1
|
Wu S, Guo N, Xu H, Li Y, Sun T, Jiang X, Fu D, You T, Diao S, Huang Y, Hu C. Caveolin-1 ameliorates hepatic injury in non-alcoholic fatty liver disease by inhibiting ferroptosis via the NOX4/ROS/GPX4 pathway. Biochem Pharmacol 2024; 230:116594. [PMID: 39490677 DOI: 10.1016/j.bcp.2024.116594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease globally, with a complex and contentious pathogenesis. Caveolin-1 (CAV1) is an important regulator of liver function and can mitigate liver injury by scavenging reactive oxygen species (ROS). Evidence suggests that NOX4 is a source of ROS production, that oxidative stress and ferroptosis are closely related, and that both are involved in the onset and progression of NAFLD. However, whether CAV1 attenuates liver injury in NAFLD caused by high-fat diet via the NOX4/ROS/GPX4 pathway remains unclear. An in vivo fatty liver model was established by feeding mice with a high-fat diet for 16 weeks. In addition, an in vitro fatty liver model was established by incubating AML-12 cells with free fatty acids for 24 h using an in vitro culture method. In our study, it was observed that a high-fat diet induces mitochondrial damage and worsens oxidative stress in NAFLD. This diet also hinders GPX4 expression, leading to an escalation of ferroptosis and lipid accumulation. To counteract these effects, intraperitoneal administration of CSD peptide in mice attenuated the high-fat diet-induced liver mitochondrial damage and ferroptosis. Likewise, overexpression of CAV1 resulted in an increase in GPX4 expression and a reduction in levels of ROS-mediated iron metamorphosis, thus mitigating the progression of the disease. However, the effects of CAV1 on GPX4-mediated ferroptosis and lipid deposition could be reversed by CAV1 small interfering RNA (SiRNA). Finally, NOX4 inhibitor (GLX351322) treatment increased CAV1 siRNA-mediated GPX4 expression and decreased the level of ROS-mediated ferroptosis. These findings suggest a potential mechanism underlying the protective role of CAV1 against high-fat diet-induced hepatotoxicity in NAFLD, shedding new light on the interplay between CAV1, GPX4, and ferroptosis in liver pathology.
Collapse
Affiliation(s)
- Shuai Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| | - Ning Guo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| | - Hanlin Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| | - Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| | - Tianyin Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| | - Xiangfu Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| | - Dongdong Fu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| | - Tingyu You
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| | - Shaoxi Diao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| | - Chengmu Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
2
|
Liu H, Yue L, Hong W, Zhou J. SMARCA4 (BRG1) activates ABCC3 transcription to promote hepatocellular carcinogenesis. Life Sci 2024; 347:122605. [PMID: 38642845 DOI: 10.1016/j.lfs.2024.122605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
AIMS Hepatocellular carcinoma (HCC) is a lead cause of cancer-related deaths. In the present study we investigated the role of Brahma-related gene 1 (BRG1), a chromatin remodeling protein, in HCC the pathogenesis focusing on identifying novel transcription targets. METHODS AND MATERIALS Hepatocellular carcinogenesis was modeled in mice by diethylnitrosamine (DEN). Cellular transcriptome was evaluated by RNA-seq. RESULTS Hepatocellular carcinoma was appreciably retarded in BRG1 knockout mice compared to wild type littermates. Transcriptomic analysis identified ATP Binding Cassette Subfamily C Member 3 (ABCC3) as a novel target of BRG1. BRG1 over-expression in BRG1low HCC cells (HEP1) up-regulated whereas BRG1 depletion in BRG1high HCC cells (SNU387) down-regulated ABCC3 expression. Importantly, BRG1 was detected to directly bind to the ABCC3 promoter to activate ABCC3 transcription. BRG1 over-expression in HEP1 cells promoted proliferation and migration, both of which were abrogated by ABCC3 silencing. On the contrary, BRG1 depletion in SNU387 cells decelerated proliferation and migration, both of which were rescued by ABCC3 over-expression. Importantly, high BRG1/ABCC3 expression predicted poor prognosis in HCC patients. Mechanistically, ABCC3 regulated hepatocellular carcinogenesis possibly by influencing lysosomal homeostasis. SIGNIFICANCE In conclusion, our data suggest that targeting BRG1 and its downstream target ABCC3 can be considered as a reasonable approach for the intervention of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Huimin Liu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Linbo Yue
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Wenxuan Hong
- Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Junjing Zhou
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
3
|
Wu X, Meng Y, Chen J, Zhang Y, Xu H. Ablation of Brg1 in fibroblast/myofibroblast lineages attenuates renal fibrosis in mice with diabetic nephropathy. Life Sci 2024; 344:122578. [PMID: 38537899 DOI: 10.1016/j.lfs.2024.122578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/03/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
AIMS Diabetic nephropathy (DN) is one of the most common complications of diabetes and represents a prototypical form of chronic kidney disease (CKD). Interstitial fibrosis is a key pathological feature of DN. During DN-associated renal fibrosis, resident fibroblasts trans-differentiate into myofibroblasts to remodel the extracellular matrix, the underlying epigenetic mechanism of which is not entirely clear. METHODS Diabetic nephropathy was induced in C57B6/j mice by a single injection with streptozotocin (STZ). Gene expression was examined by quantitative PCR and Western blotting. Renal fibrosis was evaluated by PicroSirius Red staining. RESULTS We report that expression of Brg1, a chromatin remodeling protein, in renal fibroblasts was up-regulated during DN pathogenesis as assessed by single-cell RNA-seq. Treatment with high glucose similarly augmented Brg1 expression in primary renal fibroblasts in vitro. Importantly, Brg1 ablation in quiescent renal fibroblasts or in mature myofibroblasts equivalently attenuated renal fibrosis in the context of diabetic nephropathy in mice. Additionally, administration with a small-molecule Brg1 inhibitor PFI-3 ameliorated renal fibrosis and improved renal function in mice induced to develop DN. SIGNIFICANCE In conclusion, our data provide novel genetic evidence that links Brg1 to fibroblast-myofibroblast transition and renewed rationale for targeting Brg1 in the intervention of DN-associated renal fibrosis.
Collapse
Affiliation(s)
- Xiaoyan Wu
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Yufei Meng
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Jinsi Chen
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Yongchen Zhang
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Departments of Pathophysiology and Human Anatomy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Li N, Liu H, Xue Y, Zhu Q, Fan Z. The chromatin remodeling protein BRG1 contributes to liver ischemia-reperfusion injury by regulating NOXA expression. Life Sci 2023; 334:122235. [PMID: 37926300 DOI: 10.1016/j.lfs.2023.122235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
AIMS Hepatic ischemia-reperfusion injury (IRI) is a common complication secondary to liver transplantation. Extensive death of hepatocytes, typically in the form of apoptosis, is observed in and contributes to IRI. In the present study we investigated the role of BRG1 (encoded by Smarca4), a chromatin remodeling protein, in the pathogenesis of liver IRI focusing on the transcriptional mechanism and translational potential. METHODS Smarca4f/f mice were crossed to Alb-Cre mice to generate hepatocytes-specific BRG1 knockout mice (CKO). Alterations in cellular transcriptome were evaluated by RNA-seq. RESULTS BRG1 expression was up-regulated in liver tissues of mice subjected to I/R and in hepatocytes exposed to hypoxia-reoxygenation (H/R). Compared to wild type (WT) littermates, the BRG1 CKO mice displayed significant amelioration of liver injury following ischemia-reperfusion as evidenced by decreased ALT/AST levels and cell apoptosis. Primary hepatocytes isolated from the CKO mice were protected from H/R-induced apoptosis compared to those from the WT mice. RNA-seq analysis revealed phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1, also known as NOXA) as a novel target for BRG1. Consistently, NOXA knockdown attenuated liver IRI in mice. More importantly, administration of a small-molecule BRG1 inhibitor (PFI-3) protected the mice from liver IRI. CONCLUSIONS Our data uncover a pivotal role for BRG1 in liver IRI and suggest that targeting BRG1 with small-molecule inhibitors can be considered as a reasonable therapeutic strategy.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Departments of Human Anatomy and Pathophysiology, Nanjing Medial University, Nanjing, China
| | - Hong Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Departments of Human Anatomy and Pathophysiology, Nanjing Medial University, Nanjing, China
| | - Yujia Xue
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Departments of Human Anatomy and Pathophysiology, Nanjing Medial University, Nanjing, China
| | - Qiang Zhu
- Department of General Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Nanjing, China.
| |
Collapse
|
5
|
Wang B, Kaufmann B, Mogler C, Zhong S, Yin Y, Cheng Z, Schmid RM, Friess H, Hüser N, von Figura G, Hartmann D. Hepatocellular Brg1 promotes CCl4-induced liver inflammation, ECM accumulation and fibrosis in mice. PLoS One 2023; 18:e0294257. [PMID: 38033027 PMCID: PMC10688683 DOI: 10.1371/journal.pone.0294257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
INTRODUCTION Hepatic fibrosis is a progressive pathological process involving the exhaustion of hepatocellular regenerative capacity and ultimately leading to the development of cirrhosis and even hepatocellular carcinoma. Brg1, the core subunit of the SWI/SNF chromatin-remodeling complex, was recently identified as important for liver regeneration. This study investigates the role of Brg1 in hepatic fibrosis development. METHODS Hepatocyte-specific Brg1 knockout mice were generated and injected with carbon tetrachloride (CCl4) for 4, 6, 8, and 12 weeks to induce liver fibrosis. Afterwards, liver fibrosis and liver damage were assessed. RESULTS Brg1 expression was significantly increased in the fibrotic liver tissue of wild-type mice, as compared to that of untreated wild-type mice. The livers of the Brg1 knockout animals showed reduced liver inflammation, extracellular matrix accumulation, and liver fibrosis. TNF-α and NF-κB-mediated inflammatory response was reduced in Brg1 knockout animals. CONCLUSION Brg1 promotes the progression of liver fibrosis in mice and may therefore be used as a potential therapeutic target for treating patients with liver fibrosis due to chronic injury.
Collapse
Affiliation(s)
- Baocai Wang
- Department of Surgery, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of General Surgery, The Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Benedikt Kaufmann
- Department of Surgery, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carolin Mogler
- Institute of Pathology, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Suyang Zhong
- Department of Medicine II, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Yuhan Yin
- Department of Surgery, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Zhangjun Cheng
- Department of General Surgery, The Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Roland M. Schmid
- Department of Medicine II, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Helmut Friess
- Department of Surgery, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Norbert Hüser
- Department of Surgery, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Guido von Figura
- Department of Medicine II, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniel Hartmann
- Department of Surgery, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
6
|
Zhu Y, Guo Y, Xue Y, Zhou A, Chen Y, Chen Y, Miao X, Lv F. Targeting the chromatin remodeling protein BRG1 in liver fibrosis: Mechanism and translational potential. Life Sci 2023; 336:122221. [PMID: 39491218 DOI: 10.1016/j.lfs.2023.122221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
AIMS Liver fibrosis is characterized by excessive deposition of extracellular matrix (ECM) proteins in the interstitia. Hepatic stellate cells (HSCs) are considered the major source for ECM-producing myofibroblasts contributing to liver fibrosis. The molecular mechanism whereby HSC-myofibroblast transition is regulated remains incompletely understood. We investigated the involvement of BRG1, a chromatin remodeling protein, in this process. METHODS Rosa26-Smarca4 mice were crossed to Lrat-Cre mice to generate HSC-specific BRG1 transgenic mice. Liver fibrosis was induced by bile duct ligation (BDL) or injection with carbon tetrachloride (CCl4). RESULTS We report here that over-expression of BRG1 promoted HSC-myofibroblast transition in vitro. More importantly, the BRG1 transgenic mice displayed amplification of liver fibrogenesis, induced by BDL or CCl4 injection, compared to the wild type littermates. On the contrary, BRG1 inhibition by a small-molecule compound (PFI-3) attenuated HSC-myofibroblast transition in vitro and ameliorated liver fibrosis in a dose-dependent manner in mice. RNA-seq analysis showed that PFI-3 treatment preferentially influenced the expression of ECM genes in activated HSCs. CONCLUSION Our data provide strong evidence that BRG1 plays an important role in HSC-myofibroblast transition and suggest that targeting BRG1 could be considered as a reasonable strategy for the intervention of liver fibrosis.
