1
|
Fischer C, Thomas D, Gurke R, Tegeder I. Brain region specific regulation of anandamide (down) and sphingosine-1-phosphate (up) in association with anxiety (AEA) and resilience (S1P) in a mouse model of chronic unpredictable mild stress. Pflugers Arch 2024:10.1007/s00424-024-03012-0. [PMID: 39177699 DOI: 10.1007/s00424-024-03012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Chronic unpredictable and unavoidable stress is associated with mental health problems such as depression and anxiety, whereas cycles of stress and stress relief strengthen resilience. It has been suggested that increased breakdown of brain endocannabinoids (eCB) promotes a feeling of adversity. To assess the impact of stress on bioactive lipid homeostasis, we analyzed eCB, sphingolipids, and ceramides in seven brain regions and plasma in a mouse model of chronic unpredictable mild stress. Chronic unpredictable mild stress (CUMS) was associated with low levels of anandamide in hippocampus and prefrontal cortex in association with indicators of anxiety (elevated plus maze). Oppositely, CUMS caused elevated levels of sphingosine-1-phosphate (S1P d18:1) and sphinganine-1-phosphate (S1P d18:0) in the midbrain and thalamus, which was associated with readouts of increased stress resilience, i.e., marble burying and struggling in the tail suspension tests. In the periphery, elevated plasma levels of ceramides revealed similarities with human major depression and suggested unfavorable effects of stress on metabolism, but plasma lipids were not associated with body weight, sucrose consumption, or behavioral features of depression or anxiety. The observed brain site-specific lipid changes suggest that the forebrain succumbs to adverse stress effects while the midbrain takes up defensive adjustments.
Collapse
Affiliation(s)
- Caroline Fischer
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Dominique Thomas
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Robert Gurke
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Irmgard Tegeder
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
2
|
Lipp HP, Krackow S, Turkes E, Benner S, Endo T, Russig H. IntelliCage: the development and perspectives of a mouse- and user-friendly automated behavioral test system. Front Behav Neurosci 2024; 17:1270538. [PMID: 38235003 PMCID: PMC10793385 DOI: 10.3389/fnbeh.2023.1270538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/19/2024] Open
Abstract
IntelliCage for mice is a rodent home-cage equipped with four corner structures harboring symmetrical double panels for operant conditioning at each of the two sides, either by reward (access to water) or by aversion (non-painful stimuli: air-puffs, LED lights). Corner visits, nose-pokes and actual licks at bottle-nipples are recorded individually using subcutaneously implanted transponders for RFID identification of up to 16 adult mice housed in the same home-cage. This allows for recording individual in-cage activity of mice and applying reward/punishment operant conditioning schemes in corners using workflows designed on a versatile graphic user interface. IntelliCage development had four roots: (i) dissatisfaction with standard approaches for analyzing mouse behavior, including standardization and reproducibility issues, (ii) response to handling and housing animal welfare issues, (iii) the increasing number of mouse models had produced a high work burden on classic manual behavioral phenotyping of single mice. and (iv), studies of transponder-chipped mice in outdoor settings revealed clear genetic behavioral differences in mouse models corresponding to those observed by classic testing in the laboratory. The latter observations were important for the development of home-cage testing in social groups, because they contradicted the traditional belief that animals must be tested under social isolation to prevent disturbance by other group members. The use of IntelliCages reduced indeed the amount of classic testing remarkably, while its flexibility was proved in a wide range of applications worldwide including transcontinental parallel testing. Essentially, two lines of testing emerged: sophisticated analysis of spontaneous behavior in the IntelliCage for screening of new genetic models, and hypothesis testing in many fields of behavioral neuroscience. Upcoming developments of the IntelliCage aim at improved stimulus presentation in the learning corners and videotracking of social interactions within the IntelliCage. Its main advantages are (i) that mice live in social context and are not stressfully handled for experiments, (ii) that studies are not restricted in time and can run in absence of humans, (iii) that it increases reproducibility of behavioral phenotyping worldwide, and (iv) that the industrial standardization of the cage permits retrospective data analysis with new statistical tools even after many years.
