1
|
Lin K, Xu K, Chen Y, Lu Y, Zhou M, Cao F. Homocysteine S-Methyltransferase 3 Positively Regulates Cadmium Tolerance in Maize. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39483059 DOI: 10.1111/pce.15244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The increasing contamination of agricultural soils with cadmium (Cd) poses a significant threat to human health and global food security. Plants initiate a series of mechanisms to reduce Cd toxicity. However, the response of maize to Cd toxicity remains poorly understood. In this study, we identified that ZmHMT3, which encodes a homocysteine S-methyltransferases family protein, acted as a regulator of Cd tolerance in maize. Subcellular localization and in situ PCR exhibited that ZmHMT3 was localized in the cytoplasm and predominantly expressed in the phloem. Overexpression of ZmHMT3 enhanced Cd tolerance and reduced Cd concentration in both shoots and roots. In contrast, ZmHMT3 mutants attenuated Cd tolerance but did not change shoot Cd concentration. Heterologous overexpression of ZmHMT3 in rice enhanced Cd tolerance and reduced grain Cd concentration. Transcriptome analysis revealed that ZmHMT3 upregulated the expression of stress-responsive genes, especially glutathione S-transferases (GSTs) and transcription factors, including MYBs, NACs and WRKYs, and modulates the expression of different ATP-binding cassette (ABC) transporters, thereby enhancing Cd tolerance. Collectively, these findings highlight the pivotal role of ZmHMT3 in Cd tolerance and as a candidate gene for improving Cd tolerance in elite maize varieties.
Collapse
Affiliation(s)
- Kaina Lin
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Kewen Xu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yiqing Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yifan Lu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania, Australia
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Gadwal A, Panigrahi P, Khokhar M, Sharma V, Setia P, Vishnoi JR, Elhence P, Purohit P. A critical appraisal of the role of metabolomics in breast cancer research and diagnostics. Clin Chim Acta 2024; 561:119836. [PMID: 38944408 DOI: 10.1016/j.cca.2024.119836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Breast cancer (BC) remains the most prevalent cancer among women worldwide, despite significant advancements in its prevention and treatment. The escalating incidence of BC globally necessitates continued research into novel diagnostic and therapeutic strategies. Metabolomics, a burgeoning field, offers a comprehensive analysis of all metabolites within a cell, tissue, system, or organism, providing crucial insights into the dynamic changes occurring during cancer development and progression. This review focuses on the metabolic alterations associated with BC, highlighting the potential of metabolomics in identifying biomarkers for early detection, diagnosis, treatment and prognosis. Metabolomics studies have revealed distinct metabolic signatures in BC, including alterations in lipid metabolism, amino acid metabolism, and energy metabolism. These metabolic changes not only support the rapid proliferation of cancer cells but also influence the tumour microenvironment and therapeutic response. Furthermore, metabolomics holds great promise in personalized medicine, facilitating the development of tailored treatment strategies based on an individual's metabolic profile. By providing a holistic view of the metabolic changes in BC, metabolomics has the potential to revolutionize our understanding of the disease and improve patient outcomes.
Collapse
Affiliation(s)
- Ashita Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Pragyan Panigrahi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Vaishali Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Puneet Setia
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Jeewan Ram Vishnoi
- Department of Oncosurgery, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Poonam Elhence
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur Rajasthan, 342005, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India.
