1
|
Yang W, Xia S, Jia X, Zhu Y, Li L, Jiang C, Ji H, Shi F. Utilizing surface-enhanced Raman spectroscopy for the adjunctive diagnosis of osteoporosis. Eur J Med Res 2024; 29:476. [PMID: 39343945 PMCID: PMC11440806 DOI: 10.1186/s40001-024-02081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024] Open
Abstract
Osteoporosis (OP) is a chronic disease characterized by diminished bone mass and structural deterioration, ultimately leading to compromised bone strength and an increased risk of fractures. Diagnosis primarily relies on medical imaging findings and clinical symptoms. This study aims to explore an adjunctive diagnostic technique for OP based on surface-enhanced Raman scattering (SERS). Serum SERS spectra from the normal, low bone density, and osteoporosis groups were analyzed to discern OP-related expression profiles. This study utilized partial least squares (PLS) and support vector machine (SVM) algorithms to establish an OP diagnostic model. The combination of Raman peak assignments and spectral difference analysis reflected biochemical changes associated with OP, including amino acids, carbohydrates, and collagen. Using the PLS-SVM approach, sensitivity, specificity, and accuracy for screening OP were determined to be 77.78%, 100%, and 88.24%, respectively. This study demonstrates the substantial potential of SERS as an adjunctive diagnostic technology for OP.
Collapse
Affiliation(s)
- Weihang Yang
- Orthopedics Department, Affiliated Hospital 6 of Nantong University, Yancheng, 224001, China
| | - Shuang Xia
- Orthopedics Department, Affiliated Hospital 6 of Nantong University, Yancheng, 224001, China
| | - Xu Jia
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Yuwei Zhu
- Orthopedics Department, Suzhou BOE Hospital, Suzhou, 215000, China
| | - Liang Li
- Orthopedics Department, Affiliated Hospital 6 of Nantong University, Yancheng, 224001, China
| | - Cheng Jiang
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Hongjian Ji
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China.
| | - Fengchao Shi
- Orthopedics Department, Affiliated Hospital 6 of Nantong University, Yancheng, 224001, China.
| |
Collapse
|
2
|
Dou T, Holman AP, Hays SR, Donaldson TG, Goff N, Teel PD, Kurouski D. Species identification of adult ixodid ticks by Raman spectroscopy of their feces. Parasit Vectors 2024; 17:43. [PMID: 38291487 PMCID: PMC10825978 DOI: 10.1186/s13071-023-06091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Ticks and tick-borne diseases pose significant challenges to cattle production, thus the species identification of ticks and knowledge on their presence, abundance, and dispersal are necessary for the development of effective control measures. The standard method of inspection for the presence of ticks is the visual and physical examination of restrained animals, but the limitations of human sight and touch can allow larval, nymphal, and unfed adult ticks to remain undetected due to their small size and site of attachment. However, Raman spectroscopy, an analytical tool widely used in agriculture and other sectors, shows promise for the identification of tick species in infested cattle. Raman spectroscopy is a non-invasive and efficient method that employs the interaction between molecules and light for the identification of the molecular constituents of specimens. METHODS Raman spectroscopy was employed to analyze the structure and composition of tick feces deposited on host skin and hair during blood-feeding. Feces of 12 species from a total of five genera and one subgenus of ixodid ticks were examined. Spectral data were subjected to partial least squares discriminant analysis, a machine-learning model. We also used Raman spectroscopy and the same analytical procedures to compare and evaluate feces of the horn fly Haematobia irritans after it fed on cattle. RESULTS Five genera and one sub-genus at overall true prediction rates ranging from 92.3 to 100% were identified from the Raman spectroscopy data of the tick feces. At the species level, Dermacentor albipictus, Dermacentor andersoni and Dermacentor variabilis at overall true prediction rates of 100, 99.3 and 100%, respectively, were identified. There were distinct differences between horn fly and tick feces with respect to blood and guanine vibrational frequencies. The overall true prediction rate for the separation of tick and horn fly feces was 98%. CONCLUSIONS Our findings highlight the utility of Raman spectroscopy for the reliable identification of tick species from their feces, and its potential application for the identification of ticks from infested cattle in the field.