Collapse
Affiliation(s)
- Yuwen Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yan Guo
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yujia Xue
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Anqi Zhou
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Ying Chen
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yifei Chen
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xiulian Miao
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China.
| | - Fangqiao Lv
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Aghara H, Chadha P, Zala D, Mandal P. Stress mechanism involved in the progression of alcoholic liver disease and the therapeutic efficacy of nanoparticles. Front Immunol 2023; 14:1205821. [PMID: 37841267 PMCID: PMC10570533 DOI: 10.3389/fimmu.2023.1205821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Alcoholic liver disease (ALD) poses a significant threat to human health, with excessive alcohol intake disrupting the immunotolerant environment of the liver and initiating a cascade of pathological events. This progressive disease unfolds through fat deposition, proinflammatory cytokine upregulation, activation of hepatic stellate cells, and eventual development of end-stage liver disease, known as hepatocellular carcinoma (HCC). ALD is intricately intertwined with stress mechanisms such as oxidative stress mediated by reactive oxygen species, endoplasmic reticulum stress, and alcohol-induced gut dysbiosis, culminating in increased inflammation. While the initial stages of ALD can be reversible with diligent care and abstinence, further progression necessitates alternative treatment approaches. Herbal medicines have shown promise, albeit limited by their poor water solubility and subsequent lack of extensive exploration. Consequently, researchers have embarked on a quest to overcome these challenges by delving into the potential of nanoparticle-mediated therapy. Nanoparticle-based treatments are being explored for liver diseases that share similar mechanisms with alcoholic liver disease. It underscores the potential of these innovative approaches to counteract the complex pathogenesis of ALD, providing new avenues for therapeutic intervention. Nevertheless, further investigations are imperative to fully unravel the therapeutic potential and unlock the promise of nanoparticle-mediated therapy specifically tailored for ALD treatment.
Collapse
Affiliation(s)
| | | | | | - Palash Mandal
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India
| |
Collapse
|
8
|
Aghara H, Chadha P, Zala D, Mandal P. Stress mechanism involved in the progression of alcoholic liver disease and the therapeutic efficacy of nanoparticles. Front Immunol 2023; 14. [DOI: https:/doi.org/10.3389/fimmu.2023.1205821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Alcoholic liver disease (ALD) poses a significant threat to human health, with excessive alcohol intake disrupting the immunotolerant environment of the liver and initiating a cascade of pathological events. This progressive disease unfolds through fat deposition, proinflammatory cytokine upregulation, activation of hepatic stellate cells, and eventual development of end-stage liver disease, known as hepatocellular carcinoma (HCC). ALD is intricately intertwined with stress mechanisms such as oxidative stress mediated by reactive oxygen species, endoplasmic reticulum stress, and alcohol-induced gut dysbiosis, culminating in increased inflammation. While the initial stages of ALD can be reversible with diligent care and abstinence, further progression necessitates alternative treatment approaches. Herbal medicines have shown promise, albeit limited by their poor water solubility and subsequent lack of extensive exploration. Consequently, researchers have embarked on a quest to overcome these challenges by delving into the potential of nanoparticle-mediated therapy. Nanoparticle-based treatments are being explored for liver diseases that share similar mechanisms with alcoholic liver disease. It underscores the potential of these innovative approaches to counteract the complex pathogenesis of ALD, providing new avenues for therapeutic intervention. Nevertheless, further investigations are imperative to fully unravel the therapeutic potential and unlock the promise of nanoparticle-mediated therapy specifically tailored for ALD treatment.
Collapse
|
9
|
Li N, Liu H, Xue Y, Xu Z, Miao X, Guo Y, Li Z, Fan Z, Xu Y. Targetable Brg1-CXCL14 axis contributes to alcoholic liver injury by driving neutrophil trafficking. EMBO Mol Med 2023; 15:e16592. [PMID: 36722664 PMCID: PMC9994483 DOI: 10.15252/emmm.202216592] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/02/2023] Open
Abstract
Alcoholic liver disease (ALD) accounts for a large fraction of patients with cirrhosis and hepatocellular carcinoma. In the present study we investigated the involvement of Brahma-related gene 1 (Brg1) in ALD pathogenesis and implication in ALD intervention. We report that Brg1 expression was elevated in mouse models of ALD, in hepatocyte exposed to alcohol, and in human ALD specimens. Manipulation of Brg1 expression in hepatocytes influenced the development of ALD in mice. Flow cytometry showed that Brg1 deficiency specifically attenuated hepatic infiltration of Ly6G+ neutrophils in the ALD mice. RNA-seq identified C-X-C motif chemokine ligand 14 (CXCL14) as a potential target for Brg1. CXCL14 knockdown alleviated whereas CXCL14 over-expression enhanced ALD pathogenesis in mice. Importantly, pharmaceutical inhibition of Brg1 with a small-molecule compound PFI-3 or administration of an antagonist to the CXCL14 receptor ameliorated ALD pathogenesis in mice. Finally, a positive correlation between Brg1 expression, CXCL14 expression, and neutrophil infiltration was detected in ALD patients. In conclusion, our data provide proof-of-concept for targeting the Brg1-CXCL14 axis in ALD intervention.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of PathophysiologyNanjing Medical UniversityNanjingChina
| | - Hong Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of PathophysiologyNanjing Medical UniversityNanjingChina
| | - Yujia Xue
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of PathophysiologyNanjing Medical UniversityNanjingChina
| | - Zheng Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of PathophysiologyNanjing Medical UniversityNanjingChina
| | - Xiulian Miao
- Collage of Life Sciences and Institute of Biomedical Research, Liaocheng UniversityLiaochengChina
| | - Yan Guo
- Collage of Life Sciences and Institute of Biomedical Research, Liaocheng UniversityLiaochengChina
| | - Zilong Li
- State Key Laboratory of Natural Medicines, Department of PharmacologyChina Pharmaceutical UniversityNanjingChina
| | - Zhiwen Fan
- Department of PathologyNanjing Drum Tower Hospital Affiliated to Nanjing University Medical SchoolNanjingChina
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of PathophysiologyNanjing Medical UniversityNanjingChina
- Collage of Life Sciences and Institute of Biomedical Research, Liaocheng UniversityLiaochengChina
- State Key Laboratory of Natural Medicines, Department of PharmacologyChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
10
|
Jiang X, Li Y, Fu D, You T, Wu S, Xin J, Wen J, Huang Y, Hu C. Caveolin-1 ameliorates acetaminophen-aggravated inflammatory damage and lipid deposition in non-alcoholic fatty liver disease via the ROS/TXNIP/NLRP3 pathway. Int Immunopharmacol 2023; 114:109558. [PMID: 36700765 DOI: 10.1016/j.intimp.2022.109558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
The overuse of acetaminophen (APAP) may cause more severe hepatotoxicity in patients with non-alcoholic fatty liver disease (NAFLD). Caveolin-1 (CAV1), is an essential regulator of metabolic function, which can alleviate liver damage by scavenging reactive oxygen species (ROS). Evidence suggests that the NOD-like receptor family pyrin domain-containing 3 (NLRP3) -mediated pyroptosis is involved in the development of NAFLD. Moreover, thioredoxin-interactive protein (TXNIP) activation is a key event linking ROS to NLRP3 inflammasome. However, whether CAV1 alleviates APAP-aggravated hepatotoxicity in NAFLD via the ROS/TXNIP/NLRP3 pathway remains unclear. An in vivo fatty liver model was established by feeding mice a high-fat diet for 56 days. Additionally, using in vitro approach, AML-12 cells were incubated with free fatty acids for 48 h and APAP was added during the last 24 h. We found that the overuse of APAP in NAFLD not only induced oxidative stress, but also increased TXNIP expression, NLRP3-mediated pyroptosis, and lipid deposition. In addition to inhibiting ROS generation and lipid deposition, overexpression of CAV1 reduced the elevated levels of TXNIP expression and NLRP3-mediated pyroptosis. However, the effect of CAV1 on TXNIP expression, NLRP3-mediated pyroptosis, and lipid deposition was reversed by CAV1 small interfering RNA (siRNA) intervention. Finally, N-acetyl cysteine (NAC) treatment reduced CAV1 siRNA-mediated changes in TXNIP expression and NLRP3-mediated pyroptosis levels. These results demonstrate that the inhibitory effect of CAV1 on NLRP3-mediated pyroptosis may be mediated through the ROS/TXNIP axis. Moreover, the current study provides novel mechanistic insights into the protective effects of CAV1 on APAP-aggravated hepatotoxicity in NAFLD.
Collapse
Affiliation(s)
- Xiangfu Jiang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Yu Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Dongdong Fu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Tingyu You
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Shuai Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Jiao Xin
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Jiagen Wen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Yan Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Chengmu Hu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
11
|
Fang X, Rao K, Wei Z, Cheng J. SOX10
modulated
SMARCA4
dysregulation alleviates
DNA
replication stress in cutaneous melanoma. J Cell Mol Med 2022; 26:5846-5857. [DOI: 10.1111/jcmm.17607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/21/2022] [Accepted: 10/15/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Xiangjian Fang
- Department of Burns and Plastic Surgery Fujian Medical University Affiliated First Quanzhou Hospital Quanzhou Fujian Province China
| | - Keqiang Rao
- School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Zhiyi Wei
- Department of Burns and Plastic Surgery Fujian Medical University Affiliated First Quanzhou Hospital Quanzhou Fujian Province China
| | - Juntao Cheng
- Department of Burns and Plastic Surgery Fujian Medical University Affiliated First Quanzhou Hospital Quanzhou Fujian Province China
| |
Collapse
|
12
|
Fan Z, Kong M, Dong W, Dong C, Miao X, Guo Y, Liu X, Miao S, Li L, Chen T, Qu Y, Yu F, Duan Y, Lu Y, Zou X. Trans-activation of eotaxin-1 by Brg1 contributes to liver regeneration. Cell Death Dis 2022; 13:495. [PMID: 35614068 PMCID: PMC9132924 DOI: 10.1038/s41419-022-04944-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Infiltration of eosinophils is associated with and contributes to liver regeneration. Chemotaxis of eosinophils is orchestrated by the eotaxin family of chemoattractants. We report here that expression of eotaxin-1 (referred to as eotaxin hereafter), but not that of either eotaxin-2 or eotaxin-3, were elevated, as measured by quantitative PCR and ELISA, in the proliferating murine livers compared to the quiescent livers. Similarly, exposure of primary murine hepatocytes to hepatocyte growth factor (HGF) stimulated eotaxin expression. Liver specific deletion of Brahma-related gene 1 (Brg1), a chromatin remodeling protein, attenuated eosinophil infiltration and down-regulated eotaxin expression in mice. Brg1 deficiency also blocked HGF-induced eotaxin expression in cultured hepatocytes. Further analysis revealed that Brg1 could directly bind to the proximal eotaxin promoter to activate its transcription. Mechanistically, Brg1 interacted with nuclear factor kappa B (NF-κB)/RelA to activate eotaxin transcription. NF-κB knockdown or pharmaceutical inhibition disrupted Brg1 recruitment to the eotaxin promoter and blocked eotaxin induction in hepatocytes. Adenoviral mediated over-expression of eotaxin overcame Brg1 deficiency caused delay in liver regeneration in mice. On the contrary, eotaxin depletion with RNAi or neutralizing antibodies retarded liver regeneration in mice. More important, Brg1 expression was detected to be correlated with eotaxin expression and eosinophil infiltration in human liver specimens. In conclusion, our data unveil a novel role of Brg1 as a regulator of eosinophil trafficking by activating eotaxin transcription.
