1
|
Vendrov AE, Lozhkin A, Hayami T, Levin J, Silveira Fernandes Chamon J, Abdel-Latif A, Runge MS, Madamanchi NR. Mitochondrial dysfunction and metabolic reprogramming induce macrophage pro-inflammatory phenotype switch and atherosclerosis progression in aging. Front Immunol 2024; 15:1410832. [PMID: 38975335 PMCID: PMC11224442 DOI: 10.3389/fimmu.2024.1410832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction Aging increases the risk of atherosclerotic vascular disease and its complications. Macrophages are pivotal in the pathogenesis of vascular aging, driving inflammation and atherosclerosis progression. NOX4 (NADPH oxidase 4) expression increases with age, correlating with mitochondrial dysfunction, inflammation, and atherosclerosis. We hypothesized that the NOX4-dependent mitochondrial oxidative stress promotes aging-associated atherosclerosis progression by causing metabolic dysfunction and inflammatory phenotype switch in macrophages. Methods We studied atherosclerotic lesion morphology and macrophage phenotype in young (5-month-old) and aged (16-month-old) Nox4 -/-/Apoe -/- and Apoe -/- mice fed Western diet. Results Young Nox4-/-/Apoe-/- and Apoe-/- mice had comparable aortic and brachiocephalic artery atherosclerotic lesion cross-sectional areas. Aged mice showed significantly increased lesion area compared with young mice. Aged Nox4-/-/Apoe-/- had significantly lower lesion areas than Apoe-/- mice. Compared with Apoe-/- mice, atherosclerotic lesions in aged Nox4-/-/Apoe-/- showed reduced cellular and mitochondrial ROS and oxidative DNA damage, lower necrotic core area, higher collagen content, and decreased inflammatory cytokine expression. Immunofluorescence and flow cytometry analysis revealed that aged Apoe-/- mice had a higher percentage of classically activated pro-inflammatory macrophages (CD38+CD80+) in the lesions. Aged Nox4-/-/Apoe-/- mice had a significantly higher proportion of alternatively activated pro-resolving macrophages (EGR2+/CD163+CD206+) in the lesions, with an increased CD38+/EGR2+ cell ratio compared with Apoe-/- mice. Mitochondrial respiration assessment revealed impaired oxidative phosphorylation and increased glycolytic ATP production in macrophages from aged Apoe-/- mice. In contrast, macrophages from Nox4-/-/Apoe-/- mice were less glycolytic and more aerobic, with preserved basal and maximal respiration and mitochondrial ATP production. Macrophages from Nox4-/-/Apoe-/- mice also had lower mitochondrial ROS levels and reduced IL1β secretion; flow cytometry analysis showed fewer CD38+ cells after IFNγ+LPS treatment and more EGR2+ cells after IL4 treatment than in Apoe-/- macrophages. In aged Apoe-/- mice, inhibition of NOX4 activity using GKT137831 significantly reduced macrophage mitochondrial ROS and improved mitochondrial function, resulting in decreased CD68+CD80+ and increased CD163+CD206+ lesion macrophage proportion and attenuated atherosclerosis. Discussion Our findings suggest that increased NOX4 in aging drives macrophage mitochondrial dysfunction, glycolytic metabolic switch, and pro-inflammatory phenotype, advancing atherosclerosis. Inhibiting NOX4 or mitochondrial dysfunction could alleviate vascular inflammation and atherosclerosis, preserving plaque integrity.
Collapse
Affiliation(s)
- Aleksandr E. Vendrov
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Andrey Lozhkin
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Takayuki Hayami
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Julia Levin
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Jamille Silveira Fernandes Chamon
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Ahmed Abdel-Latif
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine - Cardiology, Ann Arbor VA Healthcare System, Ann Arbor, MI, United States
| | - Marschall S. Runge
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Nageswara R. Madamanchi
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Wang M, Zhang X, Zhang Z, Tong L, Yu S, Liu Y, Yang F. Flavonoid Compounds in Hippophae rhamnoides L. Protect Endothelial Cells from Oxidative Damage Through the PI3K/AKT-eNOS Pathway. Chem Biodivers 2024; 21:e202400300. [PMID: 38430215 DOI: 10.1002/cbdv.202400300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Sea buckthorn, a traditional medicinal plant, has been used for several years in China for the prevention and treatment of various diseases, a practice closely associated with its significant antioxidant activity. The aim of this study was to investigate the protective effects of sea buckthorn flavonoids on vascular endothelial cells in an oxidative stress environment. We isolated and extracted active compounds from sea buckthorn and investigated their impact on endothelial nitric oxide synthase (eNOS) activity through the PI3K/AKT-eNOS signaling pathway through a combination of network pharmacology and cellular experiments, elucidating the regulatory effects of these compounds on endothelial cell functions. Three flavonoids, named Fr.4-2-1, Fr.4-2-2 and Fr.4-2-3, were obtained from sea buckthorn. The results of network pharmacology indicated that they might exert their effects by regulating the PI3K-AKT signaling pathway. In vitro results showed that all three flavonoids were effective in alleviating the degree of oxidative stress in cells, among which Fr.4-2-1 exerted its antioxidant effects by modulating the PI3K/AKT-eNOS pathway. Flavonoids in sea buckthorn can effectively inhibit oxidative stress-induced cellular damage, preserving the integrity and functionality of endothelial cells, which is crucial for maintaining vascular health and function.
Collapse
Affiliation(s)
- Mengyuan Wang
- Department of Pharmacy, Faculty of Medicine, Qinghai University, Xining, 810001, China
| | - Xingfang Zhang
- Department of Pharmacy, Faculty of Medicine, Qinghai University, Xining, 810001, China
| | - Zonghao Zhang
- College of Animal Husbandry and Veterinary Science, Qinghai University, Xining, 810016, China
| | - Li Tong
- Department of Pharmacy, Faculty of Medicine, Qinghai University, Xining, 810001, China
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine for the Prevention and Control of Glycolipid Metabolic Diseases, Xining, 810001, China
| | - Song Yu
- Department of Pharmacy, Faculty of Medicine, Qinghai University, Xining, 810001, China
| | - Yue Liu
- Department of Pharmacy, Faculty of Medicine, Qinghai University, Xining, 810001, China
| | - Fang Yang
- Department of Pharmacy, Faculty of Medicine, Qinghai University, Xining, 810001, China
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine for the Prevention and Control of Glycolipid Metabolic Diseases, Xining, 810001, China
| |
Collapse
|
3
|
Jiang S, Han S, Wang DW. The involvement of soluble epoxide hydrolase in the development of cardiovascular diseases through epoxyeicosatrienoic acids. Front Pharmacol 2024; 15:1358256. [PMID: 38628644 PMCID: PMC11019020 DOI: 10.3389/fphar.2024.1358256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Arachidonic acid (AA) has three main metabolic pathways: the cycloxygenases (COXs) pathway, the lipoxygenases (LOXs) pathway, and the cytochrome P450s (CYPs) pathway. AA produces epoxyeicosatrienoic acids (EETs) through the CYPs pathway. EETs are very unstable in vivo and can be degraded in seconds to minutes. EETs have multiple degradation pathways, but are mainly degraded in the presence of soluble epoxide hydrolase (sEH). sEH is an enzyme of bifunctional nature, and current research focuses on the activity of its C-terminal epoxide hydrolase (sEH-H), which hydrolyzes the EETs to the corresponding inactive or low activity diol. Previous studies have reported that EETs have cardiovascular protective effects, and the activity of sEH-H plays a role by degrading EETs and inhibiting their protective effects. The activity of sEH-H plays a different role in different cells, such as inhibiting endothelial cell proliferation and migration, but promoting vascular smooth muscle cell proliferation and migration. Therefore, it is of interest whether the activity of sEH-H is involved in the initiation and progression of cardiovascular diseases by affecting the function of different cells through EETs.