Collapse
Affiliation(s)
- Hans-Peter Lipp
- Faculty of Medicine, Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland
| | - Sven Krackow
- Institute of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Emir Turkes
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Seico Benner
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| | | | | |
Collapse
|
3
|
Vogel A, Ueberbach T, Wilken-Schmitz A, Hahnefeld L, Franck L, Weyer MP, Jungenitz T, Schmid T, Buchmann G, Freudenberg F, Brandes RP, Gurke R, Schwarzacher SW, Geisslinger G, Mittmann T, Tegeder I. Repetitive and compulsive behavior after Early-Life-Pain associated with reduced long-chain sphingolipid species. Cell Biosci 2023; 13:155. [PMID: 37635256 PMCID: PMC10463951 DOI: 10.1186/s13578-023-01106-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/13/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Pain in early life may impact on development and risk of chronic pain. We developed an optogenetic Cre/loxP mouse model of "early-life-pain" (ELP) using mice with transgenic expression of channelrhodopsin-2 (ChR2) under control of the Advillin (Avil) promoter, which drives expression of transgenes predominantly in isolectin B4 positive non-peptidergic nociceptors in postnatal mice. Avil-ChR2 (Cre +) and ChR2-flfl control mice were exposed to blue light in a chamber once daily from P1-P5 together with their Cre-negative mother. RESULTS ELP caused cortical hyperexcitability at P8-9 as assessed via multi-electrode array recordings that coincided with reduced expression of synaptic genes (RNAseq) including Grin2b, neurexins, piccolo and voltage gated calcium and sodium channels. Young adult (8-16 wks) Avil-ChR2 mice presented with nociceptive hypersensitivity upon heat or mechanical stimulation, which did not resolve up until one year of age. The persistent hypersensitivy to nociceptive stimuli was reflected by increased calcium fluxes in primary sensory neurons of aged mice (1 year) upon capsaicin stimulation. Avil-ChR2 mice behaved like controls in maze tests of anxiety, social interaction, and spatial memory but IntelliCage behavioral studies revealed repetitive nosepokes and corner visits and compulsive lickings. Compulsiveness at the behavioral level was associated with a reduction of sphingomyelin species in brain and plasma lipidomic studies. Behavioral studies were done with female mice. CONCLUSION The results suggest that ELP may predispose to chronic "pain" and compulsive psychopathology in part mediated by alterations of sphingolipid metabolism, which have been previously described in the context of addiction and psychiatric diseases.
Collapse
Affiliation(s)
- Alexandra Vogel
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Timo Ueberbach
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Annett Wilken-Schmitz
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596, Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596, Frankfurt, Germany
| | - Luisa Franck
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Marc-Philipp Weyer
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Tassilo Jungenitz
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Partner Site Frankfurt, German Cancer Consortium (DKTK), Frankfurt, Germany
| | - Giulia Buchmann
- Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University Hospital, Frankfurt, Germany
| | - Ralf P Brandes
- Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596, Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596, Frankfurt, Germany
| | - Stephan W Schwarzacher
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596, Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596, Frankfurt, Germany
| | - Thomas Mittmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany.
| |
Collapse
|
4
|
Zhang Z, Liu L, Zhang H, Li C, Chen Y, Zhang J, Pan C, Cheng S, Yang X, Meng P, Yao Y, Jia Y, Wen Y, Zhang F. The genetic structure of pain in depression patients: A genome-wide association study and proteome-wide association study. J Psychiatr Res 2022; 156:547-556. [PMID: 36368244 DOI: 10.1016/j.jpsychires.2022.10.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Comparing with the general population, the pain in depression patients has more complex biological mechanism. We aim to explore the etiological mechanism of pain in depression patients from the perspective of genetics. METHODS Utilizing the UK Biobank samples with self-reported depression status or PHQ score ≥10, we conducted genome-wide association studies (GWAS) of seven pain traits (N = 1,133-58,349). Additionally, we used FUSION pipeline to perform proteome-wide association study (PWAS) and transcriptome-wide association study (TWAS) by integrating GWAS summary data with two different proteome reference weights (ROS/MAP and Banner) and Rnaseq gene expression reference weights, respectively. RESULTS GWAS identified 3 significant genes associated with different pain traits in depression patients, including TRIOBP (PGWAS = 4.48 × 10-8) for stomach or abdominal pain, SLC9A9(PGWAS = 2.77 × 10-8) for multisite chronic pain (MCP) and ADGRF1 (PGWAS = 1.51 × 10-8) for neck or shoulder pain. In addition, PWAS and TWAS analysis also identified multiple candidate genes associated with different pain traits in depression patients, such as TPRG1L (PPWAS-Banner = 3.38 × 10-2) and SIRPA (PPWAS-Banner = 3.65 × 10-2) for MCP, etc. Notably, when comparing the results of PWAS and TWAS analysis, we found overlapping candidate genes in these pain traits, such as GSTM3 (PPWAS-Banner = 3.38 × 10-2, PTWAS = 6.92 × 10-3) in the stomach or abdominal pain phenotype, ATG7 (PPWAS-Rosmap = 3.15 × 10-2, PTWAS = 2.98 × 10-2) in the MCP, etc. CONCLUSIONS: We identified multiple novel candidate genes for pain traits in depression patients from different perspectives of genetics, which provided novel clues for understanding the genetic mechanisms underlying the pain in depression patients.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
5
|
Wang L, Chen J, Hu Y, Liao A, Zheng W, Wang X, Lan J, Shen J, Wang S, Yang F, Wang Y, Li Y, Chen D. Progranulin improves neural development via the PI3K/Akt/GSK-3β pathway in the cerebellum of a VPA-induced rat model of ASD. Transl Psychiatry 2022; 12:114. [PMID: 35318322 PMCID: PMC8941112 DOI: 10.1038/s41398-022-01875-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease featuring social interaction deficits and repetitive/stereotyped behaviours; the prevalence of this disorder has continuously increased. Progranulin (PGRN) is a neurotrophic factor that promotes neuronal survival and differentiation. However, there have not been sufficient studies investigating its effect in animal models of autism. This study investigated the effects of PGRN on autistic phenotypes in rats treated with valproic acid (VPA) and assessed the underlying molecular mechanisms. PGRN was significantly downregulated in the cerebellum at postnatal day 14 (PND14) and PND35 in VPA-exposed rats, which simultaneously showed defective social preference, increased repetitive behaviours, and uncoordinated movements. When human recombinant PGRN (r-PGRN) was injected into the cerebellum of newborn ASD model rats (PND10 and PND17), some of the behavioural defects were alleviated. r-PGRN supplementation also reduced cerebellar neuronal apoptosis and rescued synapse formation in ASD rats. Mechanistically, we confirmed that PGRN protects neurodevelopment via the PI3K/Akt/GSK-3β pathway in the cerebellum of a rat ASD model. Moreover, we found that prosaposin (PSAP) promoted the internalisation and neurotrophic activity of PGRN. These results experimentally demonstrate the therapeutic effects of PGRN on a rat model of ASD for the first time and provide a novel therapeutic strategy for autism.