Collapse
Affiliation(s)
- Zhiwen Fan
- grid.428392.60000 0004 1800 1685Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China ,grid.428392.60000 0004 1800 1685Department of Gastroenterology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Ming Kong
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenhui Dong
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Chunlong Dong
- grid.410745.30000 0004 1765 1045Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiulian Miao
- grid.411351.30000 0001 1119 5892College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yan Guo
- grid.411351.30000 0001 1119 5892College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Xingyu Liu
- grid.411351.30000 0001 1119 5892College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Shuying Miao
- grid.428392.60000 0004 1800 1685Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Lin Li
- grid.428392.60000 0004 1800 1685Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Tingting Chen
- grid.428392.60000 0004 1800 1685Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Yeqing Qu
- grid.428392.60000 0004 1800 1685Experimental Animal Center, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Fei Yu
- grid.428392.60000 0004 1800 1685Experimental Animal Center, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Yunfei Duan
- grid.490563.d0000000417578685Department of Hepatobiliary Surgery, the First People’s Hospital of Changzhou, the Third Hospital Affiliated with Soochow University, Changzhou, China
| | - Yunjie Lu
- grid.490563.d0000000417578685Department of Hepatobiliary Surgery, the First People’s Hospital of Changzhou, the Third Hospital Affiliated with Soochow University, Changzhou, China
| | - Xiaoping Zou
- grid.428392.60000 0004 1800 1685Department of Gastroenterology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
13
|
Hao Q, Wang Z, Wang L, Han M, Zhang M, Gao X. Isoleucine stimulates mTOR and SREBP-1c gene expression for milk synthesis in mammary epithelial cells through BRG1-mediated chromatin remodelling. Br J Nutr 2022; 129:1-11. [PMID: 35593529 DOI: 10.1017/s0007114522001544] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several amino acids can stimulate milk synthesis in mammary epithelial cells (MEC); however, the regulatory role of isoleucine (Ile) and underlying molecular mechanism remain poorly understood. In this study, we aimed to evaluate the regulatory effects of Ile on milk protein and fat synthesis in MEC and reveal the mediation mechanism of Brahma-related gene 1 (BRG1) on this regulation. Ile dose dependently affected milk protein and fat synthesis, mechanistic target of rapamycin (mTOR) phosphorylation, sterol regulatory element binding protein 1c (SREBP-1c) expression and maturation, and BRG1 protein expression in bovine MEC. Phosphatidylinositol 3 kinase (PI3K) inhibition by LY294002 treatment blocked the stimulation of Ile on BRG1 expression. BRG1 knockdown and gene activation experiments showed that it mediated the stimulation of Ile on milk protein and fat synthesis, mTOR phosphorylation, and SREBP-1c expression and maturation in MEC. ChIP-PCR analysis detected that BRG1 bound to the promoters of mTOR and SREBP-1c, and ChIP-qPCR further detected that these bindings were increased by Ile stimulation. In addition, BRG1 positively regulated the binding of H3K27ac to these two promoters, while it negatively affected the binding of H3K27me3 to these promoters. BRG1 knockdown blocked the stimulation of Ile on these two gene expressions. The expression of BRG1 was higher in mouse mammary gland in the lactating period, compared with that in the puberty or dry period. Taken together, these experimental data reveal that Ile stimulates milk protein and fat synthesis in MEC via the PI3K-BRG1-mTOR/SREBP-1c pathway.
Collapse
Affiliation(s)
- Qi Hao
- College of Animal Science, Yangtze University, Jingzhou434023, People's Republic of China
| | - Zhe Wang
- College of Animal Science, Yangtze University, Jingzhou434023, People's Republic of China
- College of Life Science, Northeast Agricultural University, Harbin150030, People's Republic of China
| | - Lulu Wang
- College of Animal Science, Yangtze University, Jingzhou434023, People's Republic of China
| | - Meihong Han
- College of Animal Science, Yangtze University, Jingzhou434023, People's Republic of China
| | - Minghui Zhang
- College of Animal Science, Yangtze University, Jingzhou434023, People's Republic of China
- College of Life Science, Northeast Agricultural University, Harbin150030, People's Republic of China
| | - Xuejun Gao
- College of Animal Science, Yangtze University, Jingzhou434023, People's Republic of China
| |
Collapse
|
14
|
Liu G, Sun BY, Sun J, Zhou PY, Guan RY, Zhou C, Yang ZF, Wang ZT, Zhou J, Fan J, Yi Y, Qiu SJ. BRG1 regulates lipid metabolism in hepatocellular carcinoma through the PIK3AP1/PI3K/AKT pathway by mediating GLMP expression. Dig Liver Dis 2022; 54:692-700. [PMID: 34158256 DOI: 10.1016/j.dld.2021.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Brahma-related gene 1 (BRG1) is essential for embryogenesis and cellular metabolism. A deficiency of BRG1 in vivo decreases lipid droplets, but the molecular mechanism underlying its role in lipid metabolism associated with hepatocellular carcinoma (HCC) remains unknown. AIMS We aimed to determine the role of BRG1 in lipid metabolism in HCC. METHODS We assessed the differential expression of BRG1 in HCC and adjacent non-tumorous tissues using tissue microarrays. We stained lipid droplets in HCC cells with Bodipy fluorescence and Oil Red O, and verified BRG1 binding to the promoter region of glycosylated lysosomal membrane protein (GLMP) using chromatin immunoprecipitation. RESULTS The expression of GLMP, a potential lipid metabolism regulator, was suppressed by BRG1 via transcriptional activity. Knockdown of BRG1 decreased lipid droplets, increased GLMP expression and altered the phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1)/phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT) pathway in HCC, which further GLMP knockdown partially restored. Thus, GLMP knockdown increased lipid droplets and differentially altered the PI3K/AKT pathway. CONCLUSIONS Downregulating BRG1 decreased lipid droplet deposition in HCC cells by upregulating GLMP and altering the PI3K/AKT pathway. Both BRG1 and GLMP might serve as therapeutic targets for disorders associated with dysregulated lipid metabolism, such as NAFLD and NAFLD-associated HCC.
Collapse
Affiliation(s)
- Gao Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Bao-Ye Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Jian Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Pei-Yun Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Ruo-Yu Guan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Cheng Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Zhang-Fu Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Zhu-Tao Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, People's Republic of China.
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, People's Republic of China.
| |
Collapse
|
15
|
Pardo JC, Ruiz de Porras V, Gil J, Font A, Puig-Domingo M, Jordà M. Lipid Metabolism and Epigenetics Crosstalk in Prostate Cancer. Nutrients 2022; 14:851. [PMID: 35215499 PMCID: PMC8874497 DOI: 10.3390/nu14040851] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignant neoplasm in men in the Western world. Localized low-risk PCa has an excellent prognosis thanks to effective local treatments; however, despite the incorporation of new therapeutic strategies, metastatic PCa remains incurable mainly due to disease heterogeneity and the development of resistance to therapy. The mechanisms underlying PCa progression and therapy resistance are multiple and include metabolic reprogramming, especially in relation to lipid metabolism, as well as epigenetic remodelling, both of which enable cancer cells to adapt to dynamic changes in the tumour. Interestingly, metabolism and epigenetics are interconnected. Metabolism can regulate epigenetics through the direct influence of metabolites on epigenetic processes, while epigenetics can control metabolism by directly or indirectly regulating the expression of metabolic genes. Moreover, epidemiological studies suggest an association between a high-fat diet, which can alter the availability of metabolites, and PCa progression. Here, we review the alterations of lipid metabolism and epigenetics in PCa, before focusing on the mechanisms that connect them. We also discuss the influence of diet in this scenario. This information may help to identify prognostic and predictive biomarkers as well as targetable vulnerabilities.
Collapse
Affiliation(s)
- Juan C. Pardo
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (A.F.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Vicenç Ruiz de Porras
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
| | - Joan Gil
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
- Department of Endocrinology and Medicine, CIBERER U747, ISCIII, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Albert Font
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (A.F.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Manel Puig-Domingo
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
- Department of Endocrinology and Nutrition, University Germans Trias i Pujol Hospital, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
- Department of Medicine, Autonomous University of Barcelona (UAB), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
| | - Mireia Jordà
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
| |
Collapse
|
16
|
Lv F, Shao T, Xue Y, Miao X, Guo Y, Wang Y, Xu Y. Dual Regulation of Tank Binding Kinase 1 by BRG1 in Hepatocytes Contributes to Reactive Oxygen Species Production. Front Cell Dev Biol 2021; 9:745985. [PMID: 34660604 PMCID: PMC8517266 DOI: 10.3389/fcell.2021.745985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/15/2021] [Indexed: 01/14/2023] Open
Abstract
Excessive accumulation of reactive oxygen species (ROS) is considered a major culprit for the pathogenesis of non-alcoholic fatty liver disease (NAFLD). We have previously shown that deletion of Brahma related gene 1 (BRG1) mitigated NAFLD in mice in part by attenuating ROS production in hepatocyte. Here we report that BRG1 deletion led to simultaneous down-regulation in expression and phosphorylation of tank binding kinase 1 (TBK1) in vivo and in vitro. On the one hand, BRG1 interacted with AP-1 to bind to the TBK1 promoter and directly activated TBK1 transcription in hepatocytes. On the other hand, BRG1 interacted with Sp1 to activate the transcription of c-SRC, a tyrosine kinase essential for TBK1 phosphorylation. Over-expression of c-SRC and TBK1 corrected the deficiency in ROS production in BRG1-null hepatocytes whereas depletion of TBK1 or c-SRC attenuated ROS production. In conclusion, our data suggest that dual regulation of TBK1 activity, at the transcription level and the post-transcriptional level, by BRG1 may constitute an important mechanism underlying excessive ROS production in hepatocytes.
Collapse
Affiliation(s)
- Fangqiao Lv
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yujia Xue
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiulian Miao
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yan Guo
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yutong Wang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
17
|
Kong M, Dong W, Zhu Y, Fan Z, Miao X, Guo Y, Li C, Duan Y, Lu Y, Li Z, Xu Y. Redox-sensitive activation of CCL7 by BRG1 in hepatocytes during liver injury. Redox Biol 2021; 46:102079. [PMID: 34454163 PMCID: PMC8406035 DOI: 10.1016/j.redox.2021.102079] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/04/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Liver injuries induced by various stimuli share in common an acute inflammatory response, in which circulating macrophages home to the liver parenchyma to participate in the regulation of repair, regeneration, and fibrosis. In the present study we investigated the role of hepatocyte-derived C-C motif ligand 7 (CCL7) in macrophage migration during liver injury focusing on its transcriptional regulation. We report that CCL7 expression was up-regulated in the liver by lipopolysaccharide (LPS) injection (acute liver injury) or methionine-and-choline-deficient (MCD) diet feeding (chronic liver injury) paralleling increased macrophage infiltration. CCL7 expression was also inducible in hepatocytes, but not in hepatic stellate cells or in Kupffer cells, by LPS treatment or exposure to palmitate in vitro. Hepatocyte-specific deletion of Brahma-related gene 1 (BRG1), a chromatin remodeling protein, resulted in a concomitant loss of CCL7 induction and macrophage infiltration in the murine livers. Of interest, BRG1-induced CCL7 transcription and macrophage migration was completely blocked by the antioxidant N-acetylcystine. Further analyses revealed that BRG1 interacted with activator protein 1 (AP-1) to regulate CCL7 transcription in hepatocytes in a redox-sensitive manner mediated in part by casein kinase 2 (CK2)-catalyzed phosphorylation of BRG1. Importantly, a positive correlation between BRG1/CCL7 expression and macrophage infiltration was identified in human liver biopsy specimens. In conclusion, our data unveil a novel role for BRG1 as a redox-sensitive activator of CCL7 transcription.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenhui Dong
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Xiulian Miao
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China
| | - Yan Guo
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China
| | - Chengping Li
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China
| | - Yunfei Duan
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Yunjie Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China.
