1
|
Zheng B, Liu K, Ouyang Q, Feng J, Cao S, Wang L, Jia T, Wu S, Ma X, Zhang X, Li X. Identification of metabolic dysregulation and biomarkers for clear cell renal cell carcinoma. Clin Transl Med 2024; 14:e70142. [PMID: 39724511 DOI: 10.1002/ctm2.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/01/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024] Open
Affiliation(s)
- Bin Zheng
- Medical School of Chinese PLA, Beijing, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Kan Liu
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qing Ouyang
- Medical School of Chinese PLA, Beijing, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Ji Feng
- Medical School of Chinese PLA, Beijing, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Shouqing Cao
- College of graduate, Hebei North University, Zhangjiakou, China
| | - Li Wang
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Tongyu Jia
- Medical School of Chinese PLA, Beijing, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - ShengPan Wu
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xin Ma
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xu Zhang
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiubin Li
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Poplawski P, Alseekh S, Jankowska U, Skupien-Rabian B, Iwanicka-Nowicka R, Kossowska H, Fogtman A, Rybicka B, Bogusławska J, Adamiok-Ostrowska A, Hanusek K, Hanusek J, Koblowska M, Fernie AR, Piekiełko-Witkowska A. Coordinated reprogramming of renal cancer transcriptome, metabolome and secretome associates with immune tumor infiltration. Cancer Cell Int 2023; 23:2. [PMID: 36604669 PMCID: PMC9814214 DOI: 10.1186/s12935-022-02845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer. The molecules (proteins, metabolites) secreted by tumors affect their extracellular milieu to support cancer progression. If secreted in amounts detectable in plasma, these molecules can also serve as useful, minimal invasive biomarkers. The knowledge of ccRCC tumor microenvironment is fragmentary. In particular, the links between ccRCC transcriptome and the composition of extracellular milieu are weakly understood. In this study, we hypothesized that ccRCC transcriptome is reprogrammed to support alterations in tumor microenvironment. Therefore, we comprehensively analyzed ccRCC extracellular proteomes and metabolomes as well as transcriptomes of ccRCC cells to find molecules contributing to renal tumor microenvironment. METHODS Proteomic and metabolomics analysis of conditioned media isolated from normal kidney cells as well as five ccRCC cell lines was performed using mass spectrometry, with the following ELISA validation. Transcriptomic analysis was done using microarray analysis and validated using real-time PCR. Independent transcriptomic and proteomic datasets of ccRCC tumors were used for the analysis of gene and protein expression as well as the level of the immune infiltration. RESULTS Renal cancer secretome contained 85 proteins detectable in human plasma, consistently altered in all five tested ccRCC cell lines. The top upregulated extracellular proteins included SPARC, STC2, SERPINE1, TGFBI, while downregulated included transferrin and DPP7. The most affected extracellular metabolites were increased 4-hydroxy-proline, succinic acid, cysteine, lactic acid and downregulated glutamine. These changes were associated with altered expression of genes encoding the secreted proteins (SPARC, SERPINE1, STC2, DPP7), membrane transporters (SLC16A4, SLC6A20, ABCA12), and genes involved in protein trafficking and secretion (KIF20A, ANXA3, MIA2, PCSK5, SLC9A3R1, SYTL3, and WNTA7). Analogous expression changes were found in ccRCC tumors. The expression of SPARC predicted the infiltration of ccRCC tumors with endothelial cells. Analysis of the expression of the 85 secretome genes in > 12,000 tumors revealed that SPARC is a PanCancer indicator of cancer-associated fibroblasts' infiltration. CONCLUSIONS Transcriptomic reprogramming of ccRCC supports the changes in an extracellular milieu which are associated with immune infiltration. The proteins identified in our study represent valuable cancer biomarkers detectable in plasma.