Collapse
Affiliation(s)
- Tianyi Dou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Aidan P Holman
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Samantha R Hays
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Taylor G Donaldson
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Nicolas Goff
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Pete D Teel
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX, 77843, USA.
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
3
|
Lian T, Liu G, Qu B, Xia X, Yang Z, Wang L, Huang L, Wang X. Serum Raman spectroscopy can be used to screen patients with early rheumatoid arthritis. JOURNAL OF BIOPHOTONICS 2023; 16:e202200368. [PMID: 36606758 DOI: 10.1002/jbio.202200368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/07/2023]
Abstract
In this study, Raman spectroscopy was used to analyze the serum of patients with early rheumatoid arthritis (RA), and to explore the screening value of Raman spectroscopy in patients with early RA. A total of 216 patients were included in the study. Fasting venous blood was collected for routine biochemical detection, and the remaining samples were tested by serum Raman spectroscopy. Support vector machine was used for model building and training. The area under the curve (AUC) values of the model were as follows: (1) healthy group versus early RA group: 0.860, (2) healthy group versus non-early RA group: 0.903, and (3) early RA group versus non-early RA group: 0.918. This study shows that serum Raman spectroscopy has a good ability to screen RA and can be staged according to the course of the disease, which can provide new ideas and technical support for the diagnosis or screening of early RA.
Collapse
Affiliation(s)
- Tianxing Lian
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Gang Liu
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Bo Qu
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xun Xia
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zixuan Yang
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Liping Wang
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Lin Huang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaokai Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
4
|
Xia C, Pu Y, Zhang Q, Hu Q, Wang Y. The feasibility of discriminating BRONJ lesion bone with Raman spectroscopy. Front Endocrinol (Lausanne) 2023; 14:1099889. [PMID: 37223036 PMCID: PMC10202174 DOI: 10.3389/fendo.2023.1099889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/20/2023] [Indexed: 05/25/2023] Open
Abstract
Background With the frequent use of Bisphosphonates (BPs), the morbidity of BP-related osteonecrosis of the jaw (BRONJ) is also increasing. However, the prevention and treatment of BRONJ is faced with enormous challenges. This study aimed to illuminate the influence of BP administration in the rat mandible and explore the feasibility of discriminating BRONJ lesion bone with Raman spectroscopy. Materials and methods First, we explored the time- and mode-dependent effects of BP administration on the rat mandible with Raman spectroscopy. Second, the BRONJ rat model was constructed, and the lesion and healthy bone components were analyzed using Raman spectroscopy. Results When only BPs were administered, no rats showed BRONJ symptoms, and no difference could be found in the Raman spectra. However, when combined with local surgery, six (6/8) rats showed BRONJ symptoms. The Raman spectra also showed a significant difference between the lesion and healthy bone. Conclusion In the progression of BRONJ, BPs and local stimulation play an essential role. Both BPs administration and local stimulation need to be controlled to prevent BRONJ. Moreover, BRONJ lesion bone in rats could be discriminated with Raman spectroscopy. This novel method would become a complement in the treatment of BRONJ in the future.
Collapse
|
5
|
Tuly JA, Ma H, Lee HJ, Song JW, Parvez A, Saqib MN, Yaseen W, Xinyan Z. Insights of Keratin geometry from Agro-industrial wastes: A comparative computational and experimental assessment. Food Chem 2023; 418:135854. [PMID: 37023668 DOI: 10.1016/j.foodchem.2023.135854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/09/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023]
Abstract
Understanding the structural properties of keratin is of great importance to managing their potential application in keratin-inspired biomaterials and its management of wastes. In this work, the molecular structure of chicken feather keratin 1 was characterized by AlphaFold2 and quantum chemistry calculation. The predicted IR spectrum of the N-terminal region of feather keratin 1, consisting of 28 amino acid residues, was used to assign the Raman frequencies of the extracted keratin. The MW of experimental samples were 6 & 1 kDa while the predicted MW (∼10 kDa) of β-keratin. Experimental analysis shows the magnetic field treatment could affect the functional and surface structural properties of keratin. The particle size distribution curve illustrates the dispersion of particle size concentration, while TEM analysis demonstrates the reduction of particle diameter to 23.71 ± 1.1 nm following treatment. High-resolution XPS analysis confirmed the displacement of molecular elements from their orbital.