| | - Zilong Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China.
| |
Collapse
|
18
|
Wang J, Jiang W, Xin J, Xue W, Shi C, Wen J, Huang Y, Hu C. Caveolin-1 Alleviates Acetaminophen-Induced Fat Accumulation in Non-Alcoholic Fatty Liver Disease by Enhancing Hepatic Antioxidant Ability via Activating AMPK Pathway. Front Pharmacol 2021; 12:717276. [PMID: 34305621 PMCID: PMC8293675 DOI: 10.3389/fphar.2021.717276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an independent risk factor for acute liver injury caused by overuse of acetaminophen (APAP). Caveolin-1 (CAV1), a regulator of hepatic energy metabolism and oxidative stress, was found to have a protective effect against NAFLD in our previous study. However, it remains unclear whether CAV1 has a protective effect against APAP-induced hepatotoxicity in NAFLD. The aim of this study was to determine whether CAV1 inhibits oxidative stress through the AMPK/Nrf2/HO-1 pathway to protect the liver from fat accumulation exacerbated by APAP in NAFLD. In this study, seven-week-old C57BL/6 male mice (18–20 g) were raised under similar conditions for in vivo experiment. In vitro, L02 cells were treated with A/O (alcohol and oleic acid mixture) for 48 h, and APAP was added at 24 h for further incubation. The results showed that the protein expression of the AMPK/Nrf2 pathway was enhanced after CAV1 upregulation. The effects of CAV1 on fat accumulation, ROS, and the AMPK/Nrf2 anti-oxidative pathway were reduced after the application of CAV1-siRNA. Finally, treatment with compound C (an AMPK inhibitor) prevented CAV1 plasmid-mediated alleviation of oxidative stress and fat accumulation and reduced the protein level of Nrf2 in the nucleus, demonstrating that the AMPK/Nrf2/HO-1 pathway was involved in the protective effect of CAV1. These results indicate that CAV1 exerted a protective effect against APAP-aggravated lipid deposition and hepatic injury in NAFLD by inhibiting oxidative stress. Therefore, the upregulation of CAV1 might have clinical benefits in reducing APAP-aggravated hepatotoxicity in NAFLD.
Collapse
Affiliation(s)
- Jiarong Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.,School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Institute of Innovative Drugs, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Wei Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.,School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Institute of Innovative Drugs, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Jiao Xin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.,School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Institute of Innovative Drugs, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Weiju Xue
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.,School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Institute of Innovative Drugs, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Congjian Shi
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.,School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Institute of Innovative Drugs, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Jiagen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.,School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Institute of Innovative Drugs, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.,School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Institute of Innovative Drugs, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Chengmu Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.,School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Institute of Innovative Drugs, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| |
Collapse
|
19
|
Dong W, Zhu Y, Zhang Y, Fan Z, Zhang Z, Fan X, Xu Y. BRG1 Links TLR4 Trans-Activation to LPS-Induced SREBP1a Expression and Liver Injury. Front Cell Dev Biol 2021; 9:617073. [PMID: 33816466 PMCID: PMC8012493 DOI: 10.3389/fcell.2021.617073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple organ failure is one of the most severe consequences in patients with septic shock. Liver injury is frequently observed during this pathophysiological process. In the present study we investigated the contribution of Brahma related gene 1 (BRG1), a chromatin remodeling protein, to septic shock induced liver injury. When wild type (WT) and liver conditional BRG1 knockout (LKO) mice were injected with lipopolysaccharide (LPS), liver injury was appreciably attenuated in the LKO mice compared to the WT mice as evidenced by plasma ALT/AST levels, hepatic inflammation and apoptosis. Of interest, there was a down-regulation of sterol response element binding protein 1a (SREBP1a), known to promote liver injury, in the LKO livers compared to the WT livers. BRG1 did not directly bind to the SREBP1a promoter. Instead, BRG1 was recruited to the toll-like receptor 4 (TLR4) promoter and activated TLR4 transcription. Ectopic TLR4 restored SREBP1a expression in BRG1-null hepatocytes. Congruently, adenovirus carrying TLR4 or SREBP1a expression vector normalized liver injury in BRG1 LKO mice injected with LPS. Finally, a positive correlation between BRG1 and TLR4 expression was detected in human liver biopsy specimens. In conclusion, our data demonstrate that a BRG1-TLR4-SREBP1a axis that mediates LPS-induced liver injury in mice.
Collapse
Affiliation(s)
- Wenhui Dong
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yangxi Zhang
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Ziyu Zhang
- Key Laboratory of Women's Reproductive Health of Jiangxi, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Xiangshan Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
20
|
Kong M, Zhu Y, Shao J, Fan Z, Xu Y. The Chromatin Remodeling Protein BRG1 Regulates SREBP Maturation by Activating SCAP Transcription in Hepatocytes. Front Cell Dev Biol 2021; 9:622866. [PMID: 33718362 PMCID: PMC7947303 DOI: 10.3389/fcell.2021.622866] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Sterol response element binding protein (SREBP) is a master regulator of cellular lipogenesis. One key step in the regulation of SREBP activity is its sequential cleavage and trans-location by several different proteinases including SREBP cleavage activating protein (SCAP). We have previously reported that Brahma related gene 1 (BRG1) directly interacts with SREBP1c and SREBP2 to activate pro-lipogenic transcription in hepatocytes. We report here that BRG1 deficiency resulted in reduced processing and nuclear accumulation of SREBP in the murine livers in two different models of non-alcoholic steatohepatitis (NASH). Exposure of hepatocytes to lipopolysaccharide (LPS) and palmitate (PA) promoted SREBP accumulation in the nucleus whereas BRG1 knockdown or inhibition blocked SREBP maturation. Further analysis revealed that BRG1 played an essential role in the regulation of SCAP expression. Mechanistically, BRG1 interacted with Sp1 and directly bound to the SCAP promoter to activate SCAP transcription. Forced expression of exogenous SCAP partially rescued the deficiency in the expression of SREBP target genes in BRG1-null hepatocytes. In conclusion, our data uncover a novel mechanism by which BRG1 contributes to SREBP-dependent lipid metabolism.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Jing Shao
- Wu Medical School, Jiangnan University, Wuxi, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
21
|
Zhang Y, Wang H, Song M, Xu T, Chen X, Li T, Wu T. Brahma-Related Gene 1 Deficiency in Endothelial Cells Ameliorates Vascular Inflammatory Responses in Mice. Front Cell Dev Biol 2020; 8:578790. [PMID: 33330454 PMCID: PMC7734107 DOI: 10.3389/fcell.2020.578790] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Endothelial dysfunction plays an important role in promoting the progression of disease genesis such as atherosclerosis and abdominal aortic aneurysm (AAA). The physiological unbalance of endothelial cells is a major pathological basis. In this present study, we investigated Brahma-related gene 1 (BRG1), a chromatin remodeling protein, was in mouse models of diabetic atherosclerosis and AAA, focusing on its role in endothelial dysfunction. We report that compared with their wild-type (WT, ApoE–/–; BRG1fl/fl) littermates, endothelium conditional BRG1 knockout mice (CKO, ApoE–/–; BRG1fl/fl; CDH5-cre) exhibited an alleviated phenotype of diabetic atherosclerosis. Immunohistochemically staining and real-time PCR analysis demonstrated fewer macrophages recruitment with a reduction of vascular inflammatory in CKO mice compared with WT mice. Further research in the Ang-II induced AAA model revealed that BRG1 deficiency had the protective effects on endothelium conditional BRG1 deletion, evidenced by the downregulation of pro-inflammatory mediators [interleukin (IL)-1β and IL-6, not tumor necrosis factor-α (TNF-α)] in the vessels of CKO mice compared with WT mice. In Ea.hy926 cell lines, anti-BRG1 small interfering RNA and PFI-3 treatment obviously alleviated tumor necrosis factor-α-induced IL-6 and CCL2 expression, and further research demonstrated that the BRG1 inhibition in endothelial cells not only decreased c-Fos expression but also blocked the c-Fos translocation into nuclei. In conclusion, our results suggest that endothelial BRG1 deficiency may protect the mice from diabetic atherosclerosis and AAA via inhibiting inflammatory response in vessels.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Cardiology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Huidi Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Mingzi Song
- Laboratory Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Tongchang Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xuyang Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Tianfa Li
- Department of Cardiology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Teng Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Chen B, Yuan Y, Sun L, Chen J, Yang M, Yin Y, Xu Y. MKL1 Mediates TGF-β Induced RhoJ Transcription to Promote Breast Cancer Cell Migration and Invasion. Front Cell Dev Biol 2020; 8:832. [PMID: 32984327 PMCID: PMC7478007 DOI: 10.3389/fcell.2020.00832] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Differential regulation of gene transcription contributes to cancer metastasis. We investigated the involvement of a Rho GTPase (RhoJ) in breast cancer metastasis focusing on the mechanism underlying RhoJ trans-activation by pro-metastatic cues. We report that expression of RhoJ was up-regulated in malignant breast cancer cells compared to more benign ones. Higher RhoJ expression was also detected in human breast cancer biopsy specimens of advanced stages. RhoJ depletion attenuated breast cancer cell migration and invasion in vitro and metastasis in vivo. The pro-metastatic stimulus TGF-β activated RhoJ via megakaryocytic leukemia 1 (MKL1). MKL1 interacted with and was recruited by ETS-related gene 1 (ERG1) to the RhoJ promoter to activate transcription. In conclusion, our data delineate a novel transcriptional pathway that contributes to breast cancer metastasis. Targeting the ERG1-MKL1-RhoJ axis may be considered as a reasonable approach to treat malignant breast cancer.