Collapse
Affiliation(s)
- Piotr Poplawski
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Saleh Alseekh
- grid.418390.70000 0004 0491 976XMax-Planck Institute of Molecular Plant Physiology, Golm, 14476 Potsdam, Germany ,grid.510916.a0000 0004 9334 5103Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Urszula Jankowska
- grid.5522.00000 0001 2162 9631Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Bozena Skupien-Rabian
- grid.5522.00000 0001 2162 9631Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Roksana Iwanicka-Nowicka
- grid.12847.380000 0004 1937 1290Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland ,grid.413454.30000 0001 1958 0162Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Helena Kossowska
- grid.12847.380000 0004 1937 1290Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Anna Fogtman
- grid.413454.30000 0001 1958 0162Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Beata Rybicka
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Joanna Bogusławska
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Anna Adamiok-Ostrowska
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Karolina Hanusek
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Jan Hanusek
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Marta Koblowska
- grid.12847.380000 0004 1937 1290Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland ,grid.413454.30000 0001 1958 0162Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Alisdair R. Fernie
- grid.418390.70000 0004 0491 976XMax-Planck Institute of Molecular Plant Physiology, Golm, 14476 Potsdam, Germany ,grid.510916.a0000 0004 9334 5103Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Agnieszka Piekiełko-Witkowska
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
3
|
Yao Z, Zheng Z, Zheng X, Wu H, Zhao W, Mu X, Sun F, Wu K, Zheng J. Comprehensive Characterization of Metabolism-Associated Subtypes of Renal Cell Carcinoma to Aid Clinical Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9039732. [PMID: 35265267 PMCID: PMC8898770 DOI: 10.1155/2022/9039732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/15/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022]
Abstract
Renal cell carcinoma (RCC) is a disease characterized by excessive administration complexity because it exhibits extraordinary nonuniformity among distinct molecular subtypes. We herein intended to delineate the metabolic aspects of clear cell RCC (ccRCC) in terms of the gene expression profile. Recent studies have revealed that metabolic variations within tumors are related to the responsiveness to immune checkpoint inhibitor (ICI) therapy and patient prognosis. We used 100 previously reported metabolic (MTB) pathways to quantify the metabolic landscape of the 729 ccRCC patients. Three MTB subtypes were established, and the MTB scores were calculated using principal component analysis (PCA). The high MTB score group had better overall survival (OS) and was associated with higher expression of immune-checkpoint and immune-activity signatures. The opposite was true of the low MTB score group, which may explain the poor prognosis of these patients. Three ICI-treated cohorts or tyrosine kinase inhibitor (TKI) treated cohort proved that patients with higher MTB scores exhibited notable therapeutic benefits and clinical gains. This research explained that the MTB score could be applied as a powerful prognostic indicator and predictive of ICI or TKI therapy. Assessing the MTB scores in a more extended group will facilitate our perception of tumor metabolism and provide guidance for studies on targeted approaches for ccRCC patients.
Collapse
Affiliation(s)
- Zhixian Yao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Zheng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Zheng
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Hantao Wu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Weiguang Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xingyu Mu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Feng Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ke Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junhua Zheng
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Targeted Quantification of Carbon Metabolites Identifies Metabolic Progression Markers and an Undiagnosed Case of SDH-Deficient Clear Cell Renal Cell Carcinoma in a German Cohort. Metabolites 2021; 11:metabo11110764. [PMID: 34822422 PMCID: PMC8624007 DOI: 10.3390/metabo11110764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is among the 10 most common cancer entities and can be categorised into distinct subtypes by differential expression of Krebs cycle genes. We investigated the predictive value of several targeted metabolites with regards to tumour stages and patient survival in an unselected cohort of 420 RCCs. Unsupervised hierarchical clustering of metabolite ratios identified two main clusters separated by α-ketoglutarate (α-KG) levels and sub-clusters with differential levels of the oncometabolite 2-hydroxyglutarate (2HG). Sub-clusters characterised by high 2HG were enriched in higher tumour stages, suggesting metabolite profiles might be suitable predictors of tumour stage or survival. Bootstrap forest models based on single metabolite signatures showed that lactate, 2HG, citrate, aspartate, asparagine, and glutamine better predicted the cancer-specific survival (CSS) of clear cell RCC patients, whereas succinate and α-ketoglutarate were better CSS predictors for papillary RCC patients. Additionally, this assay identifies rare cases of tumours with SDHx mutations, which are caused predominantly by germline mutations and which predispose to development of different neoplasms. Hence, analysis of selected metabolites should be further evaluated for potential utility in liquid biopsies, which can be obtained using less invasive methods and potentially facilitate disease monitoring for both patients and caregivers.
Collapse
|
5
|
Shang H, Zhang H, Ren Z, Zhao H, Zhang Z, Tong J. Characterization of the Potential Role of NTPCR in Epithelial Ovarian Cancer by Integrating Transcriptomic and Metabolomic Analysis. Front Genet 2021; 12:695245. [PMID: 34539736 PMCID: PMC8442909 DOI: 10.3389/fgene.2021.695245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background Epithelial ovarian carcinoma (EOC) is a malignant tumor with high motility in women. Our previous study found that dysregulated nucleoside-triphosphatase cancer-related (NTPCR) was associated with the prognosis of EOC patients, and thus, this present study attempted to explore the potential roles of NTPCR in disease progression. Methods Expressed level of NTPCR was investigated in EOC tissues by RT-qPCR and Western blot analysis. NTPCR shRNA and overexpression vector were generated and transfected into OVCAR-3 or SKOV3 cells to detect the effect of NTPCR on cell proliferation, cell cycle, cell migration, and invasion. Transcriptomic sequencing and metabolite profiling analysis were performed in shNTPCR groups to identify transcriptome or metabolite alteration that might contribute to EOC. Finally, we searched the overlapped signaling pathways correlated with differential metabolites and differentially expressed genes (DEGs) by integrating analysis. Results Comparing para-cancerous tissues, we found that NTPCR is highly expressed in cancer tissues (p < 0.05). Overexpression of NTPCR inhibited cell proliferation, migration, and invasion and reduced the proportion of S- and G2/M-phase cells, while downregulation of NTPCR showed the opposite results. RNA sequencing analysis demonstrated cohorts of DEGs were identified in shNTPCR samples. Protein–protein interaction networks were constructed for DEGs. STAT1 (degree = 43) and OAS2 (degree = 36) were identified as hub genes in the network. Several miRNAs together with target genes were predicted to be crucial genes related to disease progression, including hsa-miR-124-3p, hsa-miR-30a-5p, hsa-miR-146a-5, EP300, GATA2, and STAT3. We also screened the differential metabolites from shNTPCR samples, including 22 upregulated and 22 downregulated metabolites. By integrating transcriptomics and metabolomics analysis, eight overlapped pathways were correlated with these DEGs and differential metabolites, such as primary bile acid biosynthesis, protein digestion, and absorption, pentose, and glucuronate interconversions. Conclusion NTPCR might serve as a tumor suppressor in EOC progression. Our results demonstrated that DEGs and differential metabolites were mainly related to several signaling pathways, which might be a crucial role in the progression of NTPCR regulation of EOC.