Collapse
Affiliation(s)
- Lili Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Jianhui Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Yuling Hu
- Qujiang No. 2 Middle School, Xi'an, 710000, China
| | - Ailing Liao
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Wenxia Zheng
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoqing Wang
- Department of Nuclear Medicine, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, 637000, China
| | - Junying Lan
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
| | - Jingjing Shen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Shali Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Feng Yang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yan Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Yingbo Li
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Di Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Schumann L, Wilken-Schmitz A, Trautmann S, Vogel A, Schreiber Y, Hahnefeld L, Gurke R, Geisslinger G, Tegeder I. Increased Fat Taste Preference in Progranulin-Deficient Mice. Nutrients 2021; 13:4125. [PMID: 34836380 PMCID: PMC8623710 DOI: 10.3390/nu13114125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/22/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
Progranulin deficiency in mice is associated with deregulations of the scavenger receptor signaling of CD36/SCARB3 in immune disease models, and CD36 is a dominant receptor in taste bud cells in the tongue and contributes to the sensation of dietary fats. Progranulin-deficient mice (Grn-/-) are moderately overweight during middle age. We therefore asked if there was a connection between progranulin/CD36 in the tongue and fat taste preferences. By using unbiased behavioral analyses in IntelliCages and Phenomaster cages we showed that progranulin-deficient mice (Grn-/-) developed a strong preference of fat taste in the form of 2% milk over 0.3% milk, and for diluted MCTs versus tap water. The fat preference in the 7d-IntelliCage observation period caused an increase of 10% in the body weight of Grn-/- mice, which did not occur in the wildtype controls. CD36 expression in taste buds was reduced in Grn-/- mice at RNA and histology levels. There were no differences in the plasma or tongue lipids of various classes including sphingolipids, ceramides and endocannabinoids. The data suggest that progranulin deficiency leads to a lower expression of CD36 in the tongue resulting in a stronger urge for fatty taste and fatty nutrition.
Collapse
Affiliation(s)
- Lana Schumann
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
| | - Annett Wilken-Schmitz
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
| | - Alexandra Vogel
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
| | - Yannick Schreiber
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
| |
Collapse
|
7
|
Trehalose Reduces Nerve Injury Induced Nociception in Mice but Negatively Affects Alertness. Nutrients 2021; 13:nu13092953. [PMID: 34578829 PMCID: PMC8469914 DOI: 10.3390/nu13092953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 07/31/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
Trehalose, a sugar from fungi, mimics starvation due to a block of glucose transport and induces Transcription Factor EB- mediated autophagy, likely supported by the upregulation of progranulin. The pro-autophagy effects help to remove pathological proteins and thereby prevent neurodegenerative diseases such as Alzheimer’s disease. Enhancing autophagy also contributes to the resolution of neuropathic pain in mice. Therefore, we here assessed the effects of continuous trehalose administration via drinking water using the mouse Spared Nerve Injury model of neuropathic pain. Trehalose had no effect on drinking, feeding, voluntary wheel running, motor coordination, locomotion, and open field, elevated plus maze, and Barnes Maze behavior, showing that it was well tolerated. However, trehalose reduced nerve injury-evoked nociceptive mechanical and thermal hypersensitivity as compared to vehicle. Trehalose had no effect on calcium currents in primary somatosensory neurons, pointing to central mechanisms of the antinociceptive effects. In IntelliCages, trehalose-treated mice showed reduced activity, in particular, a low frequency of nosepokes, which was associated with a reduced proportion of correct trials and flat learning curves in place preference learning tasks. Mice failed to switch corner preferences and stuck to spontaneously preferred corners. The behavior in IntelliCages is suggestive of sedative effects as a “side effect” of a continuous protracted trehalose treatment, leading to impairment of learning flexibility. Hence, trehalose diet supplements might reduce chronic pain but likely at the expense of alertness.