Collapse
Affiliation(s)
- Jamila A Tuly
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Key Laboratory for Physical Processing of Agricultural Products, Jiangsu University, Zhenjiang, China.
| | - Ho-Jin Lee
- Department of Natural Sciences, Southwest Tennessee Community College, Memphis, TN 38134, USA
| | - Jong-Won Song
- Department of Chemistry Education, Daegu University, Daegudae-ro 201, Gyeongsan-si, Gyeongsangbuk-do 38453, Republic of Korea
| | - Amresh Parvez
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Md Nazmus Saqib
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Waleed Yaseen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhang Xinyan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
6
|
Forooghi E, Vali Zade S, Sahebi H, Abdollahi H, Sadeghi N, Jannat B. Authentication and Discrimination of Tissue Origin of Bovine Gelatin using Combined Supervised Pattern Recognition Strategies. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Azril, Huang KY, Hobley J, Rouhani M, Liu WL, Jeng YR. A methodology to evaluate different histological preparations of soft tissues: Intervertebral disc tissues study. J Appl Biomater Funct Mater 2023; 21:22808000231155634. [PMID: 36799405 DOI: 10.1177/22808000231155634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
A tissue preparation method will inevitably alter the tissue content. This study aims to evaluate how different common sample preparation methods will affect the tissue morphology, biomechanical properties, and chemical composition of samples. The study focuses on intervertebral disc (IVD) tissue; however, it can be applied to other soft tissues. Raman spectroscopy synchronized with nanoindentation instrumentation was employed to investigate the compositional changes of IVD, specifically, nucleus pulposus (NP) and annulus fibrosus (AF), together with their biomechanical properties of IVD. These properties were examined through the following histological specimen types: fresh cryosection (control), fixed cryosection, and paraffin-embedded. The IVD tissue could be located using an optical microscope under three different preparation methods. Paraffin-embedded samples showed the most explicit details where the lamellae structure of AF could be identified. In terms of biomechanical properties, there was no significant difference between the fresh and fixed cryosection (p > 0.05). In contrast, the fresh cryosection and paraffin-embedded samples showed a significant difference (p < 0.05). It was also found that the tissue preparations affected the chemical content of the tissues and structure of the tissue, which are expected to contribute to biomechanical properties changes. Fresh cryosection and fixed cryosection samples are more promising to work with for biomechanical assessment in histological tissues. The findings fill essential gaps in the literature by providing valuable insight into the characteristics of IVD at the microscale. This study can also become a reference for a better approach to assessing the mechanical properties and chemical content of soft tissues at the microscale.
Collapse
Affiliation(s)
- Azril
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City
| | - Kuo-Yuan Huang
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, Tainan City
| | - Jonathan Hobley
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City
| | - Mehdi Rouhani
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City
| | - Wen-Lung Liu
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, Tainan City
| | - Yeau-Ren Jeng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City.,Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan City.,Medical Device Innovation Center, National Cheng Kung University, Tainan City
| |
Collapse
|
8
|
Azril, Huang KY, Hobley J, Rouhani M, Liu WL, Jeng YR. Correlation of the degenerative stage of a disc with magnetic resonance imaging, chemical content, and biomechanical properties of the nucleus pulposus. J Biomed Mater Res A 2022; 111:1054-1066. [PMID: 36585891 DOI: 10.1002/jbm.a.37490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 01/01/2023]
Abstract
Intervertebral disc degeneration (IDD) is closely related to changes in the intervertebral disc (IVD) composition and the resulting viscoelastic properties. IDD is a severe condition because it decreases the disc's ability to resist mechanical loads. Our research aims to understand IDD at the cellular level, specifically the changes in the viscoelastic properties of the nucleus pulposus (NP), which are poorly understood. This study employed a system integrating nanoindentation with Raman spectrometry to correlate biomechanics with subtle changes in the biochemical makeup of the NP. The characterization was, in turn, correlated with the degenerative severity of IVD as assessed using magnetic resonance imaging (MRI) of different patients with spinal stenosis, degenerative spondylolisthesis, and degenerative scoliosis. It is shown that there is an increase in the crosslinking ratio in collagen, a reduction in proteoglycan, and a build-up of minerals upon the rise in the severity level of the disc damage in the NP. Assessment of mechanical characteristics reveals that the increasing disc degeneration makes the NP lose its elasticity, becoming more viscous. This shows that the tissue undergoes abnormalities in weight-bearing ability, which contributes to spinal instability. The correlation of the individual discs shows that grades III and IV have similarities in the changes of Amide I and III toward the storage modulus. In contrast, grades IV and V correlate with mineralization toward the storage modulus. Reduction of proteoglycan has the highest impact on the changes of the storage modulus in all grades of IDD. Connecting compositional alterations to IVD micromechanics at various degrees of degeneration expands our understanding of tissue behavior and provides critical insight into clinical diagnostics, treatment, and tissue engineering.