Collapse
Affiliation(s)
- Hongkai Shang
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Gynecology, Hangzhou First People's Hospital, Hangzhou, China.,Department of Gynecology, Zhejiang University School of Medicine, Hangzhou, China
| | - Huizhi Zhang
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Gynecology, Hangzhou First People's Hospital, Hangzhou, China
| | - Ziyao Ren
- Department of Gynecology, Hangzhou First People's Hospital, Hangzhou, China.,Department of Gynecology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongjiang Zhao
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Gynecology, Hangzhou First People's Hospital, Hangzhou, China
| | - Zhifen Zhang
- Department of Gynecology, Hangzhou Women's Hospital (Maternity and Child Health Care Hospital), Hangzhou, China
| | - Jinyi Tong
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Gynecology, Hangzhou Women's Hospital (Maternity and Child Health Care Hospital), Hangzhou, China
| |
Collapse
|
6
|
Nizioł J, Copié V, Tripet BP, Nogueira LB, Nogueira KOPC, Ossoliński K, Arendowski A, Ruman T. Metabolomic and elemental profiling of human tissue in kidney cancer. Metabolomics 2021; 17:30. [PMID: 33661419 PMCID: PMC7932981 DOI: 10.1007/s11306-021-01779-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/22/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Kidney cancer is one of the most frequently diagnosed and the most lethal urinary cancer. Despite advances in treatment, no specific biomarker is currently in use to guide therapeutic interventions. OBJECTIVES Major aim of this work was to perform metabolomic and elemental profiling of human kidney cancer and normal tissue and to evaluate cancer biomarkers. METHODS Metabolic and elemental profiling of tumor and adjacent normal human kidney tissue from 50 patients with kidney cancer was undertaken using three different analytical methods. RESULTS Five potential tissue biomarkers of kidney cancer were identified and quantified using with high-resolution nuclear magnetic resonance spectroscopy. The contents of selected chemical elements in tissues was analyzed using inductively coupled plasma optical emission spectrometry. Eleven mass spectral features differentiating between kidney cancer and normal tissues were detected using silver-109 nanoparticle enhanced steel target laser desorption/ionization mass spectrometry. CONCLUSIONS Our results, derived from the combination of ICP-OES, LDI MS and 1H NMR methods, suggest that tissue biomarkers identified herein appeared to have great potential for use in clinical prognosis and/or diagnosis of kidney cancer.
Collapse
Affiliation(s)
- Joanna Nizioł
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland.
| | - Valérie Copié
- The Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Brian P Tripet
- The Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Leonardo B Nogueira
- Department of Geology, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Katiane O P C Nogueira
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Krzysztof Ossoliński
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100, Kolbuszowa, Poland
| | - Adrian Arendowski
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Tomasz Ruman
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| |
Collapse
|
7
|
Xiang M, Huang Y, Dai C, Zou G. MiR-340 regulates the growth and metabolism of renal cell carcinoma cells by targeting frizzled class receptor 3. Arch Pharm Res 2021; 44:219-229. [PMID: 33609235 DOI: 10.1007/s12272-021-01310-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/13/2021] [Indexed: 11/26/2022]
Abstract
MicroRNA(miR)-340 is known as a multifunctional miRNA related to various types of cancer while its role in renal cell carcinoma (RCC) remains to be further investigated. In the present study, an apparent increase in miR-340 expression was observed in both clear cell RCC tissues and RCC cell line 786-O and Caki-1. Functionally, the overexpression of miR-340 promoted cell proliferation, migration, invasion, extracellular alanine (Ala) level, and glycolysis level in 786-O cells. Then, frizzled class receptor 3 (FZD3) was determined as the target gene of miR-340 and its expression level was negatively regulated by miR-340. The FZD3 silencing abrogated the inhibitory effect of miR-340 knockdown on cell proliferation, migration, invasion, Ala level, and glycolysis level in 786-O cells. In conclusion, miR-340 promotes proliferation, migration, and invasion of RCC cells via suppressing FZD3 expression, and the promotion effect of miR-340 on RCC progression may be due to its regulatory effect on glycolysis and Ala level.