Collapse
|
8
|
Lan J, Hu Y, Wang X, Zheng W, Liao A, Wang S, Li Y, Wang Y, Yang F, Chen D. Abnormal spatiotemporal expression pattern of progranulin and neurodevelopment impairment in VPA-induced ASD rat model. Neuropharmacology 2021; 196:108689. [PMID: 34175324 DOI: 10.1016/j.neuropharm.2021.108689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/06/2021] [Accepted: 06/22/2021] [Indexed: 11/19/2022]
Abstract
Some environmental risk factors have been proven to contribute to the etiology of autism spectrum disorder (ASD). Exposure to the antiepileptic drug valproic acid (VPA) during pregnancy significantly increases the risk of ASD in humans, and consequently is utilized as a validated animal model of ASD in rodents; however, the precise molecular and cellular mechanisms remain ill-defined. In the present study, we investigated the effect of prenatal VPA exposure on the spatiotemporal dynamics of Progranulin (PGRN) expression, neuronal apoptosis, synapse density, and AKT/GSK-3β pathway activation in the brains of VPA-exposed offspring. Results from behavioral tests were consistent with prior studies showing impaired sociability, restricted interests and increased repetitive behaviors in VPA rats at postnatal days 28-32. Our data also indicated that VPA exposure resulted in abnormal dynamics of PGRN expression in different brain regions at the different development stages. The temporal and spatial patterns of PGRN expression were consistent with the spatiotemporal regularity of abnormalities, which observed in apoptosis-related protein levels, neuron numbers, dendritic spine density, synapse-related protein levels, and AKT/GSK-3β phosphorylation in VPA rats. It suggests that prenatal VPA exposure may affect the spatiotemporal regularity of neuronal apoptosis and synaptic development/regression via interfering with the spatiotemporal process of PGRN expression and downstream AKT/GSK-3β pathway activation. This may be a potential mechanism of the abnormal neuroanatomical changes and ASD-like behaviors in VPA-induced ASD.
Collapse
Affiliation(s)
- Junying Lan
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| | - Yuling Hu
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Qujiang No.2 Middle School, Xi'an 710000, China.
| | - Xiaoqing Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Department of Nuclear Medicine, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong 637000, China
| | - Wenxia Zheng
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Ailing Liao
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Shali Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Yingbo Li
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Yan Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Feng Yang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
| | - Di Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
9
|
Tran BN, Valek L, Wilken-Schmitz A, Fuhrmann DC, Namgaladze D, Wittig I, Tegeder I. Reduced exploratory behavior in neuronal nucleoredoxin knockout mice. Redox Biol 2021; 45:102054. [PMID: 34198070 PMCID: PMC8254043 DOI: 10.1016/j.redox.2021.102054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/07/2022] Open
Abstract
Nucleoredoxin is a thioredoxin-like redoxin that has been recognized as redox modulator of WNT signaling. Using a Yeast-2-Hybrid screen, we identified calcium calmodulin kinase 2a, Camk2a, as a prominent prey in a brain library. Camk2a is crucial for nitric oxide dependent processes of neuronal plasticity of learning and memory. Therefore, the present study assessed functions of NXN in neuronal Nestin-NXN-/- deficient mice. The NXN-Camk2a interaction was confirmed by coimmunoprecipitation, and by colocalization in neuropil and dendritic spines. Functionally, Camk2a activity was reduced in NXN deficient neurons and restored with recombinant NXN. Proteomics revealed reduced oxidation in the hippocampus of Nestin-NXN-/- deficient mice, including Camk2a, further synaptic and mitochondrial proteins, and was associated with a reduction of mitochondrial respiration. Nestin-NXN-/- mice were healthy and behaved normally in behavioral tests of anxiety, activity and sociability. They had no cognitive deficits in touchscreen based learning & memory tasks, but omitted more trials showing a lower interest in the reward. They also engaged less in rewarding voluntary wheel running, and in exploratory behavior in IntelliCages. Accuracy was enhanced owing to the loss of exploration. The data suggested that NXN maintained the oxidative state of Camk2a and thereby its activity. In addition, it supported oxidation of other synaptic and mitochondrial proteins, and mitochondrial respiration. The loss of NXN-dependent pro-oxidative functions manifested in a loss of exploratory drive and reduced interest in reward in behaving mice.
Collapse
Affiliation(s)
- Bao Ngoc Tran
- Institute of Clinical Pharmacology, Goethe-University, Medical Faculty, Frankfurt, Germany
| | - Lucie Valek
- Institute of Clinical Pharmacology, Goethe-University, Medical Faculty, Frankfurt, Germany
| | - Annett Wilken-Schmitz
- Institute of Clinical Pharmacology, Goethe-University, Medical Faculty, Frankfurt, Germany
| | | | - Dimitry Namgaladze
- Institute of Biochemistry I, Goethe-University, Medical Faculty, Frankfurt, Germany
| | - Ilka Wittig
- Functional Proteomics Group, Institute of Cardiovascular Physiology, Goethe-University, Medical Faculty, Frankfurt, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University, Medical Faculty, Frankfurt, Germany.
