1
|
Khoshroo N, Rahimi A, Kakhki S, Kaffashan F, Masoudi M, Baharlou S, Beheshti F. Feeding metformin during pregnancy and lactation periods improved learning and memory impairment in the rat offspring exposed to febrile seizure: Role of oxidative stress and inflammatory response. Int J Dev Neurosci 2024; 84:99-108. [PMID: 38178780 DOI: 10.1002/jdn.10311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Many clinical evidences have reported the higher risk of seizure in young children and infants after exposure to hyperthermia, which more likely can cause brain damage and affect cognitive function, so, many researches were focused on prevention or treatment of febrile seizure (FS) with minimal adverse effects. Considering the potential effects of oxidative stress as a prominent trigger in FS, and demonstrating the anti-oxidant effects of metformin, the present study aimed to investigate the protective effect of metformin administration in prenatal and lactation periods in rat pups exposed to hyperthermia by which induced seizure. METHOD AND MATERIALS Pregnant rats were divided into six groups: (1) vehicle: pregnant rats received normal saline during pregnancy and lactation; (2) FS: pregnant rats received normal saline during pregnancy and lactation; (3-5) FS-Met50/100/150 mg/kg: pregnant rats received different doses of metformin including 50, 100 and 150 mg/kg during pregnancy and lactation; (6) Met150 mg/kg: pregnant rats received Met150 mg/kg during pregnancy and lactation. The male pups born to mothers received in all FS groups exposed to hyperthermia. All experimental groups were allowed to grow up, and after the lactation period, they were subjected for behavioural tests and biochemical analysis. RESULTS According to the present findings, the prenatal and lactation exposure to the highest dose of metformin demonstrated significant difference with FS group in both behavioural and biochemical test analyses. Although the remaining doses of metformin were also effective, the much better results were reported with the highest dose of metformin (150 mg/kg). Interestingly, the highest dose of metformin administered alone demonstrated better result than vehicle in probe trial test. CONCLUSION Considering the present research and related study in relation to metformin in ameliorating the epilepsy symptoms, there are numerous evidences on positive effect of metformin on seizure. Although the exact mechanism is unclear, the anti-oxidant effect of metformin is strongly supported.
Collapse
Affiliation(s)
- Niloofar Khoshroo
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Rahimi
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Samaneh Kakhki
- Department of Clinical Biochemistry, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Fatemeh Kaffashan
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Maha Masoudi
- Vice Chancellery of Education and Research, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Soheil Baharlou
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
2
|
Yi Y, Zhong C, Wei-wei H. The long-term neurodevelopmental outcomes of febrile seizures and underlying mechanisms. Front Cell Dev Biol 2023; 11:1186050. [PMID: 37305674 PMCID: PMC10248510 DOI: 10.3389/fcell.2023.1186050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Febrile seizures (FSs) are convulsions caused by a sudden increase in body temperature during a fever. FSs are one of the commonest presentations in young children, occurring in up to 4% of children between the ages of about 6 months and 5 years old. FSs not only endanger children's health, cause panic and anxiety to families, but also have many adverse consequences. Both clinical and animal studies show that FSs have detrimental effects on neurodevelopment, that cause attention deficit hyperactivity disorder (ADHD), increased susceptibility to epilepsy, hippocampal sclerosis and cognitive decline during adulthood. However, the mechanisms of FSs in developmental abnormalities and disease occurrence during adulthood have not been determined. This article provides an overview of the association of FSs with neurodevelopmental outcomes, outlining both the underlying mechanisms and the possible appropriate clinical biomarkers, from histological changes to cellular molecular mechanisms. The hippocampus is the brain region most significantly altered after FSs, but the motor cortex and subcortical white matter may also be involved in the development disorders induced by FSs. The occurrence of multiple diseases after FSs may share common mechanisms, and the long-term role of inflammation and γ-aminobutyric acid (GABA) system are currently well studied.