Collapse
Affiliation(s)
- Azril
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Kuo-Yuan Huang
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, Tainan City, Taiwan
| | - Jonathan Hobley
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Mehdi Rouhani
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Wen-Lung Liu
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, Tainan City, Taiwan
| | - Yeau-Ren Jeng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan.,Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan City, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
9
|
Evolution of conformation and thermal properties of bovine hides collagen in the sodium sulphide solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Dou T, Ermolenkov A, Hays SR, Rich BT, Donaldson TG, Thomas D, Teel PD, Kurouski D. Raman-based identification of tick species (Ixodidae) by spectroscopic analysis of their feces. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120966. [PMID: 35123191 DOI: 10.1016/j.saa.2022.120966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Ticks are blood-feeding parasites that vector a large number of pathogens of medical and veterinary importance. There are strong connections between tick and pathogen species. Timely detection of certain tick species on cattle can cease the spread of numerous devastating diseases such as Bovine babiesiosis and anaplasmosis. Detection of ticks is currently performed by slow and laborious scout-based inspection of cattle. In this study, we investigated the possibility of identification of tick species (Ixodidae) based on spectroscopic signatures of their feces. We collected Raman spectra from individual grains of feces of seven different species of ticks. Our results show that Raman spectroscopy (RS) allows for highly accurate (above 90%) differentiation between tick species. Furthermore, RS can be used to predict the tick developmental stage and differentiate between nymphs, meta-nymphs and adult ticks. We have also demonstrated that diagnostics of tick species present on cattle can be achieved using a hand-held Raman spectrometer. These findings show that RS can be used for non-invasive, non-destructive and confirmatory on-site analysis of tick species present on cattle.
Collapse
Affiliation(s)
- Tianyi Dou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Alexei Ermolenkov
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Samantha R Hays
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX 77843, United States
| | - Brian T Rich
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX 77843, United States
| | - Taylor G Donaldson
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX 77843, United States
| | - Donald Thomas
- United States Department of Agriculture, Agricultural Research Service, Cattle Fever Tick Research Laboratory, 22675 North Moorefield Rd, Edinburg, TX 78541, United States
| | - Pete D Teel
- United States Department of Agriculture, Agricultural Research Service, Cattle Fever Tick Research Laboratory, 22675 North Moorefield Rd, Edinburg, TX 78541, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States; Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
11
|
Ren X, Lin K, Hsieh CM, Liu L, Ge X, Liu Q. Optical coherence tomography-guided confocal Raman microspectroscopy for rapid measurements in tissues. BIOMEDICAL OPTICS EXPRESS 2022; 13:344-357. [PMID: 35154875 PMCID: PMC8803007 DOI: 10.1364/boe.441058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/24/2021] [Accepted: 12/06/2021] [Indexed: 05/05/2023]
Abstract
We report a joint system with both confocal Raman spectroscopy (CRS) and optical coherence tomography (OCT) modules capable of quickly addressing the region of interest in a tissue for targeted Raman measurements from OCT. By using an electrically tunable lens in the Raman module, the focus of the module can be adjusted to address any specific depth indicated in an OCT image in a few milliseconds. We demonstrate the performance of the joint system in the depth dependent measurements of an ex vivo swine tissue and in vivo human skin. This system can be useful in measuring samples embedded with small targets, for example, to identify tumors in skin in vivo and assessment of tumor margins, in which OCT can be used to perform initial real-time screening with high throughput based on morphological features to identify suspicious targets then CRS is guided to address the targets in real time and fully characterize their biochemical fingerprints for confirmation.