| |
Collapse
|
10
|
Low brain endocannabinoids associated with persistent non-goal directed nighttime hyperactivity after traumatic brain injury in mice. Sci Rep 2020; 10:14929. [PMID: 32913220 PMCID: PMC7483739 DOI: 10.1038/s41598-020-71879-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a frequent cause of chronic headache, fatigue, insomnia, hyperactivity, memory deficits, irritability and posttraumatic stress disorder. Recent evidence suggests beneficial effects of pro-cannabinoid treatments. We assessed in mice levels of endocannabinoids in association with the occurrence and persistence of comparable sequelae after controlled cortical impact in mice using a set of long-term behavioral observations in IntelliCages, motor and nociception tests in two sequential cohorts of TBI/sham mice. TBI mice maintained lower body weights, and they had persistent low levels of brain ethanolamide endocannabinoids (eCBs: AEA, OEA, PEA) in perilesional and subcortical ipsilateral brain tissue (6 months), but rapidly recovered motor functions (within days), and average nociceptive responses were within normal limits, albeit with high variability, ranging from loss of thermal sensation to hypersensitivity. TBI mice showed persistent non-goal directed nighttime hyperactivity, i.e. they visited rewarding and non-rewarding operant corners with high frequency and random success. On successful visits, they made more licks than sham mice resulting in net over-licking. The lower the eCBs the stronger was the hyperactivity. In reward-based learning and reversal learning tasks, TBI mice were not inferior to sham mice, but avoidance memory was less stable. Hence, the major late behavioral TBI phenotype was non-goal directed nighttime hyperactivity and "over-licking" in association with low ipsilateral brain eCBs. The behavioral phenotype would agree with a "post-TBI hyperactivity disorder". The association with persistently low eCBs in perilesional and subcortical regions suggests that eCB deficiency contribute to the post-TBI psychopathology.
Collapse
|
11
|
Prevention of age-associated neuronal hyperexcitability with improved learning and attention upon knockout or antagonism of LPAR2. Cell Mol Life Sci 2020; 78:1029-1050. [PMID: 32468095 PMCID: PMC7897625 DOI: 10.1007/s00018-020-03553-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/16/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022]
Abstract
Recent studies suggest that synaptic lysophosphatidic acids (LPAs) augment glutamate-dependent cortical excitability and sensory information processing in mice and humans via presynaptic LPAR2 activation. Here, we studied the consequences of LPAR2 deletion or antagonism on various aspects of cognition using a set of behavioral and electrophysiological analyses. Hippocampal neuronal network activity was decreased in middle-aged LPAR2−/− mice, whereas hippocampal long-term potentiation (LTP) was increased suggesting cognitive advantages of LPAR2−/− mice. In line with the lower excitability, RNAseq studies revealed reduced transcription of neuronal activity markers in the dentate gyrus of the hippocampus in naïve LPAR2−/− mice, including ARC, FOS, FOSB, NR4A, NPAS4 and EGR2. LPAR2−/− mice behaved similarly to wild-type controls in maze tests of spatial or social learning and memory but showed faster and accurate responses in a 5-choice serial reaction touchscreen task requiring high attention and fast spatial discrimination. In IntelliCage learning experiments, LPAR2−/− were less active during daytime but normally active at night, and showed higher accuracy and attention to LED cues during active times. Overall, they maintained equal or superior licking success with fewer trials. Pharmacological block of the LPAR2 receptor recapitulated the LPAR2−/− phenotype, which was characterized by economic corner usage, stronger daytime resting behavior and higher proportions of correct trials. We conclude that LPAR2 stabilizes neuronal network excitability upon aging and allows for more efficient use of resting periods, better memory consolidation and better performance in tasks requiring high selective attention. Therapeutic LPAR2 antagonism may alleviate aging-associated cognitive dysfunctions.
Collapse
|
12
|
Kiryk A, Janusz A, Zglinicki B, Turkes E, Knapska E, Konopka W, Lipp HP, Kaczmarek L. IntelliCage as a tool for measuring mouse behavior - 20 years perspective. Behav Brain Res 2020; 388:112620. [PMID: 32302617 DOI: 10.1016/j.bbr.2020.112620] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022]
Abstract
Since the 1980s, we have witnessed the rapid development of genetically modified mouse models of human diseases. A large number of transgenic and knockout mice have been utilized in basic and applied research, including models of neurodegenerative and neuropsychiatric disorders. To assess the biological function of mutated genes, modern techniques are critical to detect changes in behavioral phenotypes. We review the IntelliCage, a high-throughput system that is used for behavioral screening and detailed analyses of complex behaviors in mice. The IntelliCage was introduced almost two decades ago and has been used in over 150 studies to assess both spontaneous and cognitive behaviors. We present a critical analysis of experimental data that have been generated using this device.