Collapse
Affiliation(s)
- Baoyu Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysioloy and Laboratory Center for Experimental Medicine, Nanjing Medical University, Nanjing, China
| | - Yibiao Yuan
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysioloy and Laboratory Center for Experimental Medicine, Nanjing Medical University, Nanjing, China
| | - Lina Sun
- Department of Pathology and Pathophysiology, College of Life and Basic Medical Sciences, Soochow University, Suzhou, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Junliang Chen
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Mengzhu Yang
- Department of Oncology, First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yongmei Yin
- Department of Oncology, First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysioloy and Laboratory Center for Experimental Medicine, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
23
|
Li N, Liu S, Zhang Y, Yu L, Hu Y, Wu T, Fang M, Xu Y. Transcriptional Activation of Matricellular Protein Spondin2 (SPON2) by BRG1 in Vascular Endothelial Cells Promotes Macrophage Chemotaxis. Front Cell Dev Biol 2020; 8:794. [PMID: 32974343 PMCID: PMC7461951 DOI: 10.3389/fcell.2020.00794] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
The matricellular protein SPON2 plays diverse roles in the development of cardiovascular diseases. SPON2 is expressed in endothelial cells, but its transcription regulation in the context of atherogenesis remains incompletely appreciated. Here we report that SPON2 expression was up-regulated by pro-atherogenic stimuli (oxLDL and TNF-α) in vascular endothelia cells. In addition, endothelial SPON2 was elevated in Apoe–/– mice fed on a Western diet compared to the control mice. Induction of SPON2 in endothelial cells by pro-atherogenic stimuli was mediated by BRG1, a chromatin remodeling protein, both in vitro and in vivo. Further analysis revealed that BRG1 interacted with the sequence-specific transcription factor Egr-1 to activate SPON2 transcription. BRG1 contributed to SPON2 trans-activation by modulating chromatin structure surrounding the SPON2 promoter. Functionally, activation of SPON2 transcription by the Egr-1/BRG1 complex provided chemoattractive cues for macrophage trafficking. SPON2 depletion abrogated the ability of BRG1 or Egr-1 to stimulate endothelial derived chemoattractive cue for macrophage migration. On the contrary, recombinant SPON2 rescued endothelial chemo-attractability in the absence of BRG1 or Egr-1. In conclusion, our data have identified a novel transcriptional cascade in endothelial cells that may potentially promote macrophage recruitment and vascular inflammation leading to atherogenesis.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Shuai Liu
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou, China.,Department of Cardiology, Kaifeng People's Hospital, Kaifeng, China
| | - Yuanyuan Zhang
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yanjiang Hu
- Department of Cardiothoracic Surgery, Liyang People's Hospital, Liyang, China
| | - Teng Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Department of Clinical Medicine and Laboratory Center for Experimental Medicine, Jiangsu Health Vocational Institute, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
24
|
Li Z, Kong X, Zhang Y, Zhang Y, Yu L, Guo J, Xu Y. Dual roles of chromatin remodeling protein BRG1 in angiotensin II-induced endothelial-mesenchymal transition. Cell Death Dis 2020; 11:549. [PMID: 32683412 PMCID: PMC7368857 DOI: 10.1038/s41419-020-02744-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
Endothelial–mesenchymal transition (EndMT) is considered one of the processes underlying tissue fibrosis by contributing to the pool of myofibroblasts. In the present study, we investigated the epigenetic mechanism whereby angiotensin II (Ang II) regulates EndMT to promote cardiac fibrosis focusing on the role of chromatin remodeling protein BRG1. BRG1 knockdown or inhibition attenuated Ang II-induced EndMT, as evidenced by down-regulation of CDH5, an endothelial marker, and up-regulation of COL1A2, a mesenchymal marker, in cultured vascular endothelial cells. On the one hand, BRG1 interacted with and was recruited by Sp1 to the SNAI2 (encoding SLUG) promoter to activate SNAI2 transcription in response to Ang II stimulation. Once activated, SLUG bound to the CDH5 promoter to repress CDH5 transcription. On the other hand, BRG1 interacted with and was recruited by SRF to the COL1A2 promoter to activate COL1A2 transcription. Mechanistically, BRG1 evicted histones from the target promoters to facilitate the bindings of Sp1 and SRF. Finally, endothelial conditional BRG1 knockout mice (CKO) exhibited a reduction in cardiac fibrosis, compared to the wild type (WT) littermates, in response to chronic Ang II infusion. In conclusion, our data demonstrate that BRG1 is a key transcriptional coordinator programming Ang II-induced EndMT to contribute to cardiac fibrosis.
Collapse
Affiliation(s)
- Zilong Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Xiaochen Kong
- Department of Endocrinology, Affiliated Nanjing Municipal Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanyuan Zhang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Yangxi Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Junli Guo
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China. .,Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
25
|
Li Z, Zhang Y, Zhang Y, Yu L, Xiao B, Li T, Kong X, Xu Y. BRG1 Stimulates Endothelial Derived Alarmin MRP8 to Promote Macrophage Infiltration in an Animal Model of Cardiac Hypertrophy. Front Cell Dev Biol 2020; 8:569. [PMID: 32733885 PMCID: PMC7358314 DOI: 10.3389/fcell.2020.00569] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Endothelial cell derived angiocrine factors contribute to the disruption of homeostasis and the pathogenesis of cardiovascular diseases in response to stress stimuli. In the present study we investigated the role of BRG1, a key component of the chromatin remodeling complex, in the regulation of angiocrine signaling. We report that angiotensin II (Ang II) induced pathological cardiac hypertrophy was attenuated in mice with endothelial-specific ablation of BRG1 (ecKO) compared to the control mice (WT). Mitigation of cardiac hypertrophy as a result of BRG1 deficiency was accompanied by decreased macrophage homing to the hearts. This could be explained by the observation that the ecKO mice exhibited down-regulation of myeloid-related protein 8 (MRP8), a well-established chemokine for macrophages, in vascular endothelial cells compared to the WT mice. Further analysis revealed that BRG1 mediated the activation of MRP8 expression by Ang II treatment in endothelial cells to promote macrophage migration. BRG1 was recruited to the MRP8 promoter by interacting with hypoxia-inducible factor 1 (HIF-1α). Reciprocally, BRG1 facilitated the binding of HIF-1α to the MRP8 promoter by sequentially recruiting histone acetyltransferase p300 and histone demethylase KDM3A. Depletion of either p300 or KDM3A repressed the induction of MRP8 expression by Ang II and ameliorated macrophage migration. In conclusion, our data delineate a novel epigenetic pathway whereby Ang II stimulates MRP8 production and macrophage homing to promote cardiac hypertrophy.
Collapse
Affiliation(s)
- Zilong Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yuanyuan Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Department of Cardiovascular Medicine, Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yangxi Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Bin Xiao
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tianfa Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Department of Cardiovascular Medicine, Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiaocen Kong
- Department of Endocrinology, Affiliated Nanjing Municipal Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
26
|
Yang Y, Yang G, Yu L, Lin L, Liu L, Fang M, Xu Y. An Interplay Between MRTF-A and the Histone Acetyltransferase TIP60 Mediates Hypoxia-Reoxygenation Induced iNOS Transcription in Macrophages. Front Cell Dev Biol 2020; 8:484. [PMID: 32626711 PMCID: PMC7315810 DOI: 10.3389/fcell.2020.00484] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 05/22/2020] [Indexed: 01/23/2023] Open
Abstract
Cardiac ischemia-reperfusion injury (IRI) represents a major pathophysiological event associated with permanent loss of heart function. Several inter-dependent processes contribute to cardiac IRI that include accumulation of reactive oxygen species (ROS), aberrant inflammatory response, and depletion of energy supply. Inducible nitric oxide synthase (iNOS) is a pro-inflammatory mediator and a major catalyst of ROS generation. In the present study we investigated the epigenetic mechanism whereby iNOS transcription is up-regulated in macrophages in the context of cardiac IRI. We report that germline deletion or systemic inhibition of myocardin-related transcription factor A (MRTF-A) in mice attenuated up-regulation of iNOS following cardiac IRI in the heart. In cultured macrophages, depletion or inhibition of MRTF-A suppressed iNOS induction by hypoxia-reoxygenation (HR). In contrast, MRTF-A over-expression potentiated activation of the iNOS promoter by HR. MRTF-A directly binds to the iNOS promoter in response to HR stimulation. MRTF-A binding to the iNOS promoter was synonymous with active histone modifications including trimethylated H3K4, acetylated H3K9, H3K27, and H4K16. Further analysis revealed that MRTF-A interacted with H4K16 acetyltransferase TIP60 to synergistically activate iNOS transcription. TIP60 depletion or inhibition achieved equivalent effects as MRTF-A depletion/inhibition in terms of iNOS repression. Of interest, TIP60 appeared to form a crosstalk with the H3K4 trimethyltransferase complex to promote iNOS trans-activation. In conclusion, we data suggest that the MRTF-A-TIP60 axis may play a critical role in iNOS transcription in macrophages and as such be considered as a potential target for the intervention of cardiac IRI.
Collapse
Affiliation(s)
- Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Guang Yang
- Department of Pathology, Soochow Municipal Hospital Affiliated with Nanjing Medical University, Soochow, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Ling Lin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Li Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yong Xu
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Fan Z, Kong M, Li M, Hong W, Fan X, Xu Y. Brahma Related Gene 1 (Brg1) Regulates Cellular Cholesterol Synthesis by Acting as a Co-factor for SREBP2. Front Cell Dev Biol 2020; 8:259. [PMID: 32500071 PMCID: PMC7243037 DOI: 10.3389/fcell.2020.00259] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/27/2020] [Indexed: 12/30/2022] Open
Abstract
Hepatocyte is a hub for cholesterol metabolism. Augmented synthesis of cholesterol in the liver is associated with hypercholesterolemia and contributes to the pathogenesis of a host of cardiovascular and metabolic diseases. Sterol response element binding protein 2 (SREBP2) regulates hepatic cholesterol metabolism by activating the transcription of rate-limiting enzymes in the cholesterol biosynthesis pathway. The underlying epigenetic mechanism is not well understood. We report here that mice with hepatocyte-specific knockout (CKO) of Brg1, a chromatin remodeling protein, exhibit reduced levels of hepatic cholesterol compared to the wild type (WT) littermates when placed on a high-fact diet (HFD) or a methionine-and-choline-deficient diet (MCD). Down-regulation of cholesterol levels as a result of BRG1 deficiency was accompanied by attenuation of cholesterogenic gene transcription. Likewise, BRG1 knockdown in hepatocytes markedly suppressed the induction of cholesterogenic genes by lipid depletion formulas. Brg1 interacted with SREBP2 and was recruited by SREBP2 to the cholesterogenic gene promoters. Reciprocally, Brg1 deficiency dampened the occupancies of SREBP2 on target promoters likely through modulating H3K9 methylation on the cholesterogenic gene promoters. Mechanistically, Brg1 recruited the H3K9 methyltransferase KDM3A to co-regulate pro-cholesterogenic transcription. KDM3A silencing dampened the cholesterogenic response in hepatocytes equivalent to Brg1 deficiency. In conclusion, our data demonstrate a novel epigenetic pathway that contributes to SREBP2-dependent cholesterol synthesis in hepatocytes.
Collapse
Affiliation(s)
- Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Min Li
- Department of Clinical Medicine and Laboratory Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Wenxuan Hong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiangshan Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
28
|
Dong W, Kong M, Zhu Y, Shao Y, Wu D, Lu J, Guo J, Xu Y. Activation of TWIST Transcription by Chromatin Remodeling Protein BRG1 Contributes to Liver Fibrosis in Mice. Front Cell Dev Biol 2020; 8:340. [PMID: 32478075 PMCID: PMC7237740 DOI: 10.3389/fcell.2020.00340] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a complex pathophysiological process to which many different cell types contribute. Endothelial cells play versatile roles in the regulation of liver fibrosis. The underlying epigenetic mechanism is not fully appreciated. In the present study, we investigated the role of BRG1, a chromatin remodeling protein, in the modulation of endothelial cells in response to pro-fibrogenic stimuli in vitro and liver fibrosis in mice. We report that depletion of BRG1 by siRNA abrogated TGF-β or hypoxia induced down-regulation of endothelial marker genes and up-regulation of mesenchymal marker genes in cultured endothelial cells. Importantly, endothelial-specific BRG1 deletion attenuated CCl4 induced liver fibrosis in mice. BRG1 knockdown in vitro or BRG1 knockout in vivo was accompanied by the down-regulation of TWIST, a key regulator of endothelial phenotype. Mechanistically, BRG1 interacted with and was recruited to the TWIST promoter by HIF-1α to activate TWIST transcription. BRG1 silencing rendered a more repressive chromatin structure surrounding the TWIST promoter likely contributing to TWIST down-regulation. Inhibition of HIF-1α activity dampened liver fibrosis in mice. Similarly, pharmaceutical inhibition of TWIST alleviated liver fibrosis in mice. In conclusion, our data suggest that epigenetic activation of TWIST by BRG1 contributes to the modulation of endothelial phenotype and liver fibrosis. Therefore, targeting the HIF1α-BRG1-TWIST axis may yield novel therapeutic solutions to treat liver fibrosis.