Collapse
Affiliation(s)
- Shan Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Siyi Han
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
4
|
Curaj A, Vanholder R, Loscalzo J, Quach K, Wu Z, Jankowski V, Jankowski J. Cardiovascular Consequences of Uremic Metabolites: an Overview of the Involved Signaling Pathways. Circ Res 2024; 134:592-613. [PMID: 38422175 DOI: 10.1161/circresaha.123.324001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The crosstalk of the heart with distant organs such as the lung, liver, gut, and kidney has been intensively approached lately. The kidney is involved in (1) the production of systemic relevant products, such as renin, as part of the most essential vasoregulatory system of the human body, and (2) in the clearance of metabolites with systemic and organ effects. Metabolic residue accumulation during kidney dysfunction is known to determine cardiovascular pathologies such as endothelial activation/dysfunction, atherosclerosis, cardiomyocyte apoptosis, cardiac fibrosis, and vascular and valvular calcification, leading to hypertension, arrhythmias, myocardial infarction, and cardiomyopathies. However, this review offers an overview of the uremic metabolites and details their signaling pathways involved in cardiorenal syndrome and the development of heart failure. A holistic view of the metabolites, but more importantly, an exhaustive crosstalk of their known signaling pathways, is important for depicting new therapeutic strategies in the cardiovascular field.
Collapse
Affiliation(s)
- Adelina Curaj
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Raymond Vanholder
- Department of Internal Medicine and Pediatrics, Nephrology Section, University Hospital, Ghent, Belgium (R.V.)
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.L.)
| | - Kaiseng Quach
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Zhuojun Wu
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Vera Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, the Netherlands (J.J.)
- Aachen-Maastricht Institute for Cardiorenal Disease, RWTH Aachen University, Aachen, Germany (J.J.)
| |
Collapse
|
5
|
Buonfiglio F, Xia N, Yüksel C, Manicam C, Jiang S, Zadeh JK, Musayeva A, Elksne E, Pfeiffer N, Patzak A, Li H, Gericke A. Studies on the Effects of Hypercholesterolemia on Mouse Ophthalmic Artery Reactivity. Diseases 2023; 11:124. [PMID: 37873768 PMCID: PMC10594501 DOI: 10.3390/diseases11040124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023] Open
Abstract
Atherogenic lipoproteins may impair vascular reactivity, leading to tissue damage in various organs, including the eye. This study aimed to investigate whether ophthalmic artery reactivity is affected in mice lacking the apolipoprotein E gene (ApoE-/-), a model for hypercholesterolemia and atherosclerosis. Twelve-month-old male ApoE-/- mice and age-matched wild-type controls were used to assess vascular reactivity using videomicroscopy. Moreover, the vascular mechanics, lipid content, levels of reactive oxygen species (ROS), and expression of pro-oxidant redox enzymes and the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) were determined in vascular tissue. Unlike the aorta, the ophthalmic artery of ApoE-/- mice developed no signs of endothelial dysfunction and no signs of excessive lipid deposition. Remarkably, the levels of ROS, nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1), NOX2, NOX4, and LOX-1 were increased in the aorta but not in the ophthalmic artery of ApoE-/- mice. Our findings suggest that ApoE-/- mice develop endothelial dysfunction in the aorta by increased oxidative stress via the involvement of LOX-1, NOX1, and NOX2, whereas NOX4 may participate in media remodeling. In contrast, the ophthalmic artery appears to be resistant to chronic apolipoprotein E deficiency. A lack of LOX-1 expression/overexpression in response to increased oxidized low-density lipoprotein levels may be a possible mechanism of action.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Can Yüksel
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Subao Jiang
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Jenia Kouchek Zadeh
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Aytan Musayeva
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Eva Elksne
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Andreas Patzak
- Institute of Translational Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Huige Li
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
6
|
Wang D, Li J, Luo G, Zhou J, Wang N, Wang S, Zhao R, Cao X, Ma Y, Liu G, Hao L. Nox4 as a novel therapeutic target for diabetic vascular complications. Redox Biol 2023; 64:102781. [PMID: 37321060 PMCID: PMC10363438 DOI: 10.1016/j.redox.2023.102781] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic vascular complications can affect both microvascular and macrovascular. Diabetic microvascular complications, such as diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, and diabetic cardiomyopathy, are believed to be caused by oxidative stress. The Nox family of NADPH oxidases is a significant source of reactive oxygen species and plays a crucial role in regulating redox signaling, particularly in response to high glucose and diabetes mellitus. This review aims to provide an overview of the current knowledge about the role of Nox4 and its regulatory mechanisms in diabetic microangiopathies. Especially, the latest novel advances in the upregulation of Nox4 that aggravate various cell types within diabetic kidney disease will be highlighted. Interestingly, this review also presents the mechanisms by which Nox4 regulates diabetic microangiopathy from novel perspectives such as epigenetics. Besides, we emphasize Nox4 as a therapeutic target for treating microvascular complications of diabetes and summarize drugs, inhibitors, and dietary components targeting Nox4 as important therapeutic measures in preventing and treating diabetic microangiopathy. Additionally, this review also sums up the evidence related to Nox4 and diabetic macroangiopathy.
Collapse
Affiliation(s)
- Dongxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Jiaying Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Juan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Shanshan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Rui Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Xin Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, 050000, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China.
| |
Collapse
|
7
|
da Silva FC, de Araújo BJ, Cordeiro CS, Arruda VM, Faria BQ, Guerra JFDC, Araújo TGD, Fürstenau CR. Endothelial dysfunction due to the inhibition of the synthesis of nitric oxide: Proposal and characterization of an in vitro cellular model. Front Physiol 2022; 13:978378. [PMID: 36467706 PMCID: PMC9714775 DOI: 10.3389/fphys.2022.978378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/02/2022] [Indexed: 08/13/2023] Open
Abstract
The vascular endothelium plays a pivotal role in the maintenance of vascular homeostasis, mediated by vasoactive molecules produced by endothelial cells. The balance between vasoconstrictor and vasodilator biomolecules is what guarantees this equilibrium. Therefore, an increase in the bioavailability of vasoconstrictors along with a reduction in vasodilators may indicate a condition known as endothelial dysfunction. Endothelial dysfunction is marked by an inflammatory process and reduced activity of vasoprotective enzymes, being characterized by some factors like the reduction of the bioavailability of nitric oxide (NO) and increase in the production of reactive oxygen species (ROS), pro-inflammatory and vasoconstrictor molecules. This condition is a predictive marker of several cardiovascular diseases (e.g., atherosclerosis, hypertension, and diabetes). Research is affected by the scarcity of suitable in vitro models that simulate endothelial dysfunction. The goal of this study was to induce an in vitro condition to mimic endothelial dysfunction by inhibiting NO synthesis in cells. Thymus-derived endothelial cells (tEnd.1) were treated with different concentrations of L-NAME (from 1 to 1,000 μM) for different times (12, 24, 48, 72, 96, and 120 h without and with retreatment every 24 h). Cell viability, nitrite concentration, p22phox, NOX2, NOX4, IL-6, and ACE genes expression and lipid peroxidation were evaluated. The results indicate that the treatment with 100 μM L-NAME for 72 h without retreatment reduced NO concentration and NOX4 gene expression while increasing ACE expression, thus mimicking reduced vascular protection and possibly increased vasoconstriction. On the other hand, treatment with 100 μM L-NAME for 96 h with retreatment reduced the concentration of NO and the expression of the p22phox gene while increasing the expression of the IL-6 and ACE genes, mimicking the increase in inflammation and vasoconstriction parameters. Based on these results, we thus propose that both 100 μM L-NAME for 72 h without retreatment and 100 μM L-NAME for 96 h with retreatment may be used as models for in vitro endothelial dysfunction according to the purpose of the study to be conducted.