Collapse
Affiliation(s)
- Mingfeng Xiang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, 1 Mingde RD, Nanchang, 310003, China
| | - Yanqun Huang
- School of Inter-Cultural Studies, Jiangxi Normal University, Nanchang, 330022, China
| | - Changjun Dai
- People's Hospital of Linchuan District, Fuzhou City, 344000, Jiangxi Province, China
| | - Gaode Zou
- Department of Urology, The Second Affiliated Hospital of Nanchang University, 1 Mingde RD, Nanchang, 310003, China.
| |
Collapse
|
8
|
Dugourd A, Kuppe C, Sciacovelli M, Gjerga E, Gabor A, Emdal KB, Vieira V, Bekker‐Jensen DB, Kranz J, Bindels E, Costa AS, Sousa A, Beltrao P, Rocha M, Olsen JV, Frezza C, Kramann R, Saez‐Rodriguez J. Causal integration of multi-omics data with prior knowledge to generate mechanistic hypotheses. Mol Syst Biol 2021; 17:e9730. [PMID: 33502086 PMCID: PMC7838823 DOI: 10.15252/msb.20209730] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/07/2023] Open
Abstract
Multi-omics datasets can provide molecular insights beyond the sum of individual omics. Various tools have been recently developed to integrate such datasets, but there are limited strategies to systematically extract mechanistic hypotheses from them. Here, we present COSMOS (Causal Oriented Search of Multi-Omics Space), a method that integrates phosphoproteomics, transcriptomics, and metabolomics datasets. COSMOS combines extensive prior knowledge of signaling, metabolic, and gene regulatory networks with computational methods to estimate activities of transcription factors and kinases as well as network-level causal reasoning. COSMOS provides mechanistic hypotheses for experimental observations across multi-omics datasets. We applied COSMOS to a dataset comprising transcriptomics, phosphoproteomics, and metabolomics data from healthy and cancerous tissue from eleven clear cell renal cell carcinoma (ccRCC) patients. COSMOS was able to capture relevant crosstalks within and between multiple omics layers, such as known ccRCC drug targets. We expect that our freely available method will be broadly useful to extract mechanistic insights from multi-omics studies.
Collapse
Affiliation(s)
- Aurelien Dugourd
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
- Faculty of MedicineJoint Research Centre for Computational Biomedicine (JRC‐COMBINE)RWTH Aachen UniversityAachenGermany
- Faculty of MedicineInstitute of Experimental Medicine and Systems BiologyRWTH Aachen UniversityAachenGermany
- Division of Nephrology and Clinical ImmunologyFaculty of MedicineRWTH Aachen UniversityAachenGermany
| | - Christoph Kuppe
- Faculty of MedicineInstitute of Experimental Medicine and Systems BiologyRWTH Aachen UniversityAachenGermany
- Division of Nephrology and Clinical ImmunologyFaculty of MedicineRWTH Aachen UniversityAachenGermany
- Department of Internal Medicine, Nephrology and TransplantationErasmus Medical CenterRotterdamThe Netherlands
| | - Marco Sciacovelli
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Enio Gjerga
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
- Faculty of MedicineJoint Research Centre for Computational Biomedicine (JRC‐COMBINE)RWTH Aachen UniversityAachenGermany
| | - Attila Gabor
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | - Kristina B. Emdal
- Faculty of Health and Medical SciencesProteomics ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Vitor Vieira
- Centre of Biological EngineeringUniversity of Minho ‐ Campus de GualtarBragaPortugal
| | - Dorte B. Bekker‐Jensen
- Faculty of Health and Medical SciencesProteomics ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Jennifer Kranz
- Faculty of MedicineInstitute of Experimental Medicine and Systems BiologyRWTH Aachen UniversityAachenGermany
- Department of Urology and Pediatric UrologySt. Antonius Hospital EschweilerAcademic Teaching Hospital of RWTH AachenEschweilerGermany
- Department of Urology and Kidney TransplantationMartin Luther UniversityHalle (Saale)Germany
| | | | - Ana S.H. Costa
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
- Present address:
Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
| | - Abel Sousa
- Institute for Research and Innovation in Health (i3s)PortoPortugal
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
| | - Pedro Beltrao
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
| | - Miguel Rocha
- Centre of Biological EngineeringUniversity of Minho ‐ Campus de GualtarBragaPortugal
| | - Jesper V. Olsen
- Faculty of Health and Medical SciencesProteomics ProgramNovo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Christian Frezza
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Rafael Kramann
- Faculty of MedicineInstitute of Experimental Medicine and Systems BiologyRWTH Aachen UniversityAachenGermany
- Division of Nephrology and Clinical ImmunologyFaculty of MedicineRWTH Aachen UniversityAachenGermany
- Department of Internal Medicine, Nephrology and TransplantationErasmus Medical CenterRotterdamThe Netherlands
| | - Julio Saez‐Rodriguez
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
- Faculty of MedicineJoint Research Centre for Computational Biomedicine (JRC‐COMBINE)RWTH Aachen UniversityAachenGermany
- Molecular Medicine Partnership Unit, European Molecular Biology LaboratoryHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
9
|
Nizioł J, Ossoliński K, Tripet BP, Copié V, Arendowski A, Ruman T. Nuclear magnetic resonance and surface-assisted laser desorption/ionization mass spectrometry-based metabolome profiling of urine samples from kidney cancer patients. J Pharm Biomed Anal 2020; 193:113752. [PMID: 33197834 DOI: 10.1016/j.jpba.2020.113752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