Collapse
Affiliation(s)
- Xiaojing Ren
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
- Equal contributors to paper
| | - Kan Lin
- School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
- Equal contributors to paper
| | - Chao-Mao Hsieh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Linbo Liu
- School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Xin Ge
- School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Quan Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| |
Collapse
|
12
|
Beattie JR, Esmonde-White FWL. Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra. APPLIED SPECTROSCOPY 2021; 75:361-375. [PMID: 33393349 DOI: 10.1177/0003702820987847] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Spectroscopy rapidly captures a large amount of data that is not directly interpretable. Principal component analysis is widely used to simplify complex spectral datasets into comprehensible information by identifying recurring patterns in the data with minimal loss of information. The linear algebra underpinning principal component analysis is not well understood by many applied analytical scientists and spectroscopists who use principal component analysis. The meaning of features identified through principal component analysis is often unclear. This manuscript traces the journey of the spectra themselves through the operations behind principal component analysis, with each step illustrated by simulated spectra. Principal component analysis relies solely on the information within the spectra, consequently the mathematical model is dependent on the nature of the data itself. The direct links between model and spectra allow concrete spectroscopic explanation of principal component analysis , such as the scores representing "concentration" or "weights". The principal components (loadings) are by definition hidden, repeated and uncorrelated spectral shapes that linearly combine to generate the observed spectra. They can be visualized as subtraction spectra between extreme differences within the dataset. Each PC is shown to be a successive refinement of the estimated spectra, improving the fit between PC reconstructed data and the original data. Understanding the data-led development of a principal component analysis model shows how to interpret application specific chemical meaning of the principal component analysis loadings and how to analyze scores. A critical benefit of principal component analysis is its simplicity and the succinctness of its description of a dataset, making it powerful and flexible.
Collapse
|
13
|
Jäckle K, Kolb JP, Schilling AF, Schlickewei C, Amling M, Rueger JM, Lehmann W. Analysis of low-dose estrogen on callus BMD as measured by pQCT in postmenopausal women. BMC Musculoskelet Disord 2020; 21:693. [PMID: 33076902 PMCID: PMC7574467 DOI: 10.1186/s12891-020-03713-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/12/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Osteoporosis affects elderly patients of both sexes. It is characterized by an increased fracture risk due to defective remodeling of the bone microarchitecture. It affects in particular postmenopausal women due to their decreased levels of estrogen. Preclinical studies with animals demonstrated that loss of estrogen had a negative effect on bone healing and that increasing the estrogen level led to a better bone healing. We asked whether increasing the estrogen level in menopausal patients has a beneficial effect on bone mineral density (BMD) during callus formation after a bone fracture. METHODS To investigate whether estrogen has a beneficial effect on callus BMD of postmenopausal patients, we performed a prospective double-blinded randomized study with 76 patients suffering from distal radius fractures. A total of 31 patients (71.13 years ±11.99) were treated with estrogen and 45 patients (75.62 years ±10.47) served as untreated controls. Calculated bone density as well as cortical bone density were determined by peripheral quantitative computed tomography (pQCT) prior to and 6 weeks after the surgery. Comparative measurements were performed at the fractured site and at the corresponding position of the non-fractured arm. RESULTS We found that unlike with preclinical models, bone fracture healing of human patients was not improved in response to estrogen treatment. Furthermore, we observed no dependence between age-dependent bone tissue loss and constant callus formation in the patients. CONCLUSIONS Transdermally applied estrogen to postmenopausal women, which results in estrogen levels similar to the systemic level of premenopausal women, has no significant beneficial effect on callus BMD as measured by pQCT, as recently shown in preclinical animal models. TRIAL REGISTRATION Low dose estrogen has no significant effect on bone fracture healing measured by pQCT in postmenopausal women, DRKS00019858 . Registered 25th November 2019 - Retrospectively registered. Trial registration number DRKS00019858 .