Collapse
Affiliation(s)
- Fernanda Cardoso da Silva
- Animal Cell Culture Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil
- Laboratory of Vascular Biochemistry, Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Bruna Juber de Araújo
- Animal Cell Culture Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil
- Laboratory of Vascular Biochemistry, Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Carina Santos Cordeiro
- Animal Cell Culture Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | - Vinícius Marques Arruda
- Animal Cell Culture Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | - Bruno Quintanilha Faria
- Animal Cell Culture Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | - Joyce Ferreira Da Costa Guerra
- Animal Cell Culture Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | - Thaise Gonçalves De Araújo
- Animal Cell Culture Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | - Cristina Ribas Fürstenau
- Laboratory of Vascular Biochemistry, Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| |
Collapse
|
8
|
Hofmann A, Frank F, Wolk S, Busch A, Klimova A, Sabarstinski P, Gerlach M, Egorov D, Kopaliani I, Weinert S, Hamann B, Poitz DM, Brunssen C, Morawietz H, Schröder K, Reeps C. NOX4 mRNA correlates with plaque stability in patients with carotid artery stenosis. Redox Biol 2022; 57:102473. [PMID: 36182808 PMCID: PMC9526188 DOI: 10.1016/j.redox.2022.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Carotid artery stenosis (CAS) develops from atherosclerotic lesions and plaques. Plaque rupture or stenosis may result in occlusion of the carotid artery. Accordingly, the asymptomatic disease becomes symptomatic, characterized by ischemic stroke or transient ischemic attacks, indicating an urgent need for better understanding of the underlying molecular mechanisms and eventually prevent symptomatic CAS. NOX4, a member of the NADPH oxidase family, has anti-atherosclerotic and anti-inflammatory properties in animal models of early atherosclerosis. We hypothesized that NOX4 mRNA expression is linked to protective mechanisms in CAS patients with advanced atherosclerotic lesions as well. Indeed, NOX4 mRNA expression is lower in patients with symptomatic CAS. A low NOX4 mRNA expression is associated with an increased risk of the development of clinical symptoms. In fact, NOX4 appears to be linked to plaque stability, apoptosis and plaque hemorrhage. This is supported by cleaved caspase-3 and glycophorin C and correlates inversely with plaque NOX4 mRNA expression. Even healing of a ruptured plaque appears to be connected to NOX4, as NOX4 mRNA expression correlates to fibrous cap collagen and is reciprocally related to MMP9 activity. In conclusion, low intra-plaque NOX4 mRNA expression is associated with an increased risk for symptomatic outcome and with reduced plaque stabilizing mechanisms suggesting protective effects of NOX4 in human advanced atherosclerosis.
Collapse
Affiliation(s)
- Anja Hofmann
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany.
| | - Frieda Frank
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Steffen Wolk
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Albert Busch
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Anna Klimova
- Core Unit Data Management and Analytics, National Center for Tumor Diseases Dresden, Partner Site Dresden, University Cancer Center (NCT/UCC), Dresden, Germany
| | - Pamela Sabarstinski
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Michael Gerlach
- Core Facility Cellular Imaging (CFCI), Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Dmitry Egorov
- Institute for Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Irakli Kopaliani
- Institute for Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sönke Weinert
- Internal Medicine, Department of Cardiology and Angiology, Health Campus Immunology, Infectiology and Inflammation, Magdeburg University, Magdeburg, Germany
| | - Bianca Hamann
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany
| | - David M Poitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany and German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Christian Reeps
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany
| |
Collapse
|
9
|
Li W, Jin K, Luo J, Xu W, Wu Y, Zhou J, Wang Y, Xu R, Jiao L, Wang T, Yang G. NF-κB and its crosstalk with endoplasmic reticulum stress in atherosclerosis. Front Cardiovasc Med 2022; 9:988266. [PMID: 36204587 PMCID: PMC9530249 DOI: 10.3389/fcvm.2022.988266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis (AS) is a common cardiovascular disease with complex pathogenesis, in which multiple pathways and their interweaving regulatory mechanism remain unclear. The primary transcription factor NF-κB plays a critical role in AS via modulating the expression of a series of inflammatory mediators under various stimuli such as cytokines, microbial antigens, and intracellular stresses. Endoplasmic reticulum (ER) stress, caused by the disrupted synthesis and secretion of protein, links inflammation, metabolic signals, and other cellular processes via the unfolded protein response (UPR). Both NF-κB and ER stress share the intersection regarding their molecular regulation and function and are regarded as critical individual contributors to AS. In this review, we summarize the multiple interactions between NF-κB and ER stress activation, including the UPR, NLRP3 inflammasome, and reactive oxygen species (ROS) generation, which have been ignored in the pathogenesis of AS. Given the multiple links between NF-κB and ER stress, we speculate that the integrated network contributes to the understanding of molecular mechanisms of AS. This review aims to provide an insight into these interactions and their underlying roles in the progression of AS, highlighting potential pharmacological targets against the atherosclerotic inflammatory process.
Collapse
Affiliation(s)
- Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Kehan Jin
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wenlong Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Yujie Wu
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jia Zhou
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yilin Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Liqun Jiao,
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Tao Wang,
| | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Tao Wang,
| |
Collapse
|
10
|
Su H, Mei Y, Luo S, Wu H, He Y, Shiraishi Y, Hu P, Cohen RA, Tong X. Substitution of the SERCA2 Cys 674 reactive thiol accelerates atherosclerosis by inducing endoplasmic reticulum stress and inflammation. Br J Pharmacol 2022; 179:4778-4791. [PMID: 35763220 DOI: 10.1111/bph.15912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE The cysteine674 (C674) thiol of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 is easily and irreversibly oxidized under atherosclerotic conditions. However, the contribution of the C674 thiol redox status in the development of atherosclerosis remains unclear. Our goal was to elucidate the possible mechanism involved. EXPERIMENTAL APPROACH Heterozygous SERCA2 C674S knock-in mice in which half of the C674 was substituted by serine674 (S674) were used to mimic the removal of the reactive C674 thiol which occurs under pathological conditions. Bone marrow-derived macrophages (BMDMs) and cardiac endothelial cells (ECs) were used for intracellular Ca2+ , macrophage adhesion, and protein expression analysis. The whole aorta and aortic root were isolated for histological analysis. KEY RESULTS Cell culture studies suggest the partial substitution of SERCA2 C674 increased intracellular Ca2+ levels and induced ER stress in both BMDMs and ECs. The release of pro-inflammatory factors and macrophage adhesion increased in SKI BMDMs. In ECs, the overexpression of S674 induced endothelial inflammation and promoted macrophage recruitment. SKI mice developed more severe atherosclerotic plaque and macrophage accumulation. Additionally, 4-phenyl butyric acid (PBA), an ER stress inhibitor, suppressed ER stress and inflammatory responses in BMDMs and ECs, and alleviate atherosclerosis in SKI mice. CONCLUSIONS AND IMPLICATIONS The substitution of SERCA2 C674 thiol accelerates the development of atherosclerosis by inducing ER stress and inflammation. Our findings highlight the importance of SERCA2 C674 redox state in the context of atherosclerosis and open up a novel therapeutic strategy to combat atherosclerosis.