Collapse
Affiliation(s)
- You Yi
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Zhong
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hu Wei-wei
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Insight into Drug Resistance in Status Epilepticus: Evidence from Animal Models. Int J Mol Sci 2023; 24:ijms24032039. [PMID: 36768361 PMCID: PMC9917109 DOI: 10.3390/ijms24032039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023] Open
Abstract
Status epilepticus (SE), a condition with abnormally prolonged seizures, is a severe type of epilepsy. At present, SE is not well controlled by clinical treatments. Antiepileptic drugs (AEDs) are the main therapeutic approaches, but they are effective for SE only with a narrow intervening window, and they easily induce resistance. Thus, in this review, we provide an updated summary for an insight into drug-resistant SE, hoping to add to the understanding of the mechanism of refractory SE and the development of active compounds. Firstly, we briefly outline the limitations of current drug treatments for SE by summarizing the extensive experimental literature and clinical data through a search of the PubMed database, and then summarize the common animal models of refractory SE with their advantages and disadvantages. Notably, we also briefly review some of the hypotheses about drug resistance in SE that are well accepted in the field, and furthermore, put forward future perspectives for follow-up research on SE.
Collapse
|
4
|
Katsarou AM, Kubova H, Auvin S, Mantegazza M, Barker-Haliski M, Galanopoulou AS, Reid CA, Semple BD. A companion to the preclinical common data elements for rodent models of pediatric acquired epilepsy: A report of the TASK3-WG1B, Pediatric and Genetic Models Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35950641 DOI: 10.1002/epi4.12641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/08/2022] [Indexed: 11/05/2022] Open
Abstract
Epilepsy syndromes during the early years of life may be attributed to an acquired insult, such as hypoxic-ischemic injury, infection, status epilepticus, or brain trauma. These conditions are frequently modeled in experimental rodents to delineate mechanisms of epileptogenesis and investigate novel therapeutic strategies. However, heterogeneity and subsequent lack of reproducibility of such models across laboratories is an ongoing challenge to maintain scientific rigor and knowledge advancement. To address this, as part of the TASK3-WG1B Working Group of the International League Against Epilepsy/American Epilepsy Society Joint Translational Task Force, we have developed a series of case report forms (CRFs) to describe common data elements for pediatric acquired epilepsy models in rodents. The "Rodent Models of Pediatric Acquired Epilepsy" Core CRF was designed to capture cohort-general information; while two Specific CRFs encompass physical induction models and chemical induction models, respectively. This companion manuscript describes the key elements of these models and why they are important to be considered and reported consistently. Together, these CRFs provide investigators with the tools to systematically record critical information regarding their chosen model of acquired epilepsy during early life, for improved standardization and transparency across laboratories. These outcomes will support the ultimate goal of such research; that is, to understand the childhood onset-specific biology of epileptogenesis after acquired insults, and translate this knowledge into therapeutics to improve pediatric patient outcomes and minimize the lifetime burden of epilepsy.