| |
Collapse
|
3
|
Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther 2024; 9:138. [PMID: 38806473 PMCID: PMC11133400 DOI: 10.1038/s41392-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Despite substantial evidence emphasizing the pleiotropic benefits of exercise for the prevention and treatment of various diseases, the underlying biological mechanisms have not been fully elucidated. Several exercise benefits have been attributed to signaling molecules that are released in response to exercise by different tissues such as skeletal muscle, cardiac muscle, adipose, and liver tissue. These signaling molecules, which are collectively termed exerkines, form a heterogenous group of bioactive substances, mediating inter-organ crosstalk as well as structural and functional tissue adaption. Numerous scientific endeavors have focused on identifying and characterizing new biological mediators with such properties. Additionally, some investigations have focused on the molecular targets of exerkines and the cellular signaling cascades that trigger adaption processes. A detailed understanding of the tissue-specific downstream effects of exerkines is crucial to harness the health-related benefits mediated by exercise and improve targeted exercise programs in health and disease. Herein, we review the current in vivo evidence on exerkine-induced signal transduction across multiple target tissues and highlight the preventive and therapeutic value of exerkine signaling in various diseases. By emphasizing different aspects of exerkine research, we provide a comprehensive overview of (i) the molecular underpinnings of exerkine secretion, (ii) the receptor-dependent and receptor-independent signaling cascades mediating tissue adaption, and (iii) the clinical implications of these mechanisms in disease prevention and treatment.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, 37075, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
4
|
Yang L, Bu X, Lu X, Wan J, Zhang X, Zhang W, Zhong L. SERS-based long-term mitochondrial pH monitoring during differentiation of human induced pluripotent stem cells to neural progenitor cells. BIOMEDICAL OPTICS EXPRESS 2024; 15:2926-2936. [PMID: 38855674 PMCID: PMC11161384 DOI: 10.1364/boe.519931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 06/11/2024]
Abstract
As one of the important organelles in the process of cell differentiation, mitochondria regulate the whole process of differentiation by participating in energy supply and information transmission. Mitochondrial pH value is a key indicator of mitochondrial function. Therefore, real-time monitoring of mitochondrial pH value during cell differentiation is of great significance for understanding cell biochemical processes and exploring differentiation mechanisms. In this study, Surface-enhanced Raman scattering (SERS) technology was used to achieve the real-time monitoring of mitochondrial pH during induced pluripotent stem cells (iPSCs) differentiation into neural progenitor cells (NPCs). The results showed that the variation trend of mitochondrial pH in normal and abnormal differentiated batches was different. The mitochondrial pH value of normal differentiated cells continued to decline from iPSCs to embryoid bodies (EB) day 4, and continued to rise from EB day 4 to the NPCs stage, and the mitochondrial microenvironment of iPSCs to NPCs differentiation became acidic. In contrast, the mitochondrial pH value of abnormally differentiated cells declined continuously during differentiation. This study improves the information on acid-base balance during cell differentiation and may provide a basis for further understanding of the changes and regulatory mechanisms of mitochondrial metabolism during cell differentiation. This also helps to improve more accurate and useful differentiation protocols based on the microenvironment within the mitochondria, improving the efficiency of cell differentiation.
Collapse
Affiliation(s)
- Liwei Yang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xiaoya Bu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xiaoxu Lu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Jianhui Wan
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao Zhang
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Weina Zhang
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Liyun Zhong
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Ceravolo G, Zhelcheska K, Squadrito V, Pellerin D, Gitto E, Hartley L, Houlden H. Update on leukodystrophies and developing trials. J Neurol 2024; 271:593-605. [PMID: 37755460 PMCID: PMC10770198 DOI: 10.1007/s00415-023-11996-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/28/2023]
Abstract
Leukodystrophies are a heterogeneous group of rare genetic disorders primarily affecting the white matter of the central nervous system. These conditions can present a diagnostic challenge, requiring a comprehensive approach that combines clinical evaluation, neuroimaging, metabolic testing, and genetic testing. While MRI is the main tool for diagnosis, advances in molecular diagnostics, particularly whole-exome sequencing, have significantly improved the diagnostic yield. Timely and accurate diagnosis is crucial to guide symptomatic treatment and assess eligibility to participate in clinical trials. Despite no specific cure being available for most leukodystrophies, gene therapy is emerging as a potential treatment avenue, rapidly advancing the therapeutic prospects in leukodystrophies. This review will explore diagnostic and therapeutic strategies for leukodystrophies, with particular emphasis on new trials.
Collapse
Affiliation(s)
- Giorgia Ceravolo
- Department of Neuromuscular Disorders, Institute of Neurology, University College London (UCL), London, UK.