Collapse
Affiliation(s)
- Hang Su
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yu Mei
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Shuangxue Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Haixia Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yan He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yasumasa Shiraishi
- Department of Internal Medicine, Division of Cardiovascular Medicine, National Defense Medical College, Saitama, Japan
| | - Pingping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.,College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Richard A Cohen
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Xiaoyong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
11
|
Kim SA, Lee AS, Lee HB, Hur HJ, Lee SH, Sung MJ. Soluble epoxide hydrolase inhibitor, TPPU, attenuates progression of atherosclerotic lesions and vascular smooth muscle cell phenotypic switching. Vascul Pharmacol 2022; 145:107086. [PMID: 35752378 DOI: 10.1016/j.vph.2022.107086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/22/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Atherosclerosis manifests as a chronic inflammation resulting from multiple interactions between circulating factors and various cell types in blood vessel walls. Growing evidence shows that phenotypic switching and proliferation of vascular smooth muscle cells (VSMCs) plays an important role in the progression of atherosclerosis. Soluble epoxide hydrolase (sEH)/epoxyeicosatrienoic acids are mediated by vascular inflammation. N-[1-(1-oxopropyl)-4-piperidinyl]-N'-[4-(trifluoromethoxy)phenyl]-urea (TPPU) is an sEH inhibitor. This study investigated the therapeutic effect of TPPU on atherosclerosis in vivo and homocysteine-induced vascular inflammation in vitro and explored their molecular mechanisms. We found that TPPU decreased WD-induced atherosclerotic plaque lesions, inflammation, expression of sEH, and nicotinamide adenine dinucleotide phosphate oxidase-4 (Nox4), and increased the expression of contractile phenotype marker of aortas in ApoE (-/-) mice. TPPU also inhibited homocysteine-stimulated VSMC proliferation, migration, and phenotypic switching, and reduced Nox4 in human-aorta-VSMC regulation. We conclude that TPPU has anti-atherosclerotic effects, potentially because of the suppression of VSMC phenotype switching. Thus, TPPU could be a potential therapeutic target for phenotypic switching attenuation in atherosclerosis.
Collapse
Affiliation(s)
- So Ah Kim
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea; Department of Food Biotechnology, Chonbuk National University, Jeollabuk-Do, Republic of Korea
| | - Ae Sin Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea
| | - Han Bit Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea
| | - Haeng Jeon Hur
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea
| | - Sang Hee Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea
| | - Mi Jeong Sung
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea.
| |
Collapse
|
12
|
Shi Z, He Z, Wang DW. CYP450 Epoxygenase Metabolites, Epoxyeicosatrienoic Acids, as Novel Anti-Inflammatory Mediators. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123873. [PMID: 35744996 PMCID: PMC9230517 DOI: 10.3390/molecules27123873] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/25/2022]
Abstract
Inflammation plays a crucial role in the initiation and development of a wide range of systemic illnesses. Epoxyeicosatrienoic acids (EETs) are derived from arachidonic acid (AA) metabolized by CYP450 epoxygenase (CYP450) and are subsequently hydrolyzed by soluble epoxide hydrolase (sEH) to dihydroxyeicosatrienoic acids (DHETs), which are merely biologically active. EETs possess a wide range of established protective effects on many systems of which anti-inflammatory actions have gained great interest. EETs attenuate vascular inflammation and remodeling by inhibiting activation of endothelial cells and reducing cross-talk between inflammatory cells and blood vessels. EETs also process direct and indirect anti-inflammatory properties in the myocardium and therefore alleviate inflammatory cardiomyopathy and cardiac remodeling. Moreover, emerging studies show the substantial roles of EETs in relieving inflammation under other pathophysiological environments, such as diabetes, sepsis, lung injuries, neurodegenerative disease, hepatic diseases, kidney injury, and arthritis. Furthermore, pharmacological manipulations of the AA-CYP450-EETs-sEH pathway have demonstrated a contribution to the alleviation of numerous inflammatory diseases, which highlight a therapeutic potential of drugs targeting this pathway. This review summarizes the progress of AA-CYP450-EETs-sEH pathway in regulation of inflammation under different pathological conditions and discusses the existing challenges and future direction of this research field.
Collapse
Affiliation(s)
- Zeqi Shi
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
| | - Zuowen He
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| | - Dao Wen Wang
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| |
Collapse
|
13
|
Oxidative Injury in Ischemic Stroke: A Focus on NADPH Oxidase 4. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1148874. [PMID: 35154560 PMCID: PMC8831073 DOI: 10.1155/2022/1148874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality worldwide. Thus, it is urgent to explore its pathophysiological mechanisms and find new therapeutic strategies for its successful treatment. The relationship between oxidative stress and ischemic stroke is increasingly appreciated and attracting considerable attention. ROS serves as a source of oxidative stress. It is a byproduct of mitochondrial metabolism but primarily a functional product of NADPH oxidases (NOX) family members. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) is most closely related to the formation of ROS during ischemic stroke. Its expression is significantly upregulated after cerebral ischemia, making it a promising target for treating ischemic stroke. Several drugs targeting NOX4, such as SCM-198, Iso, G-Rb1, betulinic acid, and electroacupuncture, have shown efficacy as treatments of ischemic stroke. MTfp-NOX4 POC provides a novel insight for the treatment of stroke. Combinations of these therapies also provide new approaches for the therapy of ischemic stroke. In this review, we summarize the subcellular location, expression, and pathophysiological mechanisms of NOX4 in the occurrence and development of ischemic stroke. We also discuss the therapeutic strategies and related regulatory mechanisms for treating ischemic stroke. We further comment on the shortcomings of current NOX4-targeted therapy studies and the direction for improvement.