Collapse
Affiliation(s)
- Anna-Maria Katsarou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hana Kubova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Stéphane Auvin
- Service de Neurologie Pédiatrique, Hôpital Robert-Debré, INSERM UMR 1141, APHP, Université de Paris, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Massimo Mantegazza
- Inserm, LabEx ICST, Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, Université Côte d'Azur, Valbonne-Sophia Antipolis, France
| | - Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Christopher A Reid
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Prahran, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Mohammed HS, Hassan HM, Zakhari MH, Mostafa H, Mohamad EA. Linear and non-linear feature extraction from rat electrocorticograms for seizure detection by support vector machine. BIOMED ENG-BIOMED TE 2021; 66:563-572. [PMID: 34384008 DOI: 10.1515/bmt-2021-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/30/2021] [Indexed: 11/15/2022]
Abstract
Seizures, the main symptom of epilepsy, are provoked due to a neurological disorder that underlies the disease. The accurate detection of seizures is a crucial step in any procedure of treatment. In the present study, electrocorticogram (ECoG) signals were recorded from awake and freely moving animals implanted with cortical electrodes before and after pentylenetetrazol, the chemo-convulsant injection. ECoG signals were segmented into 4-s epochs and labeled. Twenty-four linear and non-linear features were extracted from the time and frequency domains of the ECoG signals. The extracted features either individually or in combinations were fed to an automatic support vector machine (SVM) classification system. SVM classifier was trained with 5 min of ictal and non-ictal labeled ECoG signals to build the hyperplane that separates two sets of training signals. Sensitivity, specificity, and accuracy were determined for the testing dataset using the different feature combinations. It has been found that some linear features either individually or in combinations outperform non-linear features in terms of the accuracy for seizure detection. The maximum accuracy achieved by the system was 95.3% and has been obtained only after linear and non-linear features were combined. ECoG signals were classified without pre-processing or removal of artifacts to reduce the required computational time to be suitable for online implementation purposes. This may prove the detection system's robustness and supports its use in online seizure detection protocols.
Collapse
Affiliation(s)
- Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Hagar M Hassan
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Michael H Zakhari
- Department of Electronics and Communications Engineering, Cairo University, Giza, Egypt
| | | | - Ebtesam A Mohamad
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Mohammed HS, Khadrawy YA. Electrophysiological and neurochemical evaluation of the adverse effects of REM sleep deprivation and epileptic seizures on rat's brain. Life Sci 2021; 273:119303. [PMID: 33667518 DOI: 10.1016/j.lfs.2021.119303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 11/25/2022]
Abstract
AIM The current study aims to investigate the impact of paradoxical (REM) sleep deprivation and/or epileptic seizures on rat's cortical brain tissues. MAIN METHODS Animals were divided into four groups; control, epileptic, REM sleep deprived and epileptic subjected to REM sleep deprivation. Electrocorticogram (ECoG) signals were recorded and quantitatively analyzed for each group. Concentrations of amino acid neurotransmitters; proinflammatory cytokines; and oxidative stress parameters; and acetylcholinesterase activity were determined in the cortex of the animals in different groups. KEY FINDINGS Results showed significant variations in the spectral distribution of ECoG waves in the epilepsy model, 24- and 48-hours of REM sleep deprivation and their combined effects indicating a state of cortical hyperexcitability. Significant increases in NO and taurine and significant decrement in glutamine, GABA and glycine were determined. In REM sleep deprived rats significant elevation in glutamate, aspartate, glycine and taurine and a significant lowering in GABA were obtained. This was accompanied by significant reduction in AchE and IL-β. In the cortical tissue of epileptic rats deprived from REM sleep significant increases in lipid peroxidation, TNF-α, IL-1β, IL-6 and aspartate and a significant reduction in AchE were observed. SIGNIFICANCE The present data indicate that REM sleep deprivation induces an increase in lipid peroxidation and storming in proinflammatory cytokines in the cortex of rat model of epilepsy during SRS. These changes are associated with a decreased seizure threshold as inferred from the increase in alpha and Beta waves and a decrease in Delta waves of ECoG.