Collapse
Affiliation(s)
- Wenhui Dong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yang Shao
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Dongmei Wu
- Key Laboratory of Biotechnology on Medical Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jun Lu
- Key Laboratory of Biotechnology on Medical Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Junli Guo
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
29
|
Mao L, Liu L, Zhang T, Qin H, Wu X, Xu Y. Histone Deacetylase 11 Contributes to Renal Fibrosis by Repressing KLF15 Transcription. Front Cell Dev Biol 2020; 8:235. [PMID: 32363192 PMCID: PMC7180197 DOI: 10.3389/fcell.2020.00235] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Renal fibrosis represents a key pathophysiological process in patients with chronic kidney diseases (CKD) and is typically associated with a poor prognosis. Renal tubular epithelial cells (RTECs), in response to a host of pro-fibrogenic stimuli, can trans-differentiate into myofibroblast-like cells and produce extracellular matrix proteins to promote renal fibrosis. In the present study we investigated the role of histone deacetylase 11 (HDAC11) in this process and the underlying mechanism. We report that expression levels of HDAC11 were up-regulated in the kidneys in several different animal models of renal fibrosis. HDAC11 was also up-regulated by treatment of Angiotensin II (Ang II) in cultured RTECs. Consistently, pharmaceutical inhibition with a small-molecule inhibitor of HDAC11 (quisinostat) attenuated unilateral ureteral obstruction (UUO) induced renal fibrosis in mice. Similarly, HDAC11 inhibition by quisinostat or HDAC11 depletion by siRNA blocked Ang II induced pro-fibrogenic response in cultured RTECs. Mechanistically, HDAC11 interacted with activator protein 2 (AP-2α) to repress the transcription of Kruppel-like factor 15 (KLF15). In accordance, KLF15 knockdown antagonized the effect of HDAC11 inhibition or depletion and enabled Ang II to promote fibrogenesis in RTECs. Therefore, we data unveil a novel AP-2α-HDAC11-KLF15 axis that contributes to renal fibrosis.
Collapse
Affiliation(s)
- Lei Mao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Li Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tao Zhang
- Department of Geriatric Nephrology, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Qin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
30
|
Lv F, Li N, Kong M, Wu J, Fan Z, Miao D, Xu Y, Ye Q, Wang Y. CDKN2a/p16 Antagonizes Hepatic Stellate Cell Activation and Liver Fibrosis by Modulating ROS Levels. Front Cell Dev Biol 2020; 8:176. [PMID: 32266258 PMCID: PMC7105638 DOI: 10.3389/fcell.2020.00176] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/03/2020] [Indexed: 12/31/2022] Open
Abstract
The lipid-storage hepatic stellate cells (HSC) play as pivotal role in liver fibrosis being able to trans-differentiate into myofibroblasts in response to various pro-fibrogenic stimuli. In the present study we investigated the role of CDKN2a/p16, a negative regulator of cell cycling, in HSC activation and the underlying mechanism. Levels of p16 were significantly down-regulated in activated HSCs isolated from mice induced to develop liver fibrosis compared to quiescent HSCs isolated from the control mice ex vivo. There was a similar decrease in p16 expression in cultured HSCs undergoing spontaneous activation or exposed to TGF-β treatment in vitro. More important, p16 down-regulation was observed to correlate with cirrhosis in humans. In a classic model of carbon tetrachloride (CCl4) induced liver fibrosis, fibrogenesis was far more extensive in mice with p16 deficiency (KO) than the wild type (WT) littermates. Depletion of p16 in cultured HSCs promoted the synthesis of extracellular matrix (ECM) proteins. Mechanistically, p16 deficiency accelerated reactive oxygen species (ROS) generation in HSCs likely through the p38 MAPK signaling. P38 inhibition or ROS cleansing attenuated ECM production in p16 deficient HSCs. Taken together, our data unveil a previously unappreciated role for p16 in the regulation of HSC activation. Screening for small-molecule compounds that can boost p16 activity may yield novel therapeutic strategies against liver fibrosis.
Collapse
Affiliation(s)
- Fangqiao Lv
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Nan Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Jun Wu
- Department of Anatomy, Nanjing Medical University, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Dengshun Miao
- Department of Anatomy, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Qing Ye
- Department of Pathology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yutong Wang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Deacetylation of MRTF-A by SIRT1 defies senescence induced down-regulation of collagen type I in fibroblast cells. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165723. [PMID: 32061777 DOI: 10.1016/j.bbadis.2020.165723] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/13/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Aging provokes both morphological and functional changes in cells, which are accompanied by a fundamental shift in gene expression patterns. One of the characteristic alterations associated with senescence in fibroblast cells is the down-regulation of collagen type I genes. In the present study, we investigated the contribution of myocardin-related transcription factor A, or MRTF-A, in this process. In mouse embryonic fibroblast (MEF) cells and human foreskin fibroblast (HFF) cells, senescence, induced by either progressive passage or treatment with hydrogen peroxide (H2O2), led to augmented lysine acetylation of MRTF-A paralleling down-regulation of collagen type I and SIRT1, a lysine deacetylase. SIRT1 interacted with MRTF-A to promote MRTF-A deacetylation. SIRT1 over-expression or activation by selective agonists enhanced trans-activation of the collagen promoters by MRTF-A. On the contrary, SIRT1 depletion or inhibition by specific antagonists suppressed trans-activation of the collagen promoters by MRTF-A. Likewise, mutation of four lysine residues within MRTF-A rendered it more potent in terms of activating the collagen promoters but unresponsive to SIRT1. Importantly, SIRT1 activation in senescent fibroblasts mitigated repression of collagen type I expression whereas SIRT1 inhibition promoted the loss of collagen type I expression prematurely in young fibroblasts. Mechanistically, SIRT1 enhanced the affinity of MRTF-A for the collagen type I promoters. In conclusion, our data unveil a novel mechanism that underscores aging-associated loss of collagen type I in fibroblasts via SIRT1-mediated post-translational modification of MRTF-A.
Collapse
|
32
|
MKL1 promotes endothelial-to-mesenchymal transition and liver fibrosis by activating TWIST1 transcription. Cell Death Dis 2019; 10:899. [PMID: 31776330 PMCID: PMC6881349 DOI: 10.1038/s41419-019-2101-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Excessive fibrogenic response in the liver disrupts normal hepatic anatomy and function heralding such end-stage liver diseases as hepatocellular carcinoma and cirrhosis. Sinusoidal endothelial cells contribute to myofibroblast activation and liver fibrosis by undergoing endothelial-mesenchymal transition (EndMT). The underlying mechanism remains poorly defined. Here we report that inhibition or endothelial-specific deletion of MKL1, a transcriptional modulator, attenuated liver fibrosis in mice. MKL1 inhibition or deletion suppressed EndMT induced by TGF-β. Mechanistically, MKL1 was recruited to the promoter region of TWIST1, a master regulator of EndMT, and activated TWIST1 transcription in a STAT3-dependent manner. A small-molecule STAT3 inhibitor (C188-9) alleviated EndMT in cultured cells and bile duct ligation (BDL) induced liver fibrosis in mice. Finally, direct inhibition of TWIST1 by a small-molecule compound harmine was paralleled by blockade of EndMT in cultured cells and liver fibrosis in mice. In conclusion, our data unveil a novel mechanism underlying EndMT and liver fibrosis and highlight the possibility of targeting the STAT3-MKL1-TWIST1 axis in the intervention of aberrant liver fibrogenesis.
Collapse
|
33
|
Li Z, Lv F, Dai C, Wang Q, Jiang C, Fang M, Xu Y. Activation of Galectin-3 (LGALS3) Transcription by Injurious Stimuli in the Liver Is Commonly Mediated by BRG1. Front Cell Dev Biol 2019; 7:310. [PMID: 31850346 PMCID: PMC6901944 DOI: 10.3389/fcell.2019.00310] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/13/2019] [Indexed: 01/13/2023] Open
Abstract
Galectin-3 (encoded by LGALS3) is a glycan-binding protein that regulates a diverse range of pathophysiological processes contributing to the pathogenesis of human diseases. Previous studies have found that galectin-3 levels are up-regulated in the liver by a host of different injurious stimuli. The underlying epigenetic mechanism, however, is unclear. Here we report that conditional knockout of Brahma related gene (BRG1), a chromatin remodeling protein, in hepatocytes attenuated induction of galectin-3 expression in several different animal models of liver injury. Similarly, BRG1 depletion or pharmaceutical inhibition in cultured hepatocytes suppressed the induction of galectin-3 expression by treatment with LPS plus free fatty acid (palmitate). Further analysis revealed that BRG1 interacted with AP-1 to bind to the proximal galectin-3 promoter and activate transcription. Mechanistically, DNA demethylation surrounding the galectin-3 promoter appeared to be a rate-limiting step in BRG1-mediated activation of galectin-3 transcription. BRG1 recruited the DNA 5-methylcytosine dioxygenase TET1 to the galectin-3 to promote active DNA demethylation thereby activating galectin-3 transcription. Finally, TET1 silencing abrogated induction of galectin-3 expression by LPS plus palmitate in cultured hepatocytes. In conclusion, our data unveil a novel epigenetic pathway that contributes to injury-associated activation of galectin-3 transcription in hepatocytes.
Collapse
Affiliation(s)
- Zilong Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Fangqiao Lv
- Department of Cell Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Congxin Dai
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Qiong Wang
- Department of Surgical Oncology, the Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Chao Jiang
- Department of Surgical Oncology, the Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Mingming Fang
- Department of Clinical Medicine, Laboratory Center for Basic Medical Sciences, Jiangsu Health Vocational College, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
34
|
Epigenetic activation of CTGF transcription by high glucose in renal tubular epithelial cells is mediated by myocardin-related transcription factor A. Cell Tissue Res 2019; 379:549-559. [PMID: 31773302 DOI: 10.1007/s00441-019-03124-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/09/2019] [Indexed: 01/26/2023]
Abstract
Diabetic nephropathy (DN) is one of the most devastating complications of diabetes. Connective tissue growth factor (CTGF) levels are up-regulated in patients with DN and in renal tubular epithelial cells (RTECs) exposed to high glucose (HG). The underlying epigenetic mechanism remains to be elucidated. In the present study, we investigate the role of myocardin-related transcription factor A (MRTF-A) in HG-induced CTGF transcription in RTECs. We report that in two different animal models of DN, one induced by streptozotocin (STZ) injection and the other induced by high-fat diet (HFD) feeding, MRTF-A deficiency attenuated CTGF induction in the kidneys. In cultured RTECs, MRTF-A knockdown similarly ameliorated CTGF induction by HG treatment. Upon CTGF induction, there was an increase in acetylated histone H3 (AcH3) and trimethylated H3K4 (H3K4Me3) on the CTGF promoter region accompanying a decrease in dimethylated H3K9 (H3K9Me2). MRTF-A ablation in vivo or depletion in vitro comparably dampened the accumulation of AcH3 and H3K4Me3 but restored H3K9Me2 on the CTGF promoter. Further analyses revealed that MRTF-A interacted with and recruited histone demethylase KDM3A to the CTGF promoter to activate transcription. KDM3A silencing equivalently weakened HG-induced CTGF induction in RTECs. In conclusion, MRTF-A contributes to HG-induced CTGF transcription via an epigenetic mechanism.
Collapse
|
35
|
Li Z, Xia J, Fang M, Xu Y. Epigenetic regulation of lung cancer cell proliferation and migration by the chromatin remodeling protein BRG1. Oncogenesis 2019; 8:66. [PMID: 31695026 PMCID: PMC6834663 DOI: 10.1038/s41389-019-0174-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 01/10/2023] Open
Abstract
Malignant lung cancer cells are characterized by uncontrolled proliferation and migration. Aberrant lung cancer cell proliferation and migration are programmed by altered cancer transcriptome. The underlying epigenetic mechanism is unclear. Here we report that expression levels of BRG1, a chromatin remodeling protein, were significantly up-regulated in human lung cancer biopsy specimens of higher malignancy grades compared to those of lower grades. Small interfering RNA mediated depletion or pharmaceutical inhibition of BRG1 suppressed proliferation and migration of lung cancer cells. BRG1 depletion or inhibition was paralleled by down-regulation of cyclin B1 (CCNB1) and latent TGF-β binding protein 2 (LTBP2) in lung cancer cells. Further analysis revealed that BRG1 directly bound to the CCNB1 promoter to activate transcription in response to hypoxia stimulation by interacting with E2F1. On the other hand, BRG1 interacted with Sp1 to activate LTBP2 transcription. Mechanistically, BRG1 regulated CCNB1 and LTBP2 transcription by altering histone modifications on target promoters. Specifically, BRG1 recruited KDM3A, a histone H3K9 demethylase, to remove dimethyl H3K9 from target gene promoters thereby activating transcription. KDM3A knockdown achieved equivalent effects as BRG1 silencing by diminishing lung cancer proliferation and migration. Of interest, BRG1 directly activated KDM3A transcription by forming a complex with HIF-1α. In conclusion, our data unveil a novel epigenetic mechanism whereby malignant lung cancer cells acquired heightened ability to proliferate and migrate. Targeting BRG1 may yield effective interventional strategies against malignant lung cancers.