Collapse
Affiliation(s)
- K Jäckle
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Robert-Koch Str. 40, 37075, Göttingen, Germany.
| | - J P Kolb
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - A F Schilling
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Robert-Koch Str. 40, 37075, Göttingen, Germany
| | - C Schlickewei
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - M Amling
- Center for Biomechanics and Skeletal Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - J M Rueger
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - W Lehmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Robert-Koch Str. 40, 37075, Göttingen, Germany
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
14
|
The crosstalk between bone metabolism, lncRNAs, microRNAs and mRNAs in coronary artery calcification. Genomics 2020; 113:503-513. [PMID: 32971215 DOI: 10.1016/j.ygeno.2020.09.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/31/2020] [Accepted: 09/19/2020] [Indexed: 01/02/2023]
Abstract
The association between Coronary Artery Calcification (CAC) and osteoporosis has been reported but not fully understood. Therefore, using an original bioinformatic framework we analyzed transcriptomic profiles of 20 elderly women with high CAC score and 31 age- and sex-matching controls from São Paulo Ageing & Health study (SPAH). We integrated differentially expressed microRNA (miRNA) and long-noncoding RNA (lncRNA) interactions with coding genes associated with CAC, in the context of bone-metabolism genes mined from literature. Top non-coding regulators of bone metabolism in CAC included miRNA 497-5p/195 and 106a-5p, and lncRNA FAM197Y7. Top non-coding RNAs revealed significant interplay between genes regulating bone metabolism, vascularization-related processes, chromatin organization, prostaglandin and calcium co-signaling. Prostaglandin E2 receptor 3 (PTGER3), Fibroblasts Growth Factor Receptor 1 (FGFR1), and One Cut Homeobox 2 (ONECUT2) were identified as the most susceptible to regulation by the top non-coding RNAs. This study provides a flexible transcriptomic framework including non-coding regulation for biomarker-related studies.
Collapse
|
15
|
Cherni I, Ghalila H, Hamzaoui S, Rachdi I, Daoued F. Simple and fast diagnosis of osteoporosis based on UV-visible hair fluorescence spectroscopy. APPLIED OPTICS 2020; 59:6774-6780. [PMID: 32749386 DOI: 10.1364/ao.393646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The aim of this work is to propose a new analytical technique based on UV-visible fluorescence as an alternative to x-ray absorptiometry for diagnosing osteoporosis, as well as its early stage by identifying osteopenia. The equipment used consists of very cheap equipment compared to x-ray scanners with an LED as the excitation source. In this work, we analyzed 90 hair samples taken from volunteers of different ages at Habib Thameur Hospital in Tunis. These samples were previously analyzed by bone mineral density (BMD) and correspond to people suffering from osteoporosis and osteopenia, as well as healthy people. The main idea of this study is to show the correlation between the deficiency of bone density given by BMD and the variations of the relative concentrations of molecules present in the hair causing the changes observed in the fluorescence spectra. The results extracted from the spectra show a clear discrimination between healthy and sick patients and a very good correlation, in a Spearman sense, between the spectral measurements and the BMD's data for the patients with osteoporosis. In addition, we have isolated the main spectral region responsible for this correlation, which facilitates the identification of the molecule concentrations related to the decrease in BMD.
Collapse
|
16
|
Wang X, Meng J, Zhang T, Weijia Lv W, Liang Z, Shi Q, Li Z, Zhang T. Identifying compositional and structural changes in the nucleus pulposus from patients with lumbar disc herniation using Raman spectroscopy. Exp Ther Med 2020; 20:447-453. [PMID: 32537009 PMCID: PMC7281961 DOI: 10.3892/etm.2020.8729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/10/2020] [Indexed: 12/03/2022] Open
Abstract
Lower back pain (LBP) is one of the most common musculoskeletal complaints worldwide. Intervertebral disc degeneration (IDD) is considered to be a significant contributor to LBP; however, the mechanisms underlying IDD remain to be fully elucidated. One of the major features of IDD is the decreased content of type II collagen and proteoglycans in the nucleus pulposus (NP). The present study aimed to investigate the biochemical mechanisms of IDD at the microscopic level using Raman spectroscopy. Raman spectroscopy, based on inelastic scattering of light, is an emerging optical technique that may measure the chemical composition of complex biological samples, including biofluids, cells and tissues. In the present study, 30 NP tissue samples from 30 patients who were diagnosed with lumbar disc herniation and received spinal fusion surgery to relieve LBP were obtained and analyzed. Routine pre-operative 3.0T, T2-weighed MRI was used to classify the cases according to Pfirrmann grades and the T2 signal intensity value of the NP was measured. Subsequently, all NP samples were scanned and analyzed using a Laser MicroRaman Spectrometer at room temperature. The Raman spectral results demonstrated that the relative content of proteoglycans, expressed as the relative intensity ratio of two peaks (I1064/I1004), was significantly inversely correlated with the Pfirrmann grade (ρ=-0.6462; P<0.0001), whereas the content of collagen (amide I) was significantly positively correlated with the Pfirrmann grade (ρ=0.5141; P<0.01). In conclusion, the higher relative intensity of the ratio of two peaks (I1670/I1640; Amide I) represented a higher fractional content of disordered collagen, which suggested that the defective collagen structure may lead to NP abnormalities.
