v/v) ethanol ad libitum + 3 g L-1 of caffeine); control group (rats drinking water used as the control for UChB). The treatment with caffeine occurred from day 95 to 150 days old, totalizing 55 days of ethanol + caffeine ingestion. The expressions of microRNAs (miR) -9-3p, -15b-5p, -16-5p, -21-5p, -200a-3p and -222-3p were detected by Real Time-PCR (RT-PCR). The expressions of miR-9-3p, -15b-5p, -16-5p and -222-3p were upregulated in the UChB group. Conversely, simultaneous ingestion of ethanol and caffeine significantly reversed these expressions to similar levels to control animals, thus emphasizing that caffeine had a protective effect in the presence of ethanol. In addition, miR-21-5p was downregulated with ethanol consumption whereas miR-222-3p was unchanged. Ethanol and caffeine consumption was capable of altering serum miRNAs, which are potential biomarkers for the systemic effects of these addictive substances.
Collapse
Affiliation(s)
- M Martinez
- Department of Morphology and Pathology , Federal University of São Carlos (UFSCar) , São Carlos , SP , Brazil
| | - I M U Rossetto
- Department Structural and Functional Biology , University of Campinas (UNICAMP) , Campinas , SP , Brazil
| | - R M S Arantes
- Department of Morphology and Pathology , Federal University of São Carlos (UFSCar) , São Carlos , SP , Brazil
| | - F S N Lizarte
- Department of Surgery and Anatomy , University of São Paulo (USP) , Ribeirão Preto , SP , Brazil
| | - L F Tirapelli
- Department of Surgery and Anatomy , University of São Paulo (USP) , Ribeirão Preto , SP , Brazil
| | - D P C Tirapelli
- Department of Surgery and Anatomy , University of São Paulo (USP) , Ribeirão Preto , SP , Brazil
| | - L G A Chuffa
- Department of Anatomy , State University of São Paulo (UNESP) , Botucatu , SP , Brazil . ; ; Tel: +55 (14) 3880-0024
| | - F E Martinez
- Department of Anatomy , State University of São Paulo (UNESP) , Botucatu , SP , Brazil . ; ; Tel: +55 (14) 3880-0024
| |
Collapse
|
45
|
Wang Q, Zhang Y, Le F, Wang N, Zhang F, Luo Y, Lou Y, Hu M, Wang L, Thurston LM, Xu X, Jin F. Alteration in the expression of the renin-angiotensin system in the myocardium of mice conceived by in vitro fertilization. Biol Reprod 2019; 99:1276-1288. [PMID: 30010728 PMCID: PMC6299247 DOI: 10.1093/biolre/ioy158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
Epidemiological studies have revealed that offspring conceived by in vitro fertilization (IVF) have an elevated risk of cardiovascular malformations at birth, and are more predisposed to cardiovascular diseases. The renin-angiotensin system (RAS) plays an essential role in both the pathogenesis of congenital heart disease in fetuses and cardiovascular dysfunction in adults. This study aimed to assess the relative expression levels of genes in the RAS pathway in mice conceived using IVF, compared to natural mating with superovulation. Results demonstrated that expression of the angiotensin II receptor type 1 (AGTR1), connective tissue growth factor (CTGF), and collagen 3 (COL3), in the myocardial tissue of IVF-conceived mice, was elevated at 3 weeks, 10 weeks, and 1.5 years of age, when compared to their non-IVF counterparts. These data were supported by microRNA microarray analysis of the myocardial tissue of aged IVF-conceived mice, where miR-100, miR-297, and miR-758, which interact with COL3, AGTR1, and COL1 respectively, were upregulated when compared to naturally mated mice of the same age. Interestingly, bisulfite sequencing data indicated that IVF-conceived mice exhibited decreased methylation of CpG sites in Col1. In support of our in vivo investigations, miR-297 overexpression was shown to upregulate AGTR1 and CTGF, and increased cell proliferation in cultured H9c2 cardiomyocytes. These findings indicate that the altered expression of RAS in myocardial tissue might contribute to cardiovascular malformation and/or dysfunction in IVF-conceived offspring. Furthermore, these cardiovascular abnormalities might be the result of altered DNA methylation and abnormal regulation of microRNAs.