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - Kristina Zhelcheska
- Department of Neuromuscular Disorders, Institute of Neurology, University College London (UCL), London, UK
| | - Violetta Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - David Pellerin
- Department of Neuromuscular Disorders, Institute of Neurology, University College London (UCL), London, UK
| | - Eloisa Gitto
- Neonatal and Paediatric Intensive Care Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Henry Houlden
- Department of Neuromuscular Disorders, Institute of Neurology, University College London (UCL), London, UK
| |
Collapse
|
6
|
Su É, Villard C, Manneville JB. Mitochondria: At the crossroads between mechanobiology and cell metabolism. Biol Cell 2023; 115:e2300010. [PMID: 37326132 DOI: 10.1111/boc.202300010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Metabolism and mechanics are two key facets of structural and functional processes in cells, such as growth, proliferation, homeostasis and regeneration. Their reciprocal regulation has been increasingly acknowledged in recent years: external physical and mechanical cues entail metabolic changes, which in return regulate cell mechanosensing and mechanotransduction. Since mitochondria are pivotal regulators of metabolism, we review here the reciprocal links between mitochondrial morphodynamics, mechanics and metabolism. Mitochondria are highly dynamic organelles which sense and integrate mechanical, physical and metabolic cues to adapt their morphology, the organization of their network and their metabolic functions. While some of the links between mitochondrial morphodynamics, mechanics and metabolism are already well established, others are still poorly documented and open new fields of research. First, cell metabolism is known to correlate with mitochondrial morphodynamics. For instance, mitochondrial fission, fusion and cristae remodeling allow the cell to fine-tune its energy production through the contribution of mitochondrial oxidative phosphorylation and cytosolic glycolysis. Second, mechanical cues and alterations in mitochondrial mechanical properties reshape and reorganize the mitochondrial network. Mitochondrial membrane tension emerges as a decisive physical property which regulates mitochondrial morphodynamics. However, the converse link hypothesizing a contribution of morphodynamics to mitochondria mechanics and/or mechanosensitivity has not yet been demonstrated. Third, we highlight that mitochondrial mechanics and metabolism are reciprocally regulated, although little is known about the mechanical adaptation of mitochondria in response to metabolic cues. Deciphering the links between mitochondrial morphodynamics, mechanics and metabolism still presents significant technical and conceptual challenges but is crucial both for a better understanding of mechanobiology and for potential novel therapeutic approaches in diseases such as cancer.
Collapse
Affiliation(s)
- Émilie Su
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité - CNRS, UMR 7057, Paris, France
- Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Université Paris Cité - CNRS, UMR 8236, Paris, France
| | - Catherine Villard
- Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Université Paris Cité - CNRS, UMR 8236, Paris, France
| | - Jean-Baptiste Manneville
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité - CNRS, UMR 7057, Paris, France
| |
Collapse
|
7
|
Amato I, Meurant S, Renard P. The Key Role of Mitochondria in Somatic Stem Cell Differentiation: From Mitochondrial Asymmetric Apportioning to Cell Fate. Int J Mol Sci 2023; 24:12181. [PMID: 37569553 PMCID: PMC10418455 DOI: 10.3390/ijms241512181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The study of the mechanisms underlying stem cell differentiation is under intensive research and includes the contribution of a metabolic switch from glycolytic to oxidative metabolism. While mitochondrial biogenesis has been previously demonstrated in number of differentiation models, it is only recently that the role of mitochondrial dynamics has started to be explored. The discovery of asymmetric distribution of mitochondria in stem cell progeny has strengthened the interest in the field. This review attempts to summarize the regulation of mitochondrial asymmetric apportioning by the mitochondrial fusion, fission, and mitophagy processes as well as emphasize how asymmetric mitochondrial apportioning in stem cells affects their metabolism, and thus epigenetics, and determines cell fate.
Collapse
Affiliation(s)
- Ilario Amato
- Ressearch Unit in Cell Biology (URBC), Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium; (I.A.); (S.M.)
| | - Sébastien Meurant
- Ressearch Unit in Cell Biology (URBC), Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium; (I.A.); (S.M.)
| | - Patricia Renard
- Ressearch Unit in Cell Biology (URBC), Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium; (I.A.); (S.M.)