Kidney cancer is one of the most frequently diagnosed cancers of the urinary tract in the world. Despite significant advances in kidney cancer treatment, no urine specific biomarker is currently used to guide therapeutic interventions. In an effort to address this knowledge gap, metabolic profiling of urine samples from 50 patients with kidney cancer and 50 healthy volunteers was undertaken using high-resolution proton nuclear magnetic resonance spectroscopy (1H NMR) and silver-109 nanoparticle enhanced steel target laser desorption/ionization mass spectrometry (109AgNPET LDI MS). Twelve potential urine biomarkers of kidney cancer were identified and quantified using one-dimensional (1D) 1H NMR metabolomics. Seven mass spectral features which differed significantly in abundance (p < 0.05) between kidney cancer patients and healthy volunteers were also detected using 109AgNPET-based laser desorption/ionization mass spectrometry (LDI MS). This work provides a framework to expand biomarker discovery that could be used as useful diagnostic or prognostic of kidney cancer progression.
Collapse
Affiliation(s)
- Joanna Nizioł
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland.
| | - Krzysztof Ossoliński
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100 Kolbuszowa, Poland
| | - Brian P Tripet
- The Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Valérie Copié
- The Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Adrian Arendowski
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| | - Tomasz Ruman
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| |
Collapse
|
10
|
Raimondo F, Pitto M. Prognostic significance of proteomics and multi-omics studies in renal carcinoma. Expert Rev Proteomics 2020; 17:323-334. [PMID: 32428425 DOI: 10.1080/14789450.2020.1772058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Renal carcinoma, and in particular its most common variant, the clear cell subtype, is often diagnosed incidentally through abdominal imaging and frequently, the tumor is discovered at an early stage. However, 20% to 40% of patients undergoing nephrectomy for clinically localized renal cancer, even after accurate histological and clinical classification, will develop metastasis or recurrence, justifying the associated mortality rate. Therefore, even if renal carcinoma is not among the most frequent nor deadly cancers, a better prognostication is needed. AREAS COVERED Recently proteomics or other omics combinations have been applied to both cancer tissues, on the neoplasia itself and surrounding microenvironment, cultured cells, and biological fluids (so-called liquid biopsy) generating a list of prognostic molecular tools that will be reviewed in the present paper. EXPERT OPINION Although promising, none of the approaches listed above has been yet translated in clinics. This is likely due to the peculiar genetic and phenotypic heterogeneity of this cancer, which makes nearly each tumor different from all the others. Attempts to overcome this issue will be also revised. In particular, we will discuss how the application of omics-integrated approaches could provide the determinants of response to the different targeted drugs.
Collapse
Affiliation(s)
- Francesca Raimondo
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano - Bicocca , Vedano al Lambro, Italy
| | - Marina Pitto
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano - Bicocca , Vedano al Lambro, Italy
| |
Collapse
|
11
|
Hu C, Liu Z, Zhao H, Wu L, Lian Q, Ma D, Li J. A biochemical comparison of the lung, colonic, brain, renal, and ovarian cancer cell lines using 1H-NMR spectroscopy. Biosci Rep 2020; 40:BSR20194027. [PMID: 32266944 PMCID: PMC7198042 DOI: 10.1042/bsr20194027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer cell lines are often used for cancer research. However, continuous genetic instability-induced heterogeneity of cell lines can hinder the reproducibility of cancer research. Molecular profiling approaches including transcriptomics, chromatin modification profiling, and proteomics are used to evaluate the phenotypic characteristics of cell lines. However, these do not reflect the metabolic function at the molecular level. Metabolic phenotyping is a powerful tool to profile the biochemical composition of cell lines. In the present study, 1H-NMR spectroscopy-based metabolic phenotyping was used to detect metabolic differences among five cancer cell lines, namely, lung (A549), colonic (Caco2), brain (H4), renal (RCC), and ovarian (SKOV3) cancer cells. The concentrations of choline, creatine, lactate, alanine, fumarate and succinate varied remarkably among different cell types. The significantly higher intracellular concentrations of glutathione, myo-inositol, and phosphocholine were found in the SKOV3 cell line relative to other cell lines. The concentration of glutamate was higher in both SKOV3 and RCC cells compared with other cell lines. For cell culture media analysis, isopropanol was found to be the highest in RCC media, followed by A549 and SKOV3 media, while acetone was the highest in A549, followed by RCC and SKOV3. These results demonstrated that 1H-NMR-based metabolic phenotyping approach allows us to characterize specific metabolic signatures of cancer cell lines and provides phenotypical information of cellular metabolism.