Collapse
Affiliation(s)
- Zilong Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Jun Xia
- Department of Respiratory Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China.
| | - Mingming Fang
- Department of Clinical Medicine and Laboratory Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China. .,Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
36
|
Li Z, Chen B, Dong W, Kong M, Shao Y, Fan Z, Yu L, Wu D, Lu J, Guo J, Xu Y. The Chromatin Remodeler Brg1 Integrates ROS Production and Endothelial-Mesenchymal Transition to Promote Liver Fibrosis in Mice. Front Cell Dev Biol 2019; 7:245. [PMID: 31750301 PMCID: PMC6842935 DOI: 10.3389/fcell.2019.00245] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/07/2019] [Indexed: 12/23/2022] Open
Abstract
Trans-differentiation of endothelial cells to myofibroblast contributes to liver fibrosis. Reactive oxygen species (ROS) plays a key role in endothelial-mesenchymal transition (EndMT) although the underlying epigenetic mechanism is unclear. Here we report that endothelial conditional knockout of Brg1, a chromatin remodeling protein, attenuated liver fibrosis in mice. Brg1 deficiency in endothelial cells was paralleled by a decrease in ROS production and blockade of EndMT both in vivo and in vitro. The ability of BRG1 to regulate ROS production and EndMT was abolished by NOX4 depletion or inhibition. Further analysis revealed that BRG1 interacted with SMAD3 and AP-1 to mediate TGF-β induced NOX4 transcription in endothelial cells. Mechanistically, BRG1 recruited various histone modifying enzymes to alter the chromatin structure surrounding the NOX4 locus thereby activating its transcription. In conclusion, our data uncover a novel epigenetic mechanism that links NOX4-dependent ROS production to EndMT and liver fibrosis. Targeting the BRG1-NOX4 axis may yield novel therapeutics against liver fibrosis.
Collapse
Affiliation(s)
- Zilong Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Baoyu Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenhui Dong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yang Shao
- Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhiwen Fan
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Dongmei Wu
- Key Laboratory of Biotechnology on Medical Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jun Lu
- Key Laboratory of Biotechnology on Medical Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Junli Guo
- Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
37
|
Mao L, Liu L, Zhang T, Wu X, Zhang T, Xu Y. MKL1 mediates TGF-β-induced CTGF transcription to promote renal fibrosis. J Cell Physiol 2019; 235:4790-4803. [PMID: 31637729 DOI: 10.1002/jcp.29356] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
Aberrant fibrogenesis impairs the architectural and functional homeostasis of the kidneys. It also predicts poor diagnosis in patients with end-stage renal disease (ESRD). Renal tubular epithelial cells (RTEC) can trans-differentiate into myofibroblasts to produce extracellular matrix proteins and contribute to renal fibrosis. Connective tissue growth factor (CTGF) is a cytokine upregulated in RTECs during renal fibrosis. In the present study, we investigated the regulation of CTGF transcription by megakaryocytic leukemia 1 (MKL1). Genetic deletion or pharmaceutical inhibition of MKL1 in mice mitigated renal fibrosis following the unilateral ureteral obstruction procedure. Notably, MKL1 deficiency in mice downregulated CTGF expression in the kidneys. Likewise, MKL1 knockdown or inhibition in RTEs blunted TGF-β induced CTGF expression. Further, it was discovered that MKL1 bound directly to the CTGF promoter by interacting with SMAD3 to activate CTGF transcription. In addition, MKL1 mediated the interplay between p300 and WDR5 to regulate CTGF transcription. CTGF knockdown dampened TGF-β induced pro-fibrogenic response in RTEs. MKL1 activity was reciprocally regulated by CTGF. In conclusion, we propose that targeting the MKL1-CTGF axis may generate novel therapeutic solutions against aberrant renal fibrogenesis.
Collapse
Affiliation(s)
- Lei Mao
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Tianyi Zhang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China.,The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Tao Zhang
- Department of Geriatric Nephrology, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
38
|
Shao J, Xu Y, Fang M. BRG1 deficiency in endothelial cells alleviates thioacetamide induced liver fibrosis in mice. Biochem Biophys Res Commun 2019; 521:212-219. [PMID: 31635808 DOI: 10.1016/j.bbrc.2019.10.109] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/12/2019] [Indexed: 12/11/2022]
Abstract
Liver sinusoidal endothelial cells play a key role maintaining the hepatic homeostasis, the disruption of which is associated with such end-stage liver diseases as hepatocellular carcinoma and cirrhosis. In the present study we investigated the role of brahma-related gene 1 (BRG1), a chromatin remodeling protein, in regulating endothelial transcription and the implication in liver fibrosis. We report that endothelial-specific deletion of BRG1 in mice attenuated liver fibrosis induced by injection with thioacetamide (TAA). Coincidently, alleviation of liver fibrosis as a result of endothelial BRG1 deletion was accompanied by an up-regulation of eNOS activity and NO bioavailability. In cultured endothelial cells, exposure to lipopolysaccharide (LPS) suppressed eNOS activity whereas BRG1 depletion with small interfering RNA restored eNOS-dependent NO production. Further analysis revealed that BRG1 was recruited to the caveolin-1 (CAV1) promoter by Sp1 and activated transcription of CAV1, which in turn inhibited eNOS activity. Mechanistically, BRG1 interacted with the H3K4 trimethyltransferase MLL1 to modulate H3K4 trimethylation surrounding the CAV1 promoter thereby contributing to LPS-induced CAV1 activation. In conclusion, our data unveil a novel role for BRG1 in the regulation of endothelial function and liver fibrosis.
Collapse
Affiliation(s)
- Jing Shao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yong Xu
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Mingming Fang
- Department of Clinical Medicine and Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
39
|
Wu X, Fan Z, Chen M, Chen Y, Rong D, Cui Z, Yuan Y, Zhuo L, Xu Y. Forkhead transcription factor FOXO3a mediates interferon-γ-induced MHC II transcription in macrophages. Immunology 2019; 158:304-313. [PMID: 31509237 DOI: 10.1111/imm.13116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
Macrophages are professional antigen-presenting cells relying on the expression of class II major histocompatibility complex (MHC II) genes. Interferon-γ (IFN-γ) activates MHC II transcription via the assembly of an enhanceosome centred on class II trans-activator (CIITA). In the present study, we investigated the role of the forkhead transcription factor FOXO3a in IFN- γ-induced MHC II transcription in macrophages. Knockdown of FOXO3a, but not FOXO1 or FOXO4, diminished IFN-γ-induced MHC II expression in RAW cells. On the contrary, over-expression of FOXO3a, but neither FOXO1 nor FOXO4, enhanced CIITA-mediated trans-activation of the MHC II promoter. IFN-γ treatment promoted the recruitment of FOXO3a to the MHC II promoter. Co-immunoprecipitation and RE-ChIP assays showed that FOXO3a was a component of the MHC II enhanceosome forming interactions with CIITA, RFX5, RFXB and RFXAP. FOXO3a contributed to MHC II transcription by altering histone modifications surrounding the MHC II promoter. Of interest, FOXO3a was recruited to the type IV CIITA promoter and directly activated CIITA transcription by interacting with signal transducer of activation and transcription 1 in response to IFN-γ stimulation. In conclusion, our data unveil a novel role for FOXO3a in the regulation of MHC II transcription in macrophages.
Collapse
Affiliation(s)
- Xiaoyan Wu
- The Laboratory Centre for Basic Medical Sciences, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Ming Chen
- The Laboratory Centre for Basic Medical Sciences, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yi Chen
- The Laboratory Centre for Basic Medical Sciences, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Danyan Rong
- The Laboratory Centre for Basic Medical Sciences, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zhiwei Cui
- The Laboratory Centre for Basic Medical Sciences, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yibiao Yuan
- The Laboratory Centre for Basic Medical Sciences, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Lili Zhuo
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| |
Collapse
|
40
|
Liu L, Mao L, Wu X, Wu T, Liu W, Yang Y, Zhang T, Xu Y. BRG1 regulates endothelial-derived IL-33 to promote ischemia-reperfusion induced renal injury and fibrosis in mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2551-2561. [DOI: 10.1016/j.bbadis.2019.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/30/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
|
41
|
Kong M, Hong W, Shao Y, Lv F, Fan Z, Li P, Xu Y, Guo J. Ablation of serum response factor in hepatic stellate cells attenuates liver fibrosis. J Mol Med (Berl) 2019; 97:1521-1533. [PMID: 31435710 DOI: 10.1007/s00109-019-01831-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/19/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022]
Abstract
Trans-differentiation, or activation, of hepatic stellate cells (HSCs) is a hallmark event in liver fibrosis although the underlying mechanism is not fully appreciated. Serum response factor (SRF) is a pleiotropic sequence-specific transcription factor with a ubiquitous expression pattern. In the present study, we investigated the effect of HSC-specific ablation of SRF on liver fibrosis in vivo and the underlying mechanism. We report that SRF bound to the promoter regions of pro-fibrogenic genes, including collagen type I (Col1a1/Col1a2) and alpha smooth muscle actin (Acta2), with greater affinity in activated HSCs compared to quiescent HSCs. Ablation of SRF in HSCs in vitro downregulated the expression of fibrogenic genes by dampening the accumulation of active histone marks. SRF also interacted with MRTF-A, a well-documented co-factor involved in liver fibrosis, on the pro-fibrogenic gene promoters during HSC activation. In addition, SRF directly regulated MRTF-A transcription in activated HSCs. More importantly, HSC conditional SRF knockout (CKO) mice developed a less robust pro-fibrogenic response in the liver in response to CCl4 injection and BDL compared to wild-type littermates. In conclusion, our data demonstrate that SRF may play an essential role in HSC activation and liver fibrosis. KEY MESSAGES: • SRF deficiency decelerates activation of hepatic stellate cells (HSCs) in vitro. • SRF epigenetically activates pro-fibrogenic transcription to promote HSC maturation. • SRF interacts with MRTF-A and contributes to MRTF-A transcription. • Conditional SRF deletion in HSCs attenuates BDL-induced liver fibrosis in mice. • Conditional SRF ablation in HSCs attenuates CCl4-induced liver fibrosis in mice.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Wenxuan Hong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yang Shao
- Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Fangqiao Lv
- Department of Cell Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Ping Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China. .,Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China. .,Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| | - Junli Guo
- Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
42
|
Kong M, Chen X, Lv F, Ren H, Fan Z, Qin H, Yu L, Shi X, Xu Y. Serum response factor (SRF) promotes ROS generation and hepatic stellate cell activation by epigenetically stimulating NCF1/2 transcription. Redox Biol 2019; 26:101302. [PMID: 31442911 PMCID: PMC6831835 DOI: 10.1016/j.redox.2019.101302] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/25/2022] Open
Abstract
Activation of hepatic stellate cells (HSC) is a hallmark event in liver fibrosis. Accumulation of reactive oxygen species (ROS) serves as a driving force for HSC activation. The regulatory subunits of the NOX complex, NCF1 (p47phox) and NCF2 (p67phox), are up-regulated during HSC activation contributing to ROS production and liver fibrosis. The transcriptional mechanism underlying NCF1/2 up-regulation is not clear. In the present study we investigated the role of serum response factor (SRF) in HSC activation focusing on the transcriptional regulation of NCF1/2. We report that compared to wild type littermates HSC-conditional SRF knockout (CKO) mice exhibited a mortified phenotype of liver fibrosis induced by thioacetamide (TAA) injection or feeding with a methionine-and-choline deficient diet (MCD). More importantly, SRF deletion attenuated ROS levels in HSCs in vivo. Similarly, SRF knockdown in cultured HSCs suppressed ROS production in vitro. Further analysis revealed that SRF deficiency resulted in repression of NCF1/NCF2 expression. Mechanistically, SRF regulated epigenetic transcriptional activation of NCF1/NCF2 by interacting with and recruiting the histone acetyltransferase KAT8 during HSC activation. In conclusion, we propose that SRF integrates transcriptional activation of NCF1/NCF2 and ROS production to promote liver fibrosis.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xuyang Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Fangqiao Lv
- Department of Cell Biology and the Municipal Laboratory of Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Haozhen Ren
- Department of Hepato-biliary Surgery and Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhiwen Fan
- Department of Hepato-biliary Surgery and Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao Qin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiaolei Shi
- Department of Hepato-biliary Surgery and Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
43
|
Fan Z, Li N, Xu Z, Wu J, Fan X, Xu Y. An interaction between MKL1, BRG1, and C/EBPβ mediates palmitate induced CRP transcription in hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194412. [PMID: 31356989 DOI: 10.1016/j.bbagrm.2019.194412] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is one of the most predominant disorders in metabolic syndrome. Induction of pro-inflammatory mediators in hepatocytes exposed to free fatty acids represents a hallmark event during NASH pathogenesis. C-reactive protein (CRP) is a prototypical pro-inflammatory mediator. In the present study, we investigated the mechanism by which megakaryocytic leukemia 1 (MKL1) mediates palmitate (PA) induced CRP transcription in hepatocytes. We report that over-expression of MKL1, but not MKL2, activated the CRP promoter whereas depletion or inhibition of MKL1 repressed the CRP promoter. MKL1 potentiated the induction of the CRP promoter activity by PA treatment. Importantly, MKL1 knockdown by siRNA or pharmaceutical inhibition by CCG-1423 attenuated the induction of endogenous CRP expression in hepatocytes. Similarly, primary hepatocytes isolated from wild type (WT) mice produced more CRP than those isolated from MKL1 deficient (KO) mice when stimulated with PA. Mechanistically, the sequence-specific transcription factor CCAAT-enhancer-binding protein (C/EBPβ) interacted with MKL1 and recruited MKL1 to activate CRP transcription. Reciprocally, MKL1 modulated C/EBPβ activity by recruiting the chromatin remodeling protein BRG1 to the CRP promoter to alter histone modifications. In conclusion, our data delineate a novel epigenetic mechanism underlying augmented hepatic inflammation during NASH pathogenesis.