Collapse
Affiliation(s)
- Xuehui Wang
- First Central Clinical College, Tianjin Medical University, Tianjin 300070, P.R. China.,Department of Orthopaedics, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Jianfang Meng
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
| | - Tongxing Zhang
- Department of Orthopaedics, Tianjin Hospital, Tianjin Medical University, Tianjin 300211, P.R. China
| | - William Weijia Lv
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Zhao Liang
- Biobank, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Qian Shi
- First Central Clinical College, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Zhaoyang Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
| | - Tao Zhang
- Department of Orthopaedics, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| |
Collapse
|
17
|
Cao S, Wang Y, Xing L, Zhang W, Zhou G. Structure and physical properties of gelatin from bovine bone collagen influenced by acid pretreatment and pepsin. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
Sihota P, Yadav RN, Dhiman V, Bhadada SK, Mehandia V, Kumar N. Investigation of diabetic patient's fingernail quality to monitor type 2 diabetes induced tissue damage. Sci Rep 2019; 9:3193. [PMID: 30816264 PMCID: PMC6395762 DOI: 10.1038/s41598-019-39951-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/14/2019] [Indexed: 01/19/2023] Open
Abstract
Long-term Type 2 Diabetes (T2D) affects the normal functioning of heart, kidneys, nerves, arteries, bones, and joints. The T2D gradually alters the intrinsic material properties, and structural integrity of the tissues and prolonged hyperglycemia causes chronic damages to these tissues quality. Clinically no such technique is available which can assess the altered tissues quality associated with T2D. In the present study, the microstructural characterization (surface morphology, surface roughness and density and calcium content), material characterization (modulus, hardness), and macromolecular characterization (disulfide bond content, protein content and its secondary structure) are investigated among healthy, diabetic controlled (DC) and uncontrolled diabetic (UC) group of fingernail plate. It is found that T2D has an adverse effect on the human fingernail plate quality. The parameters of nail plate quality are changing in a pattern among all the three groups. The properties mentioned above are degrading in DC group, but the degradation is even worst in the case of severity of T2D (UC group) as compared to the healthy group (Healthy
Collapse
Affiliation(s)
- Praveer Sihota
- Department of Mechanical Engineering, Indian Institute of Technology (IIT) Ropar, Rupnagar, Punjab, 140001, India
| | - Ram Naresh Yadav
- Department of Mechanical Engineering, Indian Institute of Technology (IIT) Ropar, Rupnagar, Punjab, 140001, India
| | - Vandana Dhiman
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Vishwajeet Mehandia
- Department of Mechanical Engineering, Indian Institute of Technology (IIT) Ropar, Rupnagar, Punjab, 140001, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology (IIT) Ropar, Rupnagar, Punjab, 140001, India.