Collapse
|
14
|
Li X, Wang J, Wu C, Lu X, Huang J. MicroRNAs involved in the TGF-β signaling pathway in atherosclerosis. Biomed Pharmacother 2021; 146:112499. [PMID: 34959122 DOI: 10.1016/j.biopha.2021.112499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease with a multifactorial pathogenesis. It becomes a global health concern, especially causing an array of fatal consequences among the elderly. However, the mechanisms of AS remain unexplained. The transforming growth factor-β (TGF-β) signaling pathway is widely involved in the inflammation, immune function, proliferation, differentiation,and apoptosis in vivo. Based on previous researches, it has not been confirmed whether the TGF-β pathway promotes or inhibits atherosclerosis. Furthermore, more and more studies have found that microRNAs can regulate atherosclerosis through the TGF-β signaling pathway. In this review, we summarize and discuss the role of microRNAs in the pathogenesis of atherosclerosis via the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinyu Wang
- Department of Cardiology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Wu
- Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiang Lu
- Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jingjing Huang
- Department of Geriatrics, the Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
15
|
Mandani M, Badehnoosh B, Jalali-Mashayekhi F, Tavakoli-Far B, Khosrowbeygi A. Alpha-lipoic acid supplementation effects on serum values of some oxidative stress biomarkers in women with gestational diabetes. Gynecol Endocrinol 2021; 37:1111-1115. [PMID: 34369837 DOI: 10.1080/09513590.2021.1963955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
AIMS Alpha-lipoic acid (ALA) is a unique antioxidant that can eradicate different kinds of free radicals. The current trial was designed to investigate the effects of ALA supplementation on some oxidative stress biomarkers in women with GDM. MATERIALS AND METHODS Sixty women with GDM at 24-28 weeks of pregnancy were selected and then they were divided into the drug (n = 30) received ALA 300 mg/day for 8 weeks and the placebo (n = 30) groups. Serum values of fasting blood sugar (FBS), thiol groups, glutathione, catalase, total antioxidant capacity (TAC), total oxidant status (TOS) and malondialdehyde (MDA) were measured. Values of the oxidative stress index (OSI), the MDA/TAC ratio and total antioxidant gap (TAG) were calculated. RESULTS After the intervention values of FBS (p = .001), TAC (p < .001), OSI (p = .003), TAG (p = .001) and catalase (p < .001) were improved significantly in the drug group. Values of TOS (p = .070) and glutathione (p = .088) were improved marginally in the drug group. CONCLUSIONS The current study showed that ALA supplementation at a dosage of 300 mg/day in women with GDM had improving effects on maternal circulating values of FBS, TAC, OSI, TAG, TOS, glutathione and catalase.
Collapse
Affiliation(s)
- Masoome Mandani
- Students Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Bita Badehnoosh
- Department of Obstetrics and Gyncology, Dietary Supplements and Probiotic Research center, Alborz University of Medical Siences, Karaj, Iran
| | - Farideh Jalali-Mashayekhi
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Bahareh Tavakoli-Far
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ali Khosrowbeygi
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
16
|
Zhou L, Zeng X, Rao T, Tan Z, Zhou G, Ouyang D, Chen L. Evaluating the protective effects of individual or combined ginsenoside compound K and the downregulation of soluble epoxide hydrolase expression against sodium valproate-induced liver cell damage. Toxicol Appl Pharmacol 2021; 422:115555. [PMID: 33915122 DOI: 10.1016/j.taap.2021.115555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/17/2021] [Accepted: 04/24/2021] [Indexed: 12/16/2022]
Abstract
Sodium valproate (SVP) is one of the most commonly prescribed antiepileptic drugs. However, SVP is known to induce hepatotoxicity, which limits its clinical application for treating various neurological disorders. Previously, we found that ginsenoside compound K (G-CK) demonstrated protective effects against SVP-induced hepatotoxicity by mitigating oxidative stress and mitochondrial damage, as well as downregulating the expression of soluble epoxide hydrolase (sEH) in rats. This study aimed to assess the effect of G-CK on SVP-induced cytotoxicity in human hepatocytes (L02 cell line), as well as the effect of the downregulation of sEH expression on both the hepatotoxicity of SVP and the hepatoprotective effects of G-CK. We observed that G-CK significantly ameliorated the decrease of cell viability, elevated ALT, AST and ALP activities, significant oxidative stress, and loss of mitochondrial membrane potential induced by SVP in L02 cells. G-CK also inhibited the SVP-mediated upregulation of sEH expression. Transfection of the L02 cells with siRNA-sEH led to a partial improvement in the L02 cytotoxicity caused by SVP by mitigating cellular oxidative stress without recovering the reduced mitochondrial membrane potential. Furthermore, the combination of siRNA-sEH and G-CK had better inhibitory effects on the SVP-induced changes of all detection indices except mitochondrial membrane potential than G-CK alone. Together, our results demonstrated that the combination of siRNA-sEH and G-CK better suppressed the SVP-induced cytotoxicity in L02 cells compared to either G-CK or siRNA-sEH alone.
Collapse
Affiliation(s)
- Luping Zhou
- Department of Clinical Pharmacology, , Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, , Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China
| | - Tai Rao
- Department of Clinical Pharmacology, , Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China
| | - Zhirong Tan
- Department of Clinical Pharmacology, , Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China
| | - Gan Zhou
- Department of Clinical Pharmacology, , Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, , Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410000, PR China.
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410000, PR China.
| |
Collapse
|
17
|
Liu G, Wu F, Wu H, Wang Y, Jiang X, Hu P, Tong X. Inactivation of cysteine 674 in the sarcoplasmic/endoplasmic reticulum calcium ATPase 2 causes retinopathy in the mouse. Exp Eye Res 2021; 207:108559. [PMID: 33848522 DOI: 10.1016/j.exer.2021.108559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Diabetic retinopathy is a multifactorial microvascular complication, and its pathogenesis hasn't been fully elucidated. The irreversible oxidation of cysteine 674 (C674) in the sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) was increased in the type 1 diabetic retinal vasculature. SERCA2 C674S knock-in (SKI) mouse line that half of C674 was replaced by serine 674 (S674) was used to study the effect of C674 inactivation on retinopathy. Compared with wild type (WT) mice, SKI mice had increased number of acellular capillaries and pericyte loss similar to those in type 1 diabetic WT mice. In the retina of SKI mice, pro-apoptotic proteins and intracellular Ca2+-dependent signaling pathways increased, while anti-apoptotic proteins and vessel density decreased. In endothelial cells, C674 inactivation increased the expression of pro-apoptotic proteins, damaged mitochondria, and induced cell apoptosis. These results suggest that a possible mechanism of retinopathy induced by type 1 diabetes is the interruption of calcium homeostasis in the retina by oxidation of C674. C674 is a key to maintain retinal health. Its inactivation can cause retinopathy similar to type 1 diabetes by promoting apoptosis. SERCA2 might be a potential target for the prevention and treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Gang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China; Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Fuhua Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Haixia Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Yaping Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaoli Jiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Pingping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| | - Xiaoyong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
18
|