Collapse
Affiliation(s)
- Anna Kiryk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Artur Janusz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Zglinicki
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Emir Turkes
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, Irving Medical Center, New York, NY, USA
| | - Ewelina Knapska
- BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Witold Konopka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Hans-Peter Lipp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Leszek Kaczmarek
- BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
13
|
Schmitz K, Wilken-Schmitz A, Vasic V, Brunkhorst R, Schmidt M, Tegeder I. Progranulin deficiency confers resistance to autoimmune encephalomyelitis in mice. Cell Mol Immunol 2019; 17:1077-1091. [PMID: 31467413 PMCID: PMC7609649 DOI: 10.1038/s41423-019-0274-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
Progranulin is a secreted neurotrophin that assists in the autophagolysosomal pathways that contribute to MHC-mediated antigen processing, pathogen removal, and autoimmunity. We showed that patients with multiple sclerosis (MS) have high levels of circulating progranulin and that its depletion in a mouse model by a monoclonal antibody aggravates MS-like experimental autoimmune encephalomyelitis (EAE). However, unexpectedly, progranulin-deficient mice (Grn−/−) were resistant to EAE, and this resistance was fully restored by wild-type bone marrow transplantation. FACS analyses revealed a loss of MHC-II-positive antigen-presenting cells in Grn−/− mice and a reduction in the number of CD8+ and CD4+ T-cells along with a strong increase in the number of scavenger receptor class B (CD36+) phagocytes, suggesting defects in antigen presentation along with a compensatory increase in phagocytosis. Indeed, bone marrow-derived dendritic cells from Grn−/− mice showed stronger uptake of antigens but failed to elicit antigen-specific T-cell proliferation. An increase in the number of CD36+ phagocytes was associated with increased local inflammation at the site of immunization, stronger stimulation-evoked morphological transformation of bone marrow-derived macrophages to phagocytes, an increase in the phagocytosis of E. coli particles and latex beads and defects in the clearance of the material. Hence, the outcomes in the EAE model reflect the dichotomy of progranulin-mediated immune silencing and autoimmune mechanisms of antigen recognition and presentation, and our results reveal a novel progranulin-dependent pathway in autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Katja Schmitz
- Institute of Clinical Pharmacology of the Medical Faculty, Goethe-University, Frankfurt (Main), Germany
| | - Annett Wilken-Schmitz
- Institute of Clinical Pharmacology of the Medical Faculty, Goethe-University, Frankfurt (Main), Germany
| | - Verica Vasic
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Robert Brunkhorst
- Department of Neurology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Mirko Schmidt
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology of the Medical Faculty, Goethe-University, Frankfurt (Main), Germany.
| |
Collapse
|
14
|
Wahono NA, Ford D, Wakeling LA, Valentine RA. The presence and response to Zn of ZnT family mRNAs in human dental pulp. Metallomics 2019; 11:613-620. [PMID: 30675888 DOI: 10.1039/c8mt00343b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zinc (Zn) is distributed throughout the body and within cells by saturable processes mediated by the transport proteins of the ZnT (SLC30) and ZIP (SLC39) families. The two families function in opposite directions. ZnT transporters mediate cellular zinc efflux or intracellular sequestration. Zn is found in human tooth enamel and dentine at levels that have been related to environmental exposures, such as pollution, disease, and dietary intake. The mechanism by which Zn in the odontoblast is deposited in the hard tissue of the tooth, however, is unknown but is important in determining the physical properties, and hence resilience, of enamel and in the context of the use of tooth zinc level as a biomarker of exposure. We hypothesised that zinc efflux mediated by members of the ZnT family of 10 transporters is a key step in this process and is regulated by zinc availability through effects on mRNA levels. Thus, we determined the profile of ZnT transporter mRNA in a human active-secretory odontoblast-like cell model under conditions of high- and low-extracellular Zn concentration and determined if the same transporter mRNAs were present in human dental pulp. ZnT1, ZnT5 and ZnT9 mRNAs were detected by RT-PCR in both the secretory odontoblast cells and human dental pulp. ZnT2, ZnT3 and ZnT10 mRNAs were not detected, and ZnT4 mRNA was detected in secretory odontoblasts only, which may be indicative of a specialised zinc efflux function during the active secretory phase of tooth development. ZnT1 mRNA was significantly increased in response to extracellular Zn exposure (60 μM) after 24 h. The presence of Zn transporter mRNAs in secretory odontoblasts and dental pulp indicates that the corresponding transport proteins function to deposit zinc in the dental hard tissues. The responsiveness of ZnT1 in odontoblasts to zinc availability is concordant with this being a process that is regulated to maintain cellular Zn homeostasis and that is a mediator of the relationship between environmental Zn exposure and dental Zn deposition. These findings have likely relevance to human dental health through effects of Zn transporter expression level on the hard tissue properties.
Collapse
Affiliation(s)
- Nieka A Wahono
- Centre for Oral Health Research and Human Nutrition Research Centre, School of Dental Science, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4BW, UK.
| | | | | | | |
Collapse
|
15
|
|
16
|
Zschiebsch K, Fischer C, Wilken‐Schmitz A, Geisslinger G, Channon K, Watschinger K, Tegeder I. Mast cell tetrahydrobiopterin contributes to itch in mice. J Cell Mol Med 2019; 23:985-1000. [PMID: 30450838 PMCID: PMC6349351 DOI: 10.1111/jcmm.13999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/25/2018] [Accepted: 10/13/2018] [Indexed: 12/28/2022] Open
Abstract
GTP cyclohydrolase (GCH1) governs de novo synthesis of the enzyme cofactor, tetrahydrobiopterin (BH4), which is essential for biogenic amine production, bioactive lipid metabolism and redox coupling of nitric oxide synthases. Overproduction of BH4 via upregulation of GCH1 in sensory neurons is associated with nociceptive hypersensitivity in rodents, and neuron-specific GCH1 deletion normalizes nociception. The translational relevance is revealed by protective polymorphisms of GCH1 in humans, which are associated with a reduced chronic pain. Because myeloid cells constitute a major non-neuronal source of BH4 that may contribute to BH4-dependent phenotypes, we studied here the contribution of myeloid-derived BH4 to pain and itch in lysozyme M Cre-mediated GCH1 knockout (LysM-GCH1-/- ) and overexpressing mice (LysM-GCH1-HA). Unexpectedly, knockout or overexpression in myeloid cells had no effect on nociceptive behaviour, but LysM-driven GCH1 knockout reduced, and its overexpression increased the scratching response in Compound 48/80 and hydroxychloroquine-evoked itch models, which involve histamine and non-histamine dependent signalling pathways. Mechanistically, GCH1 overexpression increased BH4, nitric oxide and hydrogen peroxide, and these changes were associated with increased release of histamine and serotonin and degranulation of mast cells. LysM-driven GCH1 knockout had opposite effects, and pharmacologic inhibition of GCH1 provided even stronger itch suppression. Inversely, intradermal BH4 provoked scratching behaviour in vivo and BH4 evoked an influx of calcium in sensory neurons. Together, these loss- and gain-of-function experiments suggest that itch in mice is contributed by BH4 release plus BH4-driven mediator release from myeloid immune cells, which leads to activation of itch-responsive sensory neurons.