Collapse
Affiliation(s)
- Cong Hu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Division of Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Chelsea and Westminster Hospital, Imperial College London, United Kingdom
| | - Zhigang Liu
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, United Kingdom
| | - Hailin Zhao
- Division of Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Chelsea and Westminster Hospital, Imperial College London, United Kingdom
| | - Lingzhi Wu
- Division of Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Chelsea and Westminster Hospital, Imperial College London, United Kingdom
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Daqing Ma
- Division of Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Chelsea and Westminster Hospital, Imperial College London, United Kingdom
| | - Jia V. Li
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, United Kingdom
| |
Collapse
|
12
|
Amaro F, Pinto J, Rocha S, Araújo AM, Miranda-Gonçalves V, Jerónimo C, Henrique R, Bastos MDL, Carvalho M, Guedes de Pinho P. Volatilomics Reveals Potential Biomarkers for Identification of Renal Cell Carcinoma: An In Vitro Approach. Metabolites 2020; 10:metabo10050174. [PMID: 32349455 PMCID: PMC7281256 DOI: 10.3390/metabo10050174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
The identification of noninvasive biomarkers able to detect renal cell carcinoma (RCC) at an early stage remains an unmet clinical need. The recognition that altered metabolism is a core hallmark of cancer boosted metabolomic studies focused in the search for cancer biomarkers. The present work aims to evaluate the performance of the volatile metabolites present in the extracellular medium to discriminate RCC cell lines with distinct histological subtypes (clear cell and papillary) and metastatic potential from non-tumorigenic renal cells. Hence, volatile organic compounds (VOCs) and volatile carbonyl compounds (VCCs) were extracted by headspace solid-phase microextraction (HS-SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). Multivariate and univariate analysis unveiled a panel of metabolites responsible for the separation between groups, mostly belonging to ketones, alcohols, alkanes and aldehydes classes. Some metabolites were found similarly altered for all RCC cell lines compared to non-tumorigenic cells, namely 2-ethylhexanol, tetradecane, formaldehyde, acetone (increased) and cyclohexanone and acetaldehyde (decreased). Furthermore, significantly altered levels of cyclohexanol, decanal, decane, dodecane and 4-methylbenzaldehyde were observed in all metastatic RCC cell lines when compared with the non-metastatic ones. Moreover, some alterations in the volatile composition were also observed between RCC histological subtypes. Overall, our results demonstrate the potential of volatile profiling for identification of noninvasive candidate biomarkers for early RCC diagnosis.
Collapse
Affiliation(s)
- Filipa Amaro
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (A.M.A.); (M.d.L.B.); (P.G.d.P.)
- Correspondence: (F.A.); (J.P.); (M.C.); Tel.: +351-220-428-500 (F.A. & J.P.); +351-225-071-300 (M.C.)
| | - Joana Pinto
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (A.M.A.); (M.d.L.B.); (P.G.d.P.)
- Correspondence: (F.A.); (J.P.); (M.C.); Tel.: +351-220-428-500 (F.A. & J.P.); +351-225-071-300 (M.C.)
| | - Sílvia Rocha
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (A.M.A.); (M.d.L.B.); (P.G.d.P.)
- Master in Oncology, Institute of Biomedical Sciences Abel Salazar–University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Ana Margarida Araújo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (A.M.A.); (M.d.L.B.); (P.G.d.P.)
| | - Vera Miranda-Gonçalves
- Cancer Biology & Epigenetics Group, Research Centre (CI-IPOP) Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (V.M.-G.); (C.J.); (R.H.)
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Centre (CI-IPOP) Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (V.M.-G.); (C.J.); (R.H.)
- Department of Pathology and Molecular Immunology-Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Centre (CI-IPOP) Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (V.M.-G.); (C.J.); (R.H.)
- Department of Pathology and Molecular Immunology-Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (A.M.A.); (M.d.L.B.); (P.G.d.P.)
| | - Márcia Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (A.M.A.); (M.d.L.B.); (P.G.d.P.)