Collapse
Affiliation(s)
- Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Yasser A Khadrawy
- Medical Physiology Department, National Research Center, Giza, Egypt
| |
Collapse
|
7
|
Atabaki R, Roohbakhsh A, Moghimi A, Mehri S. Protective effects of maternal administration of curcumin and hesperidin in the rat offspring following repeated febrile seizure: Role of inflammation and TLR4. Int Immunopharmacol 2020; 86:106720. [PMID: 32585605 DOI: 10.1016/j.intimp.2020.106720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Neuroinflammation has a key role in seizure generation and perpetuation in the neonatal period, and toll-like receptor 4 (TLR4) pathway has a prominent role in neuroinflammatory diseases. Administration of antioxidants and targeting TLR4 in the embryonic period may protect rat offspring against the next incidence of febrile seizure and its harmful effects. Curcumin and hesperidin are natural compounds with anti-inflammatory and antioxidant properties and have an inhibitory action on TLR4 receptors. We evaluated the effect of maternal administration of curcumin and hesperidin on infantile febrile seizure and subsequent memory dysfunction in adulthood. Hyperthermia febrile seizure was induced on postnatal days 9-11 on male rat pups with 24 h intervals, in a Plexiglas box that was heated to ~45 °C by a heat lamp. We used enzyme-linked immunosorbent assay, Western blotting, malondialdehyde (MDA), and glutathione (GSH) assessment for evaluation of inflammatory cytokine levels, TLR4 protein expression, and oxidative responses in the hippocampal tissues. For assessing working memory and long-term potentiation, the double Y-maze test and Schaffer collateral-CA1 in vivo electrophysiological recording were performed, respectively Our results showed that curcumin and hesperidin decreased TNF-α, IL-10, and TLR4 protein expression and reversed memory dysfunction. However, they did not provoke a significant effect on GSH content or amplitude and slope of recorded fEPSPs in the hippocampus. In addition, curcumin, but not hesperidin, decreased interleukin-1β (IL-1β) and MDA levels. These findings imply that curcumin and hesperidin induced significant protective effects on febrile seizures, possibly via their anti-inflammatory and antioxidant properties and downregulation of TLR4.
Collapse
Affiliation(s)
- Rabi Atabaki
- Rayan Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Moghimi
- Rayan Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran.
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Mohammed HS, Aboul Ezz HS, Zedan A, Ali MA. Electrophysiological and Neurochemical Assessment of Selenium Alone or Combined with Carbamazepine in an Animal Model of Epilepsy. Biol Trace Elem Res 2020; 195:579-590. [PMID: 31444771 DOI: 10.1007/s12011-019-01872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/18/2019] [Indexed: 11/08/2022]
Abstract
The present study aims to evaluate the efficacy of selenium (Se) alone or combined with carbamazepine (CBZ) against the adverse effects induced by the chemoconvulsant pentylenetetrazole (PTZ) in the cortex of adult male rats. Electrocorticogram (ECoG) and oxidative stress markers were implemented to evaluate the differences between treated and untreated animals. Animals were divided into five groups: control group that received i.p. saline injection, PTZ-treated group that received a single i.p. injection of PTZ (60 mg/kg) for induction of seizures followed by a daily i.p. injection of saline, Se-treated group that received an i.p. injection of sodium selenite (0.3 mg/kg/day) after PTZ administration, CBZ-treated group that received orally CBZ (80 mg/kg/day) after PTZ administration, and combination (Se plus CBZ)-treated group that received an oral administration of CBZ (80 mg/kg/day) followed by an i.p. injection of sodium selenite (0.3 mg/kg/day) after PTZ administration. Quantitative analyses of the ECoG indices and the neurochemical parameters revealed that Se and CBZ have mitigated the adverse effects induced by PTZ. The main results were decrease in the number of epileptic spikes, restoring the normal distribution of slow and fast ECoG frequencies and attenuation of most of the oxidative stress markers. However, there was an increase in lipid perioxidation marker in combined treatment of CBZ and Se. The electrophysiological and neurochemical data proved the potential of these techniques in evaluating the treatment's efficiency and suggest that supplementation of Se with antiepileptic drugs (AEDs) may be beneficial in ameliorating most of the alterations induced in the brain as a result of seizure insults and could be recommended as an adjunct therapy with AEDs.
Collapse
Affiliation(s)
- Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Heba S Aboul Ezz
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Asmaa Zedan
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Maha A Ali
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Mohammed HS, Khadrawy YA, El-Sherbini TM, Amer HM. Electrocortical and Biochemical Evaluation of Antidepressant Efficacy of Formulated Nanocurcumin. Appl Biochem Biotechnol 2018; 187:1096-1112. [DOI: 10.1007/s12010-018-2866-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
|