Collapse
Affiliation(s)
- Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Nan Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Zheng Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Jiahao Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiangshan Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
44
|
Liu L, Mao L, Xu Y, Wu X. Endothelial-specific deletion of Brahma-related gene 1 (BRG1) assuages unilateral ureteral obstruction induced renal injury in mice. Biochem Biophys Res Commun 2019; 517:244-252. [PMID: 31349970 DOI: 10.1016/j.bbrc.2019.07.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 07/20/2019] [Indexed: 02/07/2023]
Abstract
Renal homeostasis is regulated by the interplay among different cell types in the kidneys including endothelial cells. In the present study we investigated the phenotypic regulation of endothelial cells by BRG1, a chromatin remodeling protein, in a mouse model of obstructive nephropathy (ON). We report that endothelial-specific deletion of BRG1 attenuated renal inflammation induced by unilateral ureteral tract obstruction (UUO) in mice, as evidenced by down-regulation of pro-inflammatory cytokines and diminished infiltration of immune cells. Moreover, endothelial BRG1 deficiency suppressed UUO-induced renal fibrosis in mice as measured by expression of pro-fibrogenic genes, picrosirius red staining of collagenous tissues, and quantification of hydroxylproline levels. Mechanistically, BRG1 activated the transcription of adhesion molecules and chemokines in endothelial cells by recruiting histone modifying enzymes leading to macrophage adhesion and chemotaxis. In conclusion, we propose that epigenetic regulation of endothelial function by BRG1 may play an active role in ON pathogenesis.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Lei Mao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Xiaoyan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
45
|
A non-autonomous role of MKL1 in the activation of hepatic stellate cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:609-618. [DOI: 10.1016/j.bbagrm.2019.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/07/2019] [Accepted: 03/30/2019] [Indexed: 01/20/2023]
|
46
|
Yang Y, Liu L, Li M, Cheng X, Fang M, Zeng Q, Xu Y. The chromatin remodeling protein BRG1 links ELOVL3 trans-activation to prostate cancer metastasis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:834-845. [PMID: 31154107 DOI: 10.1016/j.bbagrm.2019.05.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/20/2019] [Accepted: 05/25/2019] [Indexed: 10/26/2022]
Abstract
Prostate cancer malignancies are intimately correlated with deregulated fatty acid metabolism. The underlying epigenetic mechanism is not fully understood. In the present study we investigated the mechanism whereby the chromatin remodeling protein BRG1 regulates the transcription of long-chain fatty acid elongase 3 (Elovl3) in prostate cancer cells. We report that in response to pro-metastatic cues (androgen and TGF-β) BRG1 expression was up-regulated along with Elvol3 in prostate cancer cells. BRG1 over-expression potentiated whereas BRG1 knockdown attenuated prostate cancer cell migration and invasion. Coincidently, Elovl3 was up-regulated following BRG1 over-expression and down-regulated after BRG1 knockdown in prostate cancer cells. Further analysis revealed that BRG1 interacted with and was recruited by retinoic acid receptor-related orphan receptor (RORγ) to the Elovl3 promoter to activate transcription. Chromatin immunoprecipitation (ChIP) profiling demonstrated that BRG1 interacted with histone acetyltransferase p300 to activate Elovl3 transcription. Depletion of p300 by siRNA or inhibition of p300 by curcumin attenuated Elovl3 trans-activation in prostate cancer cells. Together, our data identify a novel epigenetic pathway that links Elovl3 transcription to prostate cancer cell migration and invasion.
Collapse
Affiliation(s)
- Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Li Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Min Li
- Center for Male Reproductive Medicine, Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Xian Cheng
- Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Mingming Fang
- Center for Male Reproductive Medicine, Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Qingqi Zeng
- Center for Male Reproductive Medicine, Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China.
| | - Yong Xu
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
47
|
Yang Y, Liu L, Fang M, Bai H, Xu Y. The chromatin remodeling protein BRM regulates the transcription of tight junction proteins: Implication in breast cancer metastasis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:547-556. [PMID: 30946989 DOI: 10.1016/j.bbagrm.2019.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
Abstract
Claudins are a group of cell tight junction proteins that play versatile roles in cancer biology. Recent studies have correlated down-regulation of Claudins with augmented breast cancer malignancy and poor prognosis. The mechanism underlying repression of Claudin transcription in breast cancer cells is not well understood. Here we report that expression levels of Brahma (BRM) were down-regulated in triple negative breast cancer cells (MDA-231) compared to the less malignant MCF-7 cells and in high-grade human breast cancer specimens compared to low-grade ones. TGF-β treatment in MCF-7 cells repressed BRM transcription likely through targeting C/EBPβ. BRM over-expression suppressed whereas BRM knockdown promoted TGF-β induced migration and invasion of MCF-7 cells. BRM down-regulation was accompanied by the loss of a panel of Claudins in breast cancer cells. BRM directly bound to the promoter region of Claudin genes via interacting with Sp1 and activated transcription by modulating histone modifications. Together, our data have identified a novel epigenetic pathway that links Claudin transcription to breast cancer metastasis.
Collapse
Affiliation(s)
- Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Li Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Hui Bai
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
48
|
Kong M, Wu J, Fan Z, Chen B, Wu T, Xu Y. The histone demethylase Kdm4 suppresses activation of hepatic stellate cell by inducing MiR-29 transcription. Biochem Biophys Res Commun 2019; 514:16-23. [PMID: 31014673 DOI: 10.1016/j.bbrc.2019.04.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/14/2019] [Indexed: 12/21/2022]
Abstract
One of the hallmark events during liver fibrosis is the transition of quiescent hepatic stellate cells (HSC) into activated myofibroblasts, which are responsible for the production and deposition of pro-fibrogenic proteins. The epigenetic mechanism underlying HSC trans-differentiation is not fully understood. In the present study we investigated the contribution of histone H3K9 demethylase KDM4 in this process. We report that expression levels of KDM4 were down-regulated during HSC activation paralleling the up-regulation of alpha smooth muscle cell actin (Acta2), a marker of mature myofibroblast. Furthermore, HSCs isolated from mice induced to develop liver fibrosis exhibit lowered KDM4 expression compared to the control mice. In accordance, KDM4 depletion with siRNA accelerated HSC activation. Of interest, the loss of KDM4 was mirrored by the repression of miR-29, an antagonist of liver fibrosis, during HSC activation both in vitro and in vivo. KDM4 knockdown resulted in the down-regulation of miR-29 expression. Mechanistically, the sequence-specific transcription factor SREBP2 interacted with KDM4 to activate miR-29 transcription. In conclusion, our data delineate a novel epigenetic mechanism underlying HSC activation. Targeting this axis may yield potential therapeutics against liver fibrosis.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Jiahao Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing, China
| | - Bin Chen
- Department of Nursing, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Teng Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
49
|
Sun L, Yuan Y, Chen J, Ma C, Xu Y. Brahma related gene 1 (BRG1) regulates breast cancer cell migration and invasion by activating MUC1 transcription. Biochem Biophys Res Commun 2019; 511:536-543. [DOI: 10.1016/j.bbrc.2019.02.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/16/2019] [Indexed: 10/27/2022]
|
50
|
Zhang Y, Yuan Y, Li Z, Chen H, Fang M, Xiao P, Xu Y. An interaction between BRG1 and histone modifying enzymes mediates lipopolysaccharide-induced proinflammatory cytokines in vascular endothelial cells. J Cell Biochem 2019; 120:13216-13225. [PMID: 30891798 DOI: 10.1002/jcb.28595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/26/2022]
Abstract
Vascular inflammation is the culprit for a host of human diseases. The underlying mechanism, however, is not definitively elucidated. In the present study, we investigated the interplay between different epigenetic factors during lipopolysaccharide (LPS) induced synthesis of proinflammatory cytokines in cultured vascular endothelial cells. We report that in response to LPS treatment, NF-κB was deplored to its target promoters along with the chromatin remodeling protein BRG1. Paralleling these changes trimethylated H3K9 became erased from while trimethylated H3K4 started to accumulate on the NF-κB target promoters. Further analysis revealed that LPS stimulation resulted in sequential recruitment of the H3K9 tri-demethylase JMJD2A and the H3K4 trimethyltransferase SET1A to the NF-κB target promoters. JMJD2A mediated-H3K9 demethylation served as a prerequisite for SET1A to bind to the NF-κB target promoters. Both JMJD2A and SET1A were essential for LPS-induced transactivation of proinflammatory cytokines by sustaining the binding of NF-κB. Of key importance, BRG1 coordinated the sequential recruit of and the interplay between JMJD2A and SET1A. In conclusion, our data unveil a novel epigenetic mechanism that contributes to LPS-induced vascular inflammation.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Department of Cardiology, Affiliated Hospital to Hainan Medical University, Haikou, China
| | - Yibiao Yuan
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zilong Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Huan Chen
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Pingxi Xiao
- Department of Cardiology, Sir Run Run Hospital Affiliated to Nanjing MedicalUniversity, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|