- UFP Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, 349, 4249-004 Porto, Portugal
- Correspondence: (F.A.); (J.P.); (M.C.); Tel.: +351-220-428-500 (F.A. & J.P.); +351-225-071-300 (M.C.)
| | - Paula Guedes de Pinho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (A.M.A.); (M.d.L.B.); (P.G.d.P.)
| |
Collapse
|
13
|
Gupta A, Nath K, Bansal N, Kumar M. Role of metabolomics-derived biomarkers to identify renal cell carcinoma: a comprehensive perspective of the past ten years and advancements. Expert Rev Mol Diagn 2019; 20:5-18. [DOI: 10.1080/14737159.2020.1704259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ashish Gupta
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
| | - Kavindra Nath
- Department of Radiology, University of Pennsylvania, Pheladelphia, PA, USA
| | - Navneeta Bansal
- Department of Urology, King George’s Medical University, Lucknow, India
| | - Manoj Kumar
- Department of Urology, King George’s Medical University, Lucknow, India
| |
Collapse
|
14
|
Bogusławska J, Popławski P, Alseekh S, Koblowska M, Iwanicka-Nowicka R, Rybicka B, Kędzierska H, Głuchowska K, Hanusek K, Tański Z, Fernie AR, Piekiełko-Witkowska A. MicroRNA-Mediated Metabolic Reprograming in Renal Cancer. Cancers (Basel) 2019; 11:cancers11121825. [PMID: 31756931 PMCID: PMC6966432 DOI: 10.3390/cancers11121825] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is one of the hallmarks of renal cell cancer (RCC). We hypothesized that altered metabolism of RCC cells results from dysregulation of microRNAs targeting metabolically relevant genes. Combined large-scale transcriptomic and metabolic analysis of RCC patients tissue samples revealed a group of microRNAs that contribute to metabolic reprogramming in RCC. miRNAs expressions correlated with their predicted target genes and with gas chromatography-mass spectrometry (GC-MS) metabolome profiles of RCC tumors. Assays performed in RCC-derived cell lines showed that miR-146a-5p and miR-155-5p targeted genes of PPP (the pentose phosphate pathway) (G6PD and TKT), the TCA (tricarboxylic acid cycle) cycle (SUCLG2), and arginine metabolism (GATM), respectively. miR-106b-5p and miR-122-5p regulated the NFAT5 osmoregulatory transcription factor. Altered expressions of G6PD, TKT, SUCLG2, GATM, miR-106b-5p, miR-155-5p, and miR-342-3p correlated with poor survival of RCC patients. miR-106b-5p, miR-146a-5p, and miR-342-3p stimulated proliferation of RCC cells. The analysis involving >6000 patients revealed that miR-34a-5p, miR-106b-5p, miR-146a-5p, and miR-155-5p are PanCancer metabomiRs possibly involved in global regulation of cancer metabolism. In conclusion, we found that microRNAs upregulated in renal cancer contribute to disturbed expression of key genes involved in the regulation of RCC metabolome. miR-146a-5p and miR-155-5p emerge as a key “metabomiRs” that target genes of crucial metabolic pathways (PPP (the pentose phosphate pathway), TCA cycle, and arginine metabolism).
Collapse
Affiliation(s)
- Joanna Bogusławska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Piotr Popławski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Saleh Alseekh
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (S.A.); (A.R.F.)
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Marta Koblowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland; (M.K.); (R.I.-N.)
- Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland; (M.K.); (R.I.-N.)
- Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Hanna Kędzierska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Katarzyna Głuchowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Karolina Hanusek
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Zbigniew Tański
- Masovian Specialist Hospital in Ostroleka, 07-410 Ostroleka, Poland;
| | - Alisdair R. Fernie
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (S.A.); (A.R.F.)
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Agnieszka Piekiełko-Witkowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
- Correspondence: ; Tel.: +48-22-5693810
| |
Collapse
|
15
|
Molinier-Frenkel V, Prévost-Blondel A, Castellano F. The IL4I1 Enzyme: A New Player in the Immunosuppressive Tumor Microenvironment. Cells 2019; 8:E757. [PMID: 31330829 PMCID: PMC6678094 DOI: 10.3390/cells8070757] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
The high metabolic needs of T lymphocytes in response to activation make them particularly vulnerable to modifications of their biochemical milieu. Immunosuppressive enzymes produced in the tumor microenvironment modify nutrient availability by catabolizing essential or semi-essential amino acids and producing toxic catabolites, thus participating in the local sabotage of the antitumor immune response. L-amino-acid oxidases are FAD-bound enzymes found throughout evolution, from bacteria to mammals, and are often endowed with anti-infectious properties. IL4I1 is a secreted L-phenylalanine oxidase mainly produced by inflammatory antigen-presenting cells-in particular, macrophages present in T helper type 1 granulomas and in various types of tumors. In the last decade, it has been shown that IL4I1 is involved in the fine control of B- and T-cell adaptive immune responses. Preclinical models have revealed its role in cancer immune evasion. Recent clinical data highlight IL4I1 as a new potential prognostic marker in human melanoma. As a secreted enzyme, IL4I1 may represent an easily targetable molecule for cancer immunotherapy.