- Mass Spectrometry Platform (MaSUN), Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium
| |
Collapse
|
8
|
Comparative genomics and interactomics of polyadenylation factors for the prediction of new parasite targets: Entamoeba histolytica as a working model. Biosci Rep 2023; 43:232462. [PMID: 36651565 PMCID: PMC9912109 DOI: 10.1042/bsr20221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Protein-protein interactions (PPI) play a key role in predicting the function of a target protein and drug ability to affect an entire biological system. Prediction of PPI networks greatly contributes to determine a target protein and signal pathways related to its function. Polyadenylation of mRNA 3'-end is essential for gene expression regulation and several polyadenylation factors have been shown as valuable targets for controlling protozoan parasites that affect human health. Here, by using a computational strategy based on sequence-based prediction approaches, phylogenetic analyses, and computational prediction of PPI networks, we compared interactomes of polyadenylation factors in relevant protozoan parasites and the human host, to identify key proteins and define potential targets for pathogen control. Then, we used Entamoeba histolytica as a working model to validate our computational results. RT-qPCR assays confirmed the coordinated modulation of connected proteins in the PPI network and evidenced that silencing of the bottleneck protein EhCFIm25 affects the expression of interacting proteins. In addition, molecular dynamics simulations and docking approaches allowed to characterize the relationships between EhCFIm25 and Ehnopp34, two connected bottleneck proteins. Interestingly, the experimental identification of EhCFIm25 interactome confirmed the close relationships among proteins involved in gene expression regulation and evidenced new links with moonlight proteins in E. histolytica, suggesting a connection between RNA biology and metabolism as described in other organisms. Altogether, our results strengthened the relevance of comparative genomics and interactomics of polyadenylation factors for the prediction of new targets for the control of these human pathogens.
Collapse
|
9
|
Ali D, Figeac F, Caci A, Ditzel N, Schmal C, Kerckhofs G, Havelund J, Færgeman N, Rauch A, Tencerova M, Kassem M. High-fat diet-induced obesity augments the deleterious effects of estrogen deficiency on bone: Evidence from ovariectomized mice. Aging Cell 2022; 21:e13726. [PMID: 36217558 PMCID: PMC9741509 DOI: 10.1111/acel.13726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 12/14/2022] Open
Abstract
Several epidemiological studies have suggested that obesity complicated with insulin resistance and type 2 diabetes exerts deleterious effects on the skeleton. While obesity coexists with estrogen deficiency in postmenopausal women, their combined effects on the skeleton are poorly studied. Thus, we investigated the impact of high-fat diet (HFD) on bone and metabolism of ovariectomized (OVX) female mice (C57BL/6J). OVX or sham operated mice were fed either HFD (60%fat) or normal diet (10%fat) for 12 weeks. HFD-OVX group exhibited pronounced increase in body weight (~86% in HFD and ~122% in HFD-OVX, p < 0.0005) and impaired glucose tolerance. Bone microCT-scanning revealed a pronounced decrease in trabecular bone volume/total volume (BV/TV) (-15.6 ± 0.48% in HFD and -37.5 ± 0.235% in HFD-OVX, p < 0.005) and expansion of bone marrow adipose tissue (BMAT; +60.7 ± 9.9% in HFD vs. +79.5 ± 5.86% in HFD-OVX, p < 0.005). Mechanistically, HFD-OVX treatment led to upregulation of genes markers of senescence, bone resorption, adipogenesis, inflammation, downregulation of gene markers of bone formation and bone development. Similarly, HFD-OVX treatment resulted in significant changes in bone tissue levels of purine/pyrimidine and Glutamate metabolisms, known to play a regulatory role in bone metabolism. Obesity and estrogen deficiency exert combined deleterious effects on bone resulting in accelerated cellular senescence, expansion of BMAT and impaired bone formation leading to decreased bone mass. Our results suggest that obesity may increase bone fragility in postmenopausal women.