Zhou T, Li S, Yang L, Xiang D. microRNA-363-3p reduces endothelial cell inflammatory responses in coronary heart disease via inactivation of the NOX4-dependent p38 MAPK axis. Aging (Albany NY) 2021; 13:11061-11082. [PMID: 33744854 PMCID: PMC8109087 DOI: 10.18632/aging.202721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Coronary heart disease (CHD) is one of the leading causes of heart-associated deaths worldwide. This study aimed to investigate the mechanism by which microRNA-363-3p (miR-363-3p) regulates endothelial injury induced by inflammatory responses in CHD. The expression patterns of miR-363-3p, NADPH oxidase 4 (NOX4), and p38 MAPK/p-p38 MAPK were examined in an established atherosclerosis (AS) model in C57BL/6 mice and in isolated coronary arterial endothelial cells (CAECs) after gain- or loss-of-function experiments. We also measured the levels of inflammatory factors (IL-6, ICAM-1, IL-10 and IL-1β), hydrogen peroxide (H2O2), and catalase (CAT) activity, followed by detection of cell viability and apoptosis. In AS, miR-363-3p was downregulated and NOX4 was upregulated, while miR-363-3p was identified as targeting NOX4 and negatively regulating its expression. The AS progression was reduced in NOX4 knockout mice. Furthermore, miR-363-3p resulted in a decreased inflammatory response, oxidative stress, and cell apoptosis in CAECs while augmenting their viability via blockade of the p38 MAPK signaling pathway. Overall, miR-363-3p hampers the NOX4-dependent p38 MAPK axis to attenuate apoptosis, oxidative stress injury, and the inflammatory reaction in CAECs, thus protecting CAECs against CHD. This finding suggests the miR-363-3p-dependent NOX4 p38 MAPK axis as a promising therapeutic target for CHD.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Cardiac Surgery, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| | - Suining Li
- Department of Cardiac Surgery, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| | - Liehong Yang
- Department of Cardiac Surgery, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| | - Daokang Xiang
- Department of Cardiac Surgery, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| |
Collapse
|
19
|
Yu W, Li S, Wu H, Hu P, Chen L, Zeng C, Tong X. Endothelial Nox4 dysfunction aggravates atherosclerosis by inducing endoplasmic reticulum stress and soluble epoxide hydrolase. Free Radic Biol Med 2021; 164:44-57. [PMID: 33418110 DOI: 10.1016/j.freeradbiomed.2020.12.450] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Our previous findings have demonstrated the protective effect of endothelial Nox4-based NADPH oxidase on atherosclerosis. One of the possible mechanisms is the inhibition of soluble epoxide hydrolase (sEH), a proinflammatory and atherogenic factor. Our goal was to investigate whether in vivo inhibition of sEH by 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) alleviates endothelial Nox4 dysfunction caused atherosclerosis and the regulatory mechanism of endothelial Nox4 on sEH. METHODS & results: We used endothelial human Nox4 dominant-negative (EDN) transgenic mice in ApoE deficient background to mimic the dysfunction of endothelial Nox4 in atherosclerosis-prone conditions. In EDN aortic endothelium, sEH and the inflammatory marker vascular cell adhesion molecule 1 (VCAM1) were upregulated. TPPU reduced atherosclerotic lesions in EDN mice. In EDN endothelial cells (ECs), the endoplasmic reticulum (ER) stress markers (BIP, IRE1α, phosphorylation of PERK, ATF6) were upregulated, and they can be suppressed by ER stress inhibitor 4-phenyl butyric acid (4-PBA). In EDN ECs, 4-PBA downregulated the expression of sEH and VCAM1, suppressed inflammation, and its application in vivo reduced atherosclerotic lesions of EDN mice. CONCLUSIONS Endothelial Nox4 dysfunction upregulated sEH to enhance inflammation, probably by its induction of ER stress. Inhibition of ER stress or sEH is beneficial to alleviate atherosclerosis caused by endothelial Nox4 dysfunction.
Collapse
Affiliation(s)
- Weimin Yu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China
| | - Siqi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China
| | - Haixia Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China
| | - Pingping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China.
| | - Lili Chen
- Wuhan Easy Diagnosis Biomedicine Co., Ltd, Wuhan, 430075, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Xiaoyong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
20
|
Urner S, Ho F, Jha JC, Ziegler D, Jandeleit-Dahm K. NADPH Oxidase Inhibition: Preclinical and Clinical Studies in Diabetic Complications. Antioxid Redox Signal 2020; 33:415-434. [PMID: 32008354 DOI: 10.1089/ars.2020.8047] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Oxidative stress plays a critical role in the development and progression of serious micro- and macrovascular complications of diabetes. Nicotinamide adenine dinucleotide phosphate oxidase (NOX)-derived reactive oxygen species (ROS) significantly contribute to oxidative stress-associated inflammatory pathways that lead to tissue damage of different organs, including the kidneys, retina, brain, nerves, and the cardiovascular system. Recent Advances: Preclinical studies, including genetic-modified mouse models or cell culture models, have revealed the role of specific NOX isoforms in different diabetic complications, and suggested them as a promising target for the treatment of these diseases. Critical Issues: In this review, we provide an overview of the role of ROS and oxidative stress in macrovascular complications, such as stroke, myocardial infarction, coronary artery disease, and peripheral vascular disease that are all mainly driven by atherosclerosis, as well as microvascular complications, such as diabetic retinopathy, nephropathy, and neuropathy. We summarize conducted genetic deletion studies of different Nox isoforms as well as pharmacological intervention studies using NOX inhibitors in the context of preclinical as well as clinical research on diabetic complications. Future Directions: We outline the isoforms that are most promising for future clinical trials in the context of micro- and macrovascular complications of diabetes.
Collapse
Affiliation(s)
- Sofia Urner
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Florence Ho
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Jay C Jha
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Karin Jandeleit-Dahm
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
21
|
Rajaram RD, Dissard R, Jaquet V, de Seigneux S. Potential benefits and harms of NADPH oxidase type 4 in the kidneys and cardiovascular system. Nephrol Dial Transplant 2020; 34:567-576. [PMID: 29931336 DOI: 10.1093/ndt/gfy161] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 12/21/2022] Open
Abstract
The main function of NADPH oxidases is to catalyse the formation of reactive oxygen species (ROS). NADPH oxidase 4 (NOX4) is expressed at high levels in kidney tubular cells, and at lower levels in endothelial cells, cardiomyocytes and other cell types under physiological conditions. NOX4 is constitutively active producing hydrogen peroxide (H2O2) as the prevalent ROS detected, whereas other NOX isoforms present in the renal and cardiovascular systems (i.e. NOX1, NOX2 and NOX5) generate superoxide radical anions as main products. Pharmacological inhibition of NOX4 has received enormous attention for its potential therapeutic benefit in fibrotic disease and nephropathologies. Ongoing clinical trials are testing this approach in humans. Diabetes elevates NOX4 expression in podocytes and mesangial cells, which was shown to damage glomeruli leading to podocyte loss, mesangial cell hypertrophy and matrix accumulation. Consequently, NOX4 represents an interesting therapeutic target in diabetic nephropathy. On the contrary, experiments using NOX4-deficient mice have shown that NOX4 is cytoprotective in tubular cells, cardiomyocytes, endothelial cells and vascular smooth muscle cells, and has a metabolism-regulating role when these cells are subjected to injury. Mice with systemic NOX4 deletion are more susceptible to acute and chronic tubular injury, heart failure and atherosclerosis. Overall, the current literature suggests a detrimental role of increased NOX4 expression in mesangial cells and podocytes during diabetic nephropathy, but a cytoprotective role of this enzyme in other cellular types where it is expressed endogenously. We review here the recent evidence on the role of NOX4 in the kidneys and cardiovascular system. With the emergence of pharmacological NOX4 inhibitors in clinical trials, caution should be taken in identifying potential side effects in patients prone to acute kidney injury and cardiovascular disease.