Collapse
Affiliation(s)
- Valérie Molinier-Frenkel
- INSERM, U955, Team 09, 94010 Créteil, France.
- Faculty of Medicine, University Paris Est, 94010 Créteil, France.
- AP-HP, H. Mondor - A. Chenevier Hospital, Biological Immunology Service, 94010 Créteil, France.
| | - Armelle Prévost-Blondel
- INSERM, U1016, Institute Cochin, 75014 Paris, France
- CNRS, UMR8104, 75014 Paris, France
- University Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Flavia Castellano
- INSERM, U955, Team 09, 94010 Créteil, France.
- Faculty of Medicine, University Paris Est, 94010 Créteil, France.
| |
Collapse
|
16
|
Popławski P, Wiśniewski JR, Rijntjes E, Richards K, Rybicka B, Köhrle J, Piekiełko-Witkowska A. Restoration of type 1 iodothyronine deiodinase expression in renal cancer cells downregulates oncoproteins and affects key metabolic pathways as well as anti-oxidative system. PLoS One 2017; 12:e0190179. [PMID: 29272308 PMCID: PMC5741248 DOI: 10.1371/journal.pone.0190179] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022] Open
Abstract
Type 1 iodothyronine deiodinase (DIO1) contributes to deiodination of 3,5,3’,5’-tetraiodo-L-thyronine (thyroxine, T4) yielding of 3,5,3’-triiodothyronine (T3), a powerful regulator of cell differentiation, proliferation, and metabolism. Our previous work showed that loss of DIO1 enhances proliferation and migration of renal cancer cells. However, the global effects of DIO1 expression in various tissues affected by cancer remain unknown. Here, the effects of stable DIO1 re-expression were analyzed on the proteome of renal cancer cells, followed by quantitative real-time PCR validation in two renal cancer-derived cell lines. DIO1-induced changes in intracellular concentrations of thyroid hormones were quantified by L-MS/MS and correlations between expression of DIO1 and potential target genes were determined in tissue samples from renal cancer patients. Stable re-expression of DIO1, resulted in 26 downregulated proteins while 59 proteins were overexpressed in renal cancer cells. The ‘downregulated’ group consisted mainly of oncoproteins (e.g. STAT3, ANPEP, TGFBI, TGM2) that promote proliferation, migration and invasion. Furthermore, DIO1 re-expression enhanced concentrations of two subunits of thyroid hormone transporter (SLC7A5, SLC3A2), enzymes of key pathways of cellular energy metabolism (e.g. TKT, NAMPT, IDH2), sex steroid metabolism and anti-oxidative response (AKR1C2, AKR1B10). DIO1 expression resulted in elevated intracellular concentration of T4. Expression of DIO1-affected genes strongly correlated with DIO1 transcript levels in tissue samples from renal cancer patients as well as with their poor survival. This first study addressing effects of deiodinase re-expression on proteome of cancer cells demonstrates that induced DIO1 re-expression in renal cancer robustly downregulates oncoproteins, affects key metabolic pathways, and triggers proteins involved in anti-oxidative protection. This data supports the notion that suppressed DIO1 expression and changes in local availability of thyroid hormones might favor a shift from a differentiated to a more proliferation-prone state of cancer tissues and cell lines.
Collapse
Affiliation(s)
- Piotr Popławski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Keith Richards
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
17
|
Proteomics analysis to reveal biological pathways and predictive proteins in the survival of high-grade serous ovarian cancer. Sci Rep 2017; 7:9896. [PMID: 28852147 PMCID: PMC5575023 DOI: 10.1038/s41598-017-10559-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/11/2017] [Indexed: 12/20/2022] Open
Abstract
High-grade serous ovarian cancer (HGSC) is an aggressive cancer with a worse clinical outcome. Therefore, studies about the prognosis of HGSC may provide therapeutic avenues to improve patient outcomes. Since genome alteration are manifested at the protein level, we integrated protein and mRNA data of ovarian cancer from The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) and utilized the sparse overlapping group lasso (SOGL) method, a new mechanism-driven variable selection method, to select dysregulated pathways and crucial proteins related to the survival of HGSC. We found that biosynthesis of amino acids was the main biological pathway with the best predictive performance (AUC = 0.900). A panel of three proteins, namely EIF2B1, PRPS1L1 and MAPK13 were selected as potential predictive proteins and the risk score consisting of these three proteins has predictive performance for overall survival (OS) and progression free survival (PFS), with AUC of 0.976 and 0.932, respectively. Our study provides additional information for further mechanism and therapeutic avenues to improve patient outcomes in clinical practice.
Collapse
|