Collapse
Affiliation(s)
- Katja Zschiebsch
- Institute of Clinical PharmacologyGoethe‐University HospitalFrankfurtGermany
| | - Caroline Fischer
- Institute of Clinical PharmacologyGoethe‐University HospitalFrankfurtGermany
| | | | - Gerd Geisslinger
- Institute of Clinical PharmacologyGoethe‐University HospitalFrankfurtGermany
| | - Keith Channon
- Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Katrin Watschinger
- Division of Biological ChemistryBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Irmgard Tegeder
- Institute of Clinical PharmacologyGoethe‐University HospitalFrankfurtGermany
| |
Collapse
|
17
|
Rajaei S, Fatahi Y, Dabbagh A. Meeting Between Rumi and Shams in Notch Signaling; Implications for Pain Management: A Narrative Review. Anesth Pain Med 2019; 9:e85279. [PMID: 30881911 PMCID: PMC6412915 DOI: 10.5812/aapm.85279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/28/2018] [Indexed: 01/03/2023] Open
Abstract
The meeting between Rumi and Shams, in the 13th century, was a turning point in the life of Rumi leading to a revolutionary effect in his thoughts, ideas, and poems. This was an ever-inspiring meeting with many results throughout the centuries. This meeting has created some footprints in cellular and molecular medicine: The discovery of two distinct genes in Drosophila, i.e. Rumi and Shams and their role in controlling Notch signaling, which has a critical role in cell biology. This nomination and the interactions between the two genes has led us to a number of novel studies during the last years. This article reviews the interactions between Rumi and Shams and their effects on Notch signaling in order to find potential novel drugs for pain control through drug development studies in the future.
Collapse
Affiliation(s)
- Samira Rajaei
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Dabbagh
- Cardiac Anesthesiology Department, Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Cardiac Anesthesiology Department, Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Hardt S, Valek L, Zeng-Brouwers J, Wilken-Schmitz A, Schaefer L, Tegeder I. Progranulin Deficient Mice Develop Nephrogenic Diabetes Insipidus. Aging Dis 2018; 9:817-830. [PMID: 30271659 PMCID: PMC6147595 DOI: 10.14336/ad.2017.1127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/27/2017] [Indexed: 12/23/2022] Open
Abstract
Loss-of-function mutations of progranulin are associated with frontotemporal dementia in humans, and its deficiency in mice is a model for this disease but with normal life expectancy and mild cognitive decline on aging. The present study shows that aging progranulin deficient mice develop progressive polydipsia and polyuria under standard housing conditions starting at middle age (6-9 months). They showed high water licking behavior and doubling of the normal daily drinking volume, associated with increased daily urine output and a decrease of urine osmolality, all maintained during water restriction. Creatinine clearance, urine urea, urine albumin and glucose were normal. Hence, there were no signs of osmotic diuresis or overt renal disease, other than a concentrating defect. In line, the kidney morphology and histology revealed a 50% increase of the kidney weight, kidney enlargement, mild infiltrations of the medulla with pro-inflammatory cells, widening of tubules but no overt signs of a glomerular or tubular pathology. Plasma vasopressin levels were on average about 3-fold higher than normal levels, suggesting that the water loss resulted from unresponsiveness of the collecting tubules towards vasopressin, and indeed aquaporin-2 immunofluorescence in collecting tubules was diminished, whereas renal and hypothalamic vasopressin were increased, the latter in spite of substantial astrogliosis in the hypothalamus. The data suggest that progranulin deficiency causes nephrogenic diabetes insipidus in mice during aging. Possibly, polydipsia in affected patients - eventually interpreted as psychogenic polydipsia - may point to a similar concentrating defect.