Collapse
Affiliation(s)
- Renuga D Rajaram
- Laboratory of Nephrology, Service of Nephrology, Departments of Internal Medicine Specialties and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Romain Dissard
- Laboratory of Nephrology, Service of Nephrology, Departments of Internal Medicine Specialties and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sophie de Seigneux
- Laboratory of Nephrology, Service of Nephrology, Departments of Internal Medicine Specialties and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
22
|
McElwain CJ, Tuboly E, McCarthy FP, McCarthy CM. Mechanisms of Endothelial Dysfunction in Pre-eclampsia and Gestational Diabetes Mellitus: Windows Into Future Cardiometabolic Health? Front Endocrinol (Lausanne) 2020; 11:655. [PMID: 33042016 PMCID: PMC7516342 DOI: 10.3389/fendo.2020.00655] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Placental insufficiency and adipose tissue dysregulation are postulated to play key roles in the pathophysiology of both pre-eclampsia (PE) and gestational diabetes mellitus (GDM). A dysfunctional release of deleterious signaling motifs can offset an increase in circulating oxidative stressors, pro-inflammatory factors and various cytokines. It has been previously postulated that endothelial dysfunction, instigated by signaling from endocrine organs such as the placenta and adipose tissue, may be a key mediator of the vasculopathy that is evident in both adverse obstetric complications. These signaling pathways also have significant effects on long term maternal cardiometabolic health outcomes, specifically cardiovascular disease, hypertension, and type II diabetes. Recent studies have noted that both PE and GDM are strongly associated with lower maternal flow-mediated dilation, however the exact pathways which link endothelial dysfunction to clinical outcomes in these complications remains in question. The current diagnostic regimen for both PE and GDM lacks specificity and consistency in relation to clinical guidelines. Furthermore, current therapeutic options rely largely on clinical symptom control such as antihypertensives and insulin therapy, rather than that of early intervention or prophylaxis. A better understanding of the pathogenic origin of these obstetric complications will allow for more targeted therapeutic interventions. In this review we will explore the complex signaling relationship between the placenta and adipose tissue in PE and GDM and investigate how these intricate pathways affect maternal endothelial function and, hence, play a role in acute pathophysiology and the development of future chronic maternal health outcomes.
Collapse
Affiliation(s)
- Colm J. McElwain
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
- *Correspondence: Colm J. McElwain
| | - Eszter Tuboly
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| |
Collapse
|
23
|
DeVallance E, Li Y, Jurczak MJ, Cifuentes-Pagano E, Pagano PJ. The Role of NADPH Oxidases in the Etiology of Obesity and Metabolic Syndrome: Contribution of Individual Isoforms and Cell Biology. Antioxid Redox Signal 2019; 31:687-709. [PMID: 31250671 PMCID: PMC6909742 DOI: 10.1089/ars.2018.7674] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Highly prevalent in Western cultures, obesity, metabolic syndrome, and diabetes increase the risk of cardiovascular morbidity and mortality and cost health care systems billions of dollars annually. At the cellular level, obesity, metabolic syndrome, and diabetes are associated with increased production of reactive oxygen species (ROS). Increased levels of ROS production in key organ systems such as adipose tissue, skeletal muscle, and the vasculature cause disruption of tissue homeostasis, leading to increased morbidity and risk of mortality. More specifically, growing evidence implicates the nicotinamide adenine dinucleotide phosphate oxidase (NOX) enzymes in these pathologies through impairment of insulin signaling, inflammation, and vascular dysfunction. The NOX family of enzymes is a major driver of redox signaling through its production of superoxide anion, hydrogen peroxide, and attendant downstream metabolites acting on redox-sensitive signaling molecules. Recent Advances: The primary goal of this review is to highlight recent advances and survey our present understanding of cell-specific NOX enzyme contributions to metabolic diseases. Critical Issues: However, due to the short half-lives of individual ROS and/or cellular defense systems, radii of ROS diffusion are commonly short, often restricting redox signaling and oxidant stress to localized events. Thus, special emphasis should be placed on cell type and subcellular location of NOX enzymes to better understand their role in the pathophysiology of metabolic diseases. Future Directions: We discuss the targeting of NOX enzymes as potential therapy and bring to light potential emerging areas of NOX research, microparticles and epigenetics, in the context of metabolic disease.
Collapse
Affiliation(s)
- Evan DeVallance
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yao Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick J Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
24
|
Gray SP, Shah AM, Smyrnias I. NADPH oxidase 4 and its role in the cardiovascular system. ACTA ACUST UNITED AC 2019; 1:H59-H66. [PMID: 32923955 PMCID: PMC7439918 DOI: 10.1530/vb-19-0014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022]
Abstract
The heart relies on complex mechanisms that provide adequate myocardial oxygen supply in order to maintain its contractile function. At the cellular level, oxygen undergoes one electron reduction to superoxide through the action of different types of oxidases (e.g. xanthine oxidases, uncoupled nitric oxide synthases, NADPH oxidases or NOX). Locally generated oxygen-derived reactive species (ROS) are involved in various signaling pathways including cardiac adaptation to different types of physiological and pathophysiological stresses (e.g. hypoxia or overload). The specific effects of ROS and their regulation by oxidases are dependent on the amount of ROS generated and their specific subcellular localization. The NOX family of NADPH oxidases is a main source of ROS in the heart. Seven distinct Nox isoforms (NOX1–NOX5 and DUOX1 and 2) have been identified, of which NOX1, 2, 4 and 5 have been characterized in the cardiovascular system. For the purposes of this review, we will focus on the effects of NADPH oxidase 4 (NOX4) in the heart.
Collapse
Affiliation(s)
- Stephen P Gray
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, UK
| | - Ioannis Smyrnias
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, UK
| |
Collapse
|
25
|
Stevenson MD, Canugovi C, Vendrov AE, Hayami T, Bowles DE, Krause KH, Madamanchi NR, Runge MS. NADPH Oxidase 4 Regulates Inflammation in Ischemic Heart Failure: Role of Soluble Epoxide Hydrolase. Antioxid Redox Signal 2019; 31:39-58. [PMID: 30450923 PMCID: PMC6552006 DOI: 10.1089/ars.2018.7548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aims: Oxidative stress is implicated in cardiomyocyte cell death and cardiac remodeling in the failing heart. The role of NADPH oxidase 4 (NOX4) in cardiac adaptation to pressure overload is controversial, but its function in myocardial ischemic stress has not been thoroughly elucidated. This study examined the function of NOX4 in the pathogenesis of ischemic heart failure, utilizing mouse models, cell culture, and human heart samples. Results:Nox4-/- mice showed a protective phenotype in response to permanent left anterior descending coronary artery ligation with smaller infarction area, lower cardiomyocyte cross-sectional area, higher capillary density, and less cell death versus wild-type (WT) mice. Nox4-/- mice had lower activity of soluble epoxide hydrolase (sEH), a potent regulator of inflammation. Nox4-/- mice also showed a 50% reduction in the number of infiltrating CD68+ macrophages in the peri-infarct zone versus WT mice. Adenoviral overexpression of NOX4 in cardiomyoblast cells increased sEH expression and activity and CCL4 and CCL5 levels; inhibition of sEH activity in NOX4 overexpressing cells attenuated the cytokine levels. Human hearts with ischemic cardiomyopathy showed adverse cardiac remodeling, increased NOX4 and sEH protein expression and CCL4 and CCL5 levels compared with control nonfailing hearts. Innovation and Conclusion: These data from the Nox4-/- mouse model and human heart tissues show for the first time that oxidative stress from increased NOX4 expression has a functional role in ischemic heart failure. One mechanism by which NOX4 contributes to ischemic heart failure is by increasing inflammatory cytokine production via enhanced sEH activity.