Collapse
Affiliation(s)
- Qijing Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yue Zhang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fang Le
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ning Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fan Zhang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yuqin Luo
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yiyun Lou
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Minhao Hu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Liya Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lisa M Thurston
- Department of Comparative Biomedical Science, Royal Veterinary College, University of London, London NW1 0TU, UK.,Academic Unit of Reproduction and Development, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2SF, UK
| | - Xiangrong Xu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
46
|
Werner TR, Kunze AC, Stenzig J, Eschenhagen T, Hirt MN. Blockade of miR-140-3p prevents functional deterioration in afterload-enhanced engineered heart tissue. Sci Rep 2019; 9:11494. [PMID: 31391475 PMCID: PMC6686025 DOI: 10.1038/s41598-019-46818-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Afterload enhancement (AE) of rat engineered heart tissue (EHT) in vitro leads to a multitude of changes that in vivo are referred to as pathological cardiac hypertrophy: e.g., cardiomyocyte hypertrophy, contractile dysfunction, reactivation of fetal genes and fibrotic changes. Moreover AE induced the upregulation of 22 abundantly expressed microRNAs. Here, we aimed at evaluating the functional effect of inhibiting 7 promising microRNAs (miR-21-5p, miR-146b-5p, miR-31a-5p, miR-322-5p, miR-450a-5p, miR-140-3p and miR-132-3p) in a small-range screen. Singular transfection of locked nucleic acid (LNA)-based anti-miRs at 100 nM (before the one week AE-procedure) led to a powerful reduction of the targeted microRNAs. Pretreatment with anti-miR-146b-5p, anti-miR-322-5p or anti-miR-450a-5p did not alter the AE-induced contractile decline, while anti-miR-31a-5p-pretreatment even worsened it. Anti-miR-21-5p and anti-miR-132-3p partially attenuated the AE-effect, confirming previous reports. LNA-anti-miR against miR-140-3p, a microRNA recently identified as a prognostic biomarker of cardiovascular disease, also attenuated the AE-effect. To simplify future in vitro experiments and to create an inhibitor for in vivo applications, we designed shorter miR-140-3p-inhibitors and encountered variable efficiency. Only the inhibitor that effectively repressed miR-140-3p was also protective against the AE-induced contractile decline. In summary, in a small-range functional screen, miR-140-3p evolved as a possible new target for the attenuation of afterload-induced pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Tessa R Werner
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Ann-Cathrin Kunze
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Justus Stenzig
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Marc N Hirt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
47
|
Kura B, Parikh M, Slezak J, Pierce GN. The Influence of Diet on MicroRNAs that Impact Cardiovascular Disease. Molecules 2019; 24:molecules24081509. [PMID: 30999630 PMCID: PMC6514571 DOI: 10.3390/molecules24081509] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Food quality and nutritional habits strongly influence human health status. Extensive research has been conducted to confirm that foods rich in biologically active nutrients have a positive impact on the onset and development of different pathological processes, including cardiovascular diseases. However, the underlying mechanisms by which dietary compounds regulate cardiovascular function have not yet been fully clarified. A growing number of studies confirm that bioactive food components modulate various signaling pathways which are involved in heart physiology and pathology. Recent evidence indicates that microRNAs (miRNAs), small single-stranded RNA chains with a powerful ability to influence protein expression in the whole organism, have a significant role in the regulation of cardiovascular-related pathways. This review summarizes recent studies dealing with the impact of some biologically active nutrients like polyunsaturated fatty acids (PUFAs), vitamins E and D, dietary fiber, or selenium on the expression of many miRNAs, which are connected with cardiovascular diseases. Current research indicates that the expression levels of many cardiovascular-related miRNAs like miRNA-21, -30 family, -34, -155, or -199 can be altered by foods and dietary supplements in various animal and human disease models. Understanding the dietary modulation of miRNAs represents, therefore, an important field for further research. The acquired knowledge may be used in personalized nutritional prevention of cardiovascular disease or the treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovak Republic.
| | - Mihir Parikh
- Institute of Cardiovascular Sciences and the Canadian Centre for Agri-food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
| | - Jan Slezak
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovak Republic.
| | - Grant N Pierce
- Institute of Cardiovascular Sciences and the Canadian Centre for Agri-food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
| |
Collapse
|
48
|
Role of microRNAs in inner ear development and hearing loss. Gene 2018; 686:49-55. [PMID: 30389561 DOI: 10.1016/j.gene.2018.10.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/12/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
Abstract
The etiology of hearing loss tends to be multi-factorial and affects a significant proportion of the global population. Despite the differences in etiology, a common physical pathological change that leads to hearing loss is damage to the mechanosensory hair cells of the inner ear. MicroRNAs (miRNAs) have been shown to play a role in inner ear development and thus, may play a role in the development or prevention of hearing loss. In this paper, we review the mechanism of action of miRNAs in the auditory system. We present an overview about the role of miRNAs in inner ear development, summarize the current research on the role of miRNAs in gene regulation, and discuss the effects of both miRNA mutations as well as overexpression. We discuss the crucial role of miRNAs in ensuring normal physiological development of the inner ear. Any deviation from the proper function of miRNA in the cochlea seems to contribute to deleterious damage to the structure of the auditory system and subsequently results in hearing loss. As interest for miRNA research increases, this paper serves as a platform to review current understandings and postulate future avenues for research. A better knowledge about the role of miRNA in the auditory system will help in developing novel treatment modalities for restoring hearing function based on regeneration of damaged inner ear hair cells.