Collapse
Affiliation(s)
- Stefanie Hardt
- 1Clinical Pharmacology, Goethe-University Hospital Frankfurt am Main, Germany
| | - Lucie Valek
- 1Clinical Pharmacology, Goethe-University Hospital Frankfurt am Main, Germany
| | - Jinyang Zeng-Brouwers
- 2General Pharmacology and Toxicology, Goethe-University Hospital Frankfurt am Main, Germany
| | | | - Liliana Schaefer
- 2General Pharmacology and Toxicology, Goethe-University Hospital Frankfurt am Main, Germany
| | - Irmgard Tegeder
- 1Clinical Pharmacology, Goethe-University Hospital Frankfurt am Main, Germany
| |
Collapse
|
19
|
Gartmann L, Wex T, Grüngreiff K, Reinhold D, Kalinski T, Malfertheiner P, Schütte K. Expression of zinc transporters ZIP4, ZIP14 and ZnT9 in hepatic carcinogenesis-An immunohistochemical study. J Trace Elem Med Biol 2018; 49:35-42. [PMID: 29895370 DOI: 10.1016/j.jtemb.2018.04.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Dysregulation of both, systemic zinc levels and tissue-specific zinc transporters, is reported in chronic inflammatory and malignant liver disease (hepatocellular carcinoma, HCC). Aim of this study is to assess the expression level of three zinc transporters in liver tissue and HCC: ZIP4, ZIP14 and ZnT9. METHODS The study is based on tissue samples obtained from 138 patients with histologically proven HCC. Tissue specimens from tumor (n = 138) and extra-lesional specimens (n = 72) were assessed immunohistochemically for the expression of the three zinc transporters. Expression levels were semi-quantitatively scored and statistically analyzed with respect to the etiology of HCC (alcohol, AFLD; non-alcoholic fatty liver disease, NAFLD; virus-hepatitis, VH) and survival. RESULTS Overall, expression levels of ZIP4, ZIP14 and ZnT9 were significantly higher in HCC tissue than in adjacent extra-lesional liver tissue. Expression levels in tumor tissue and survival time revealed a negative correlation for ZIP4 and ZIP14, and in part for ZnT9 (nuclear staining) (p < 0.05), whereas cytoplasmic staining of ZnT9 did not correlate with survival. Furthermore, the expression level of ZIP4 in extra-lesional tissue showed inverse correlation with survival time. CONCLUSION The upregulation of zinc transporters in hepatic carcinogenesis and its negative correlation with survival time implies a regulatory/functional link between zinc-homeostasis and development/progression of HCC that deserves to be further explored.
Collapse
Affiliation(s)
- Laura Gartmann
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany; Medical Laboratory for Clinical Chemistry, Microbiology and Infectious Diseases "Prof. Schenk/Dr. Ansorge & Colleagues", Department Molecular Genetics, Schwiesaustr. 11, D-39124, Magdeburg, Germany
| | - Thomas Wex
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany; Medical Laboratory for Clinical Chemistry, Microbiology and Infectious Diseases "Prof. Schenk/Dr. Ansorge & Colleagues", Department Molecular Genetics, Schwiesaustr. 11, D-39124, Magdeburg, Germany
| | - Kurt Grüngreiff
- Clinic of Gastroenterology, City Hospital Magdeburg, Klinikum Magdeburg GmbH, Birkenallee 34, D-39130, Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Thomas Kalinski
- Institute of Pathology, Otto-von-Guericke University, Leipziger Str. 44, D-39120, Magdeburg, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Kerstin Schütte
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany; Department of Internal Medicine and Gastroenterology, Niels-Stensen-Kliniken, Marienhospital Osnabrück GmbH, Bischofsstraße 1, D-49074, Osnabrück, Germany.
| |
Collapse
|
20
|
Blakemore LJ, Trombley PQ. Zinc as a Neuromodulator in the Central Nervous System with a Focus on the Olfactory Bulb. Front Cell Neurosci 2017; 11:297. [PMID: 29033788 PMCID: PMC5627021 DOI: 10.3389/fncel.2017.00297] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
The olfactory bulb (OB) is central to the sense of smell, as it is the site of the first synaptic relay involved in the processing of odor information. Odor sensations are first transduced by olfactory sensory neurons (OSNs) before being transmitted, by way of the OB, to higher olfactory centers that mediate olfactory discrimination and perception. Zinc is a common trace element, and it is highly concentrated in the synaptic vesicles of subsets of glutamatergic neurons in some brain regions including the hippocampus and OB. In addition, zinc is contained in the synaptic vesicles of some glycinergic and GABAergic neurons. Thus, zinc released from synaptic vesicles is available to modulate synaptic transmission mediated by excitatory (e.g., N-methyl-D aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)) and inhibitory (e.g., gamma-aminobutyric acid (GABA), glycine) amino acid receptors. Furthermore, extracellular zinc can alter the excitability of neurons through effects on a variety of voltage-gated ion channels. Consistent with the notion that zinc acts as a regulator of neuronal activity, we and others have shown zinc modulation (inhibition and/or potentiation) of amino acid receptors and voltage-gated ion channels expressed by OB neurons. This review summarizes the locations and release of vesicular zinc in the central nervous system (CNS), including in the OB. It also summarizes the effects of zinc on various amino acid receptors and ion channels involved in regulating synaptic transmission and neuronal excitability, with a special emphasis on the actions of zinc as a neuromodulator in the OB. An understanding of how neuroactive substances such as zinc modulate receptors and ion channels expressed by OB neurons will increase our understanding of the roles that synaptic circuits in the OB play in odor information processing and transmission.
Collapse
Affiliation(s)
- Laura J Blakemore
- Program in Neuroscience, Florida State UniversityTallahassee, FL, United States.,Department of Biological Science, Florida State UniversityTallahassee, FL, United States
| | - Paul Q Trombley
- Program in Neuroscience, Florida State UniversityTallahassee, FL, United States.,Department of Biological Science, Florida State UniversityTallahassee, FL, United States
| |
Collapse
|