| |
Collapse
|
19
|
Beattie JR, Sophocleous A, Caraher MC, O'Driscoll O, Cummins NM, Bell SEJ, Towler M, Rahimnejad Yazdi A, Ralston SH, Idris AI. Raman spectroscopy as a predictive tool for monitoring osteoporosis therapy in a rat model of postmenopausal osteoporosis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:25. [PMID: 30747334 DOI: 10.1007/s10856-019-6226-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Pharmacological therapy of osteoporosis reduces bone loss and risk of fracture in patients. Modulation of bone mineral density cannot explain all effects. Other aspects of bone quality affecting fragility and ways to monitor them need to be better understood. Keratinous tissue acts as surrogate marker for bone protein deterioration caused by oestrogen deficiency in rats. Ovariectomised rats were treated with alendronate (ALN), parathyroid hormone (PTH) or estrogen (E2). MicroCT assessed macro structural changes. Raman spectroscopy assessed biochemical changes. Micro CT confirmed that all treatments prevented ovariectomy-induced macro structural bone loss in rats. PTH induced macro structural changes unrelated to ovariectomy. Raman analysis revealed ALN and PTH partially protect against molecular level changes to bone collagen (80% protection) and mineral (50% protection) phases. E2 failed to prevent biochemical change. The treatments induced alterations unassociated with the ovariectomy; increased beta sheet with E2, globular alpha helices with PTH and fibrous alpha helices with both ALN and PTH. ALN is closest to maintaining physiological status of the animals, while PTH (comparable protective effect) induces side effects. E2 is unable to prevent molecular level changes associated with ovariectomy. Raman spectroscopy can act as predictive tool for monitoring pharmacological therapy of osteoporosis in rodents. Keratinous tissue is a useful surrogate marker for the protein related impact of these therapies.The results demonstrate utility of surrogates where a clear systemic causation connects the surrogate to the target tissue. It demonstrates the need to assess broader biomolecular impact of interventions to examine side effects.
Collapse
Affiliation(s)
- J Renwick Beattie
- J Renwick Beattie Consulting, Causeway Enterprise Agency, Ballycastle, UK
| | | | - M Clare Caraher
- ICON plc, South County Business Park, Leopardstown, Dublin, Ireland
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Stranmillis Road, Belfast, UK
| | - Olive O'Driscoll
- AventaMed, Rubicon Centre, Rossa Avenue, Bishopstown, Cork, Ireland
| | - Niamh M Cummins
- Centre for Interventions in Infection, Inflammation and Immunity, Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Stranmillis Road, Belfast, UK
| | - Mark Towler
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada.
| | | | - Stuart H Ralston
- Rheumatology and Bone Diseases Unit, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Aymen I Idris
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, UK
| |
Collapse
|
20
|
Beattie JR, Feskanich D, Caraher MC, Towler MR. A Preliminary Evaluation of the Ability of Keratotic Tissue to Act as a Prognostic Indicator of Hip Fracture Risk. CLINICAL MEDICINE INSIGHTS-ARTHRITIS AND MUSCULOSKELETAL DISORDERS 2018; 11:1179544117754050. [PMID: 29371785 PMCID: PMC5774738 DOI: 10.1177/1179544117754050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/27/2017] [Indexed: 11/17/2022]
Abstract
Studies have shown that Raman spectroscopic analysis of fingernail clippings can help differentiate between post-menopausal women who have and who have not suffered a fracture. However, all studies to date have been retrospective in nature, comparing the proteins in nails sourced from women, post-fracture. The objective of this study was to investigate the potential of a prospective test for hip fracture based on spectroscopic analysis of nail tissue. Archived toenail samples from post-menopausal women aged 50 to 63 years in the Nurses' Health Study were obtained and analysed by Raman spectroscopy. Nails were matched case-controls sourced from 161 women; 82 who underwent a hip fracture up to 20 years after nail collection and 81 age-matched controls. A number of clinical risk factors (CRFs) from the Fracture Risk Assessment (FRAX) tool had been assessed at toenail collection. Using 80% of the spectra, models were developed for increasing time periods between nail collection and fracture. Scores were calculated from these models for the other 20% of the sample and the ability of the score to predict hip fracture was tested in model with and without the CRFs by comparing the odds ratios (ORs) per 1 SD increase in standardised predictive values. The Raman score successfully distinguished between hip fracture cases and controls. With only the score as a predictor, a statistically significant OR of 2.2 (95% confidence interval [CI]: 1.5-3.1) was found for hip fracture for up to 20 years after collection. The OR increased to 3.8 (2.6-5.4) when the CRFs were added to the model. For fractures limited to 13 years after collection, the OR was 6.3 (3.0-13.1) for the score alone. The test based on Raman spectroscopy has potential for identifying individuals who may suffer hip fractures several years in advance. Higher powered studies are required to evaluate the predictive capability of this test.
Collapse
Affiliation(s)
- J Renwick Beattie
- J Renwick Beattie Consulting, Causeway Enterprise Agency, Ballycastle, UK
| | - Diane Feskanich
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Mark R Towler
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada
| |
Collapse
|