Collapse
Affiliation(s)
- Dalia Ali
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Florence Figeac
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Atenisa Caci
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Nicholas Ditzel
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Clarissa Schmal
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Greet Kerckhofs
- Biomechanics Section, Department of Mechanical EngineeringKU LeuvenHeverleeBelgium
| | - Jesper Havelund
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Nils Færgeman
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Alexander Rauch
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark,Steno Diabetes Center OdenseOdense University HospitalOdenseDenmark
| | - Michaela Tencerova
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark,Molecular Physiology of Bone, Institute of PhysiologyCzech Academy of SciencesPragueCzech Republic
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark,Department of Cellular and Molecular Medicine, Danish Stem Cell Centre (DanStem)University of CopenhagenCopenhagenDenmark
| |
Collapse
|
10
|
Zhao L, Yan H, Cheng L, He K, Liu Q, Luo J, Luo W, Zhang X, Yan T, Du Z, Li Z, Yang S. Metabolic response provides insights into the mechanism of adaption to hypoxia in largemouth bass (Micropterus salmoides) under intermittent hypoxic conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113957. [PMID: 35999769 DOI: 10.1016/j.ecoenv.2022.113957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
In metabolism, molecular oxygen is a necessary substrate. Oxygen imbalances are linked to a variety of circumstances in the organism's homeostasis. Recently, the positive effects of hypoxia treatment in improving exercise ability and hypoxia tolerance have become a research focus. We explored the effects of intermittent hypoxia exposure (IHE, for one hour or three hours per day) on the hypoxia tolerance of largemouth bass in this study. The results showed that (1) IHE significantly reduced the LOEcrit (the critical O2 tension for loss of equilibrium) value of largemouth bass, indicating that its hypoxia tolerance was enhanced. (2) The level of oxidative stress in the liver decreased in the HH3 group (exposed to a hypoxic condition for 3 h per day) compared to HH1 group (exposed to a hypoxic condition for 1 h per day). (3) IHE reduced the content of lactic acid and enhanced the process of gluconeogenesis in the liver. (4) Importantly, lipid mobilization and fatty acid oxidation in the liver of largemouth bass were significantly enhanced during IHE. In short, the results of this study indicate that IHE can improve hypoxia tolerance by regulating the energy metabolism of largemouth bass.
Collapse
Affiliation(s)
- Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Liangshun Cheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhiqiong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
11
|
Cheng CF, Ku HC, Shen TC. The potential of using itaconate as treatment for inflammation-related heart diseases. Tzu Chi Med J 2021; 34:113-118. [PMID: 35465278 PMCID: PMC9020236 DOI: 10.4103/tcmj.tcmj_83_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/03/2021] [Accepted: 06/07/2021] [Indexed: 11/04/2022] Open
Abstract
Intracellular metabolites can cause critical changes in biological functions. Itaconate is perhaps the most fascinating substance in macrophages. Lipopolysaccharide can activate aconitate decarboxylase 1 and induces the generation of itaconate from the tricarboxylic acid cycle by decarboxylation of cis-aconitate. It has been reported that itaconate has beneficial effects on inflammation and oxidation. The mechanisms involved in these effects include the suppression of succinate dehydrogenase, the activation of nuclear factor E2-related factor 2 by alkylation of Kelch-like ECH-associated protein 1, suppression of aerobic glycolysis through regulation of glyceraldehyde-3-phosphate dehydrogenase and fructose-bisphosphate aldolase A, and suppression of IκBζ translation through activating transcription factor 3 activation. All of these findings elucidated the possible therapeutic implications of itaconate in inflammation-related diseases. In this review, we highlight that itaconate is a crucial molecule of the immunomodulatory response in macrophages and can regulate between immune response and cardiovascular metabolism. Furthermore, these discoveries suggest that itaconate is a very novel therapeutic molecule for the treatment of inflammation-related heart diseases.
Collapse
|
12
|
"Oncometabolism: The switchboard of cancer - An editorial". Biochim Biophys Acta Mol Basis Dis 2020; 1867:166031. [PMID: 33310398 DOI: 10.1016/j.bbadis.2020.166031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Oliveira GL, Coelho AR, Marques R, Oliveira PJ. Cancer cell metabolism: Rewiring the mitochondrial hub. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166016. [PMID: 33246010 DOI: 10.1016/j.bbadis.2020.166016] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022]
Abstract
To adapt to tumoral environment conditions or even to escape chemotherapy, cells rapidly reprogram their metabolism to handle adversities and survive. Given the rapid rise of studies uncovering novel insights and therapeutic opportunities based on the role of mitochondria in tumor metabolic programing and therapeutics, this review summarizes most significant developments in the field. Taking in mind the key role of mitochondria on carcinogenesis and tumor progression due to their involvement on tumor plasticity, metabolic remodeling, and signaling re-wiring, those organelles are also potential therapeutic targets. Among other topics, we address the recent data intersecting mitochondria as of prognostic value and staging in cancer, by mitochondrial DNA (mtDNA) determination, and current inhibitors developments targeting mtDNA, OXPHOS machinery and metabolic pathways. We contribute for a holistic view of the role of mitochondria metabolism and directed therapeutics to understand tumor metabolism, to circumvent therapy resistance, and to control tumor development.
Collapse
Affiliation(s)
- Gabriela L Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Ana R Coelho
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Ricardo Marques
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal.
| |
Collapse
|