Collapse
Affiliation(s)
- Mark D Stevenson
- 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Chandrika Canugovi
- 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Aleksandr E Vendrov
- 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Takayuki Hayami
- 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Dawn E Bowles
- 2 Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Karl-Heinz Krause
- 3 Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nageswara R Madamanchi
- 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Marschall S Runge
- 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
26
|
Severino P, D'Amato A, Netti L, Pucci M, Infusino F, Maestrini V, Mancone M, Fedele F. Myocardial Ischemia and Diabetes Mellitus: Role of Oxidative Stress in the Connection between Cardiac Metabolism and Coronary Blood Flow. J Diabetes Res 2019; 2019:9489826. [PMID: 31089475 PMCID: PMC6476021 DOI: 10.1155/2019/9489826] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/23/2019] [Accepted: 03/13/2019] [Indexed: 12/27/2022] Open
Abstract
Ischemic heart disease (IHD) has several risk factors, among which diabetes mellitus represents one of the most important. In diabetic patients, the pathophysiology of myocardial ischemia remains unclear yet: some have atherosclerotic plaque which obstructs coronary blood flow, others show myocardial ischemia due to coronary microvascular dysfunction in the absence of plaques in epicardial vessels. In the cross-talk between myocardial metabolism and coronary blood flow (CBF), ion channels have a main role, and, in diabetic patients, they are involved in the pathophysiology of IHD. The exposition to the different cardiovascular risk factors and the ischemic condition determine an imbalance of the redox state, defined as oxidative stress, which shows itself with oxidant accumulation and antioxidant deficiency. In particular, several products of myocardial metabolism, belonging to oxidative stress, may influence ion channel function, altering their capacity to modulate CBF, in response to myocardial metabolism, and predisposing to myocardial ischemia. For this reason, considering the role of oxidative and ion channels in the pathophysiology of myocardial ischemia, it is allowed to consider new therapeutic perspectives in the treatment of IHD.
Collapse
Affiliation(s)
- Paolo Severino
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Andrea D'Amato
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Lucrezia Netti
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Mariateresa Pucci
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Fabio Infusino
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Viviana Maestrini
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Massimo Mancone
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Francesco Fedele
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
27
|
Cheng Y, Zhou M, Zhou W. MicroRNA-30e regulates TGF-β-mediated NADPH oxidase 4-dependent oxidative stress by Snai1 in atherosclerosis. Int J Mol Med 2019; 43:1806-1816. [PMID: 30816428 PMCID: PMC6414159 DOI: 10.3892/ijmm.2019.4102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/18/2019] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression at a post-transcription level in living organisms. Great attention has been paid to the role of miRNAs in the pathogenesis of atherosclerosis (AS). The present study was designed to investigate the function of miRNA-30e in atherosclerosis and to explore potential mechanisms. The expression of miRNA-30e was decreased in an AS model, compared with the normal group. The downregulation of miRNA-30e increased oxidative stress and reactive oxygen species (ROS) levels in vitro. Then, overexpression of miRNA-30e led to decreased oxidative stress and ROS levels in vitro. The downregulation of miRNA-30e induced the protein expression of Snai1, transforming growth factor (TGF)-β and mothers against decapentaplegic homolog 2 (Smad2) and suppressed that of NADPH oxidase 4 (Nox4) in vitro. The activation of Snai1 or TGF-β attenuated the effects of miRNA-30e on oxidative stress in vitro. Consistently, the inhibition of Nox4 attenuated the effects of miRNA-30e on oxidative stress in vitro. These findings demonstrated for the first time that miRNA-30e regulated AS by TGF-β-mediated NADPH oxidase 4-dependent oxidative stress via Snai1.
Collapse
Affiliation(s)
- Ye Cheng
- Department of Cardiology, Xiamen Cardiovascular Hospital Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Meili Zhou
- Department of Cardiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian 361021, P.R. China
| | - Wenjun Zhou
- Department of Intensive Care Unit, Rui Jin Hospital, Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, P.R. China
| |
Collapse
|
28
|
A causal link between oxidative stress and inflammation in cardiovascular and renal complications of diabetes. Clin Sci (Lond) 2018; 132:1811-1836. [PMID: 30166499 DOI: 10.1042/cs20171459] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022]
Abstract
Chronic renal and vascular oxidative stress in association with an enhanced inflammatory burden are determinant processes in the development and progression of diabetic complications including cardiovascular disease (CVD), atherosclerosis and diabetic kidney disease (DKD). Persistent hyperglycaemia in diabetes mellitus increases the production of reactive oxygen species (ROS) and activates mediators of inflammation as well as suppresses antioxidant defence mechanisms ultimately contributing to oxidative stress which leads to vascular and renal injury in diabetes. Furthermore, there is increasing evidence that ROS, inflammation and fibrosis promote each other and are part of a vicious connection leading to development and progression of CVD and kidney disease in diabetes.
Collapse
|
29
|
Ochoa CD, Wu RF, Terada LS. ROS signaling and ER stress in cardiovascular disease. Mol Aspects Med 2018; 63:18-29. [PMID: 29559224 DOI: 10.1016/j.mam.2018.03.002] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) produces the vast majority of all proteins secreted into the extracellular space, including hormones and cytokines, as well as cell surface receptors and other proteins which interact with the environment. Accordingly, this organelle controls essentially all vital links to a cell's external milieu, responding to systemic metabolic, inflammatory, endocrine, and mechanical stimuli. The central role the ER plays in meeting protein synthetic and quality control requirements in the face of such demands is matched by an extensive and versatile ER stress response signaling network. ROS mediate several critical aspects of this response. Nox4, an ER resident capable of producing ROS, acts as a proximal signaling intermediate to transduce ER stress-related conditions to the unfolded protein response, a homeostatic corrective mechanism. However, chronic ER stress caused by unrelenting internal or external demands produces a secondary rise in ROS, generally resulting in cell death. Sorting out the involvement of ROS at different levels of the ER stress response in specific cell types is key to understanding the molecular basis for chronic diseases such as atherosclerosis, hypertension, and diabetes. Here, we provide an overview of ER stress signaling with an emphasis on the role of ROS.
Collapse
Affiliation(s)
- Cristhiaan D Ochoa
- Department of Internal Medicine, Pulmonary and Critical Care, University of Texas Southwestern, Dallas, TX, USA
| | - Ru Feng Wu
- Department of Internal Medicine, Pulmonary and Critical Care, University of Texas Southwestern, Dallas, TX, USA
| | - Lance S Terada
- Department of Internal Medicine, Pulmonary and Critical Care, University of Texas Southwestern, Dallas, TX, USA.
| |
Collapse
|
30
|
Abstract
Reactive oxygen species (ROS) are well known for their role in mediating both physiological and pathophysiological signal transduction. Enzymes and subcellular compartments that typically produce ROS are associated with metabolic regulation, and diseases associated with metabolic dysfunction may be influenced by changes in redox balance. In this review, we summarize the current literature surrounding ROS and their role in metabolic and inflammatory regulation, focusing on ROS signal transduction and its relationship to disease progression. In particular, we examine ROS production in compartments such as the cytoplasm, mitochondria, peroxisome, and endoplasmic reticulum and discuss how ROS influence metabolic processes such as proteasome function, autophagy, and general inflammatory signaling. We also summarize and highlight the role of ROS in the regulation metabolic/inflammatory diseases including atherosclerosis, diabetes mellitus, and stroke. In order to develop therapies that target oxidative signaling, it is vital to understand the balance ROS signaling plays in both physiology and pathophysiology, and how manipulation of this balance and the identity of the ROS may influence cellular and tissue homeostasis. An increased understanding of specific sources of ROS production and an appreciation for how ROS influence cellular metabolism may help guide us in the effort to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Daniel S Kikuchi
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Marina S Hernandes
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Qian Xu
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Kathy K Griendling
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA.
| |
Collapse
|
31
|
Han H, Qiu F, Zhao H, Tang H, Li X, Shi D. Dietary flaxseed oil improved western-type diet-induced atherosclerosis in apolipoprotein-E knockout mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|