Collapse
|
49
|
Bardin P, Sonneville F, Corvol H, Tabary O. Emerging microRNA Therapeutic Approaches for Cystic Fibrosis. Front Pharmacol 2018; 9:1113. [PMID: 30349480 PMCID: PMC6186820 DOI: 10.3389/fphar.2018.01113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and remains the most common life-shortening diseases affecting the exocrine organs. The absence of this channel results in an imbalance of ion concentrations across the cell membrane and results in more abnormal secretion and mucus plugging in the gastrointestinal tract and in the lungs of CF patients. The direct introduction of fully functional CFTR by gene therapy has long been pursued as a therapeutical option to restore CFTR function independent of the specific CFTR mutation, but the different clinical trials failed to propose persuasive evidence of this strategy. The last ten years has led to the development of new pharmacotherapies which can activate CFTR function in a mutation-specific manner. Although approximately 2,000 different disease-associated mutations have been identified, a single codon deletion, F508del, is by far the most common and is present on at least one allele in approximately 70% of the patients in CF populations. This strategy is limited by chemistry, the knowledge on CFTR and the heterogenicity of the patients. New research efforts in CF aim to develop other therapeutical approaches to combine different strategies. Targeting RNA appears as a new and an important opportunity to modulate dysregulated biological processes. Abnormal miRNA activity has been linked to numerous diseases, and over the last decade, the critical role of miRNA in regulating biological processes has fostered interest in how miRNA binds to and interacts explicitly with the target protein. Herein, this review describes the different strategies to identify dysregulated miRNA opens up a new concept and new opportunities to correct CFTR deficiency. This review describes therapeutic applications of antisense techniques currently under investigation in CF.
Collapse
Affiliation(s)
- Pauline Bardin
- INSERM UMR-S938, Centre de Recherche Saint Antoine, Faculté des Sciences, Sorbonne Université, Paris, France
| | - Florence Sonneville
- INSERM UMR-S938, Centre de Recherche Saint Antoine, Faculté des Sciences, Sorbonne Université, Paris, France
| | - Harriet Corvol
- INSERM UMR-S938, Centre de Recherche Saint Antoine, Faculté des Sciences, Sorbonne Université, Paris, France.,Paediatric Respiratory Department, Hôpital Trousseau, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Olivier Tabary
- INSERM UMR-S938, Centre de Recherche Saint Antoine, Faculté des Sciences, Sorbonne Université, Paris, France
| |
Collapse
|
50
|
Abstract
Central nervous system (CNS) injuries, such as stroke, traumatic brain injury (TBI) and spinal cord injury (SCI), are important causes of death and long-term disability worldwide. MicroRNA (miRNA), small non-coding RNA molecules that negatively regulate gene expression, can serve as diagnostic biomarkers and are emerging as novel therapeutic targets for CNS injuries. MiRNA-based therapeutics include miRNA mimics and inhibitors (antagomiRs) to respectively decrease and increase the expression of target genes. In this review, we summarize current miRNA-based therapeutic applications in stroke, TBI and SCI. Administration methods, time windows and dosage for effective delivery of miRNA-based drugs into CNS are discussed. The underlying mechanisms of miRNA-based therapeutics are reviewed including oxidative stress, inflammation, apoptosis, blood-brain barrier protection, angiogenesis and neurogenesis. Pharmacological agents that protect against CNS injuries by targeting specific miRNAs are presented along with the challenges and therapeutic potential of miRNA-based therapies.
Collapse
Affiliation(s)
- Ping Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Da Zhi Liu
- Department of Neurology and the M.I.N.D. Institute, University of California at Davis, Sacramento, CA, USA
| | - Glen C Jickling
- Department of Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Frank R Sharp
- Department of Neurology and the M.I.N.D. Institute, University of California at Davis, Sacramento, CA, USA
| | - Ke-Jie Yin
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Ke-Jie Yin, Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, BST S514, Pittsburgh, PA 15213, USA. Da Zhi Liu, Department of Neurology, University of California at Davis, Sacramento, CA 95817, USA.
| |
Collapse
|