1
|
Gaetano C, Atlante S, Gottardi Zamperla M, Barbi V, Gentilini D, Illi B, Malavolta M, Martelli F, Farsetti A. The COVID-19 legacy: consequences for the human DNA methylome and therapeutic perspectives. GeroScience 2024:10.1007/s11357-024-01406-7. [PMID: 39497009 DOI: 10.1007/s11357-024-01406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/18/2024] [Indexed: 11/06/2024] Open
Abstract
The COVID-19 pandemic has left a lasting legacy on human health, extending beyond the acute phase of infection. This article explores the evidence suggesting that SARS-CoV-2 infection can induce persistent epigenetic modifications, particularly in DNA methylation patterns, with potential long-term consequences for individuals' health and aging trajectories. The review discusses the potential of DNA methylation-based biomarkers, such as epigenetic clocks, to identify individuals at risk for accelerated aging and tailor personalized interventions. Integrating epigenetic clock analysis into clinical management could mark a new era of personalized treatment for COVID-19, possibly helping clinicians to understand patient susceptibility to severe outcomes and establish preventive strategies. Several valuable reviews address the role of epigenetics in infectious diseases, including the Sars-CoV-2 infection. However, this article provides an original overview of the current understanding of the epigenetic dimensions of COVID-19, offering insights into the long-term health implications of the pandemic. While acknowledging the limitations of current data, we emphasize the need for future research to unravel the precise mechanisms underlying COVID-19-induced epigenetic changes and to explore potential approaches to target these modifications.
Collapse
Affiliation(s)
- Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| | - Sandra Atlante
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| | | | - Veronica Barbi
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, 20095, Cusano Milanino, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185, Rome, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
| | - Fabio Martelli
- Laboratory of Molecular Cardiology, IRCCS Policlinico San Donato, 20097, Milan, Italy
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy.
| |
Collapse
|
2
|
Naik N, Patel M, Sen R. Developmental Impacts of Epigenetics and Metabolism in COVID-19. J Dev Biol 2024; 12:9. [PMID: 38390960 PMCID: PMC10885083 DOI: 10.3390/jdb12010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Developmental biology is intricately regulated by epigenetics and metabolism but the mechanisms are not completely understood. The situation becomes even more complicated during diseases where all three phenomena are dysregulated. A salient example is COVID-19, where the death toll exceeded 6.96 million in 4 years, while the virus continues to mutate into different variants and infect people. Early evidence during the pandemic showed that the host's immune and inflammatory responses to COVID-19 (like the cytokine storm) impacted the host's metabolism, causing damage to the host's organs and overall physiology. The involvement of angiotensin-converting enzyme 2 (ACE2), the pivotal host receptor for the SARS-CoV-2 virus, was identified and linked to epigenetic abnormalities along with other contributing factors. Recently, studies have revealed stronger connections between epigenetics and metabolism in COVID-19 that impact development and accelerate aging. Patients manifest systemic toxicity, immune dysfunction and multi-organ failure. Single-cell multiomics and other state-of-the-art high-throughput studies are only just beginning to demonstrate the extent of dysregulation and damage. As epigenetics and metabolism directly impact development, there is a crucial need for research implementing cutting-edge technology, next-generation sequencing, bioinformatics analysis, the identification of biomarkers and clinical trials to help with prevention and therapeutic interventions against similar threats in the future.
Collapse
Affiliation(s)
- Noopur Naik
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Mansi Patel
- Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Rwik Sen
- Active Motif, Inc., Carlsbad, CA 92008, USA
| |
Collapse
|
3
|
Saksena NK, Reddy SB, Miranda-Saksena M, Cardoso THS, Silva EMA, Ferreira JC, Rabeh WM. SARS-CoV-2 variants, its recombinants and epigenomic exploitation of host defenses. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166836. [PMID: 37549720 DOI: 10.1016/j.bbadis.2023.166836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Since 2003, we have seen the emergence of novel viruses, such as SARS-CoV-1, MERS, ZIKA, swine flu virus H1N1, Marburg, Monkeypox, Ebola, and SARS-CoV-2, but none of them gained pandemic proportions similar to SARS-CoV-2. This could be attributed to unique viral traits, allowing its rapid global dissemination following its emergence in October 2019 in Wuhan, China, which appears to be primarily driven by the emergence of highly transmissible and virulent variants that also associate, in some cases, with severe disease and considerable mortality caused by fatal pneumonia, acute respiratory distress syndrome (ARDS) in infected individuals. Mechanistically, several factors are involved in viral pathogenesis, and epigenetic alterations take the front seat in host-virus interactions. The molecular basis of all viral infections, including SARS-CoV-2, tightly hinges on the transitory silencing of the host gene machinery via epigenetic modulation. SARS-CoV-2 also hijacks and subdues the host gene machinery, leading to epigenetic modulation of the critical host elements responsible for antiviral immunity. Epigenomics is a powerful, unexplored avenue that can provide a profound understanding of virus-host interactions and lead to the development of epigenome-based therapies and vaccines to counter viruses. This review discusses current developments in SARS-CoV-2 variation and its role in epigenetic modulation in infected hosts. This review provides an overview, especially in the context of emerging viral strains, their recombinants, and their possible roles in the epigenetic exploitation of host defense and viral pathogenesis. It provides insights into host-virus interactions at the molecular, genomic, and immunological levels and sheds light on the future of epigenomics-based therapies for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nitin K Saksena
- Victoria University, Footscray Campus, Melbourne, VIC. Australia.
| | - Srinivasa Bonam Reddy
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Thyago H S Cardoso
- OMICS Centre of Excellence, G42 Healthcare, Mazdar City, Abu Dhabi, United Arab Emirates.
| | - Edson M A Silva
- Science Division, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana C Ferreira
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| | - Wael M Rabeh
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Manna S, Mishra J, Baral T, Kirtana R, Nandi P, Roy A, Chakraborty S, Niharika, Patra SK. Epigenetic signaling and crosstalk in regulation of gene expression and disease progression. Epigenomics 2023; 15:723-740. [PMID: 37661861 DOI: 10.2217/epi-2023-0235] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Chromatin modifications - including DNA methylation, modification of histones and recruitment of noncoding RNAs - are essential epigenetic events. Multiple sequential modifications converge into a complex epigenetic landscape. For example, promoter DNA methylation is recognized by MeCP2/methyl CpG binding domain proteins which further recruit SETDB1/SUV39 to attain a higher order chromatin structure by propagation of inactive epigenetic marks like H3K9me3. Many studies with new information on different epigenetic modifications and associated factors are available, but clear maps of interconnected pathways are also emerging. This review deals with the salient epigenetic crosstalk mechanisms that cells utilize for different cellular processes and how deregulation or aberrant gene expression leads to disease progression.
Collapse
Affiliation(s)
- Soumen Manna
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Jagdish Mishra
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Tirthankar Baral
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - R Kirtana
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Piyasa Nandi
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ankan Roy
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Subhajit Chakraborty
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Niharika
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir K Patra
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| |
Collapse
|
5
|
Behura A, Naik L, Patel S, Das M, Kumar A, Mishra A, Nayak DK, Manna D, Mishra A, Dhiman R. Involvement of epigenetics in affecting host immunity during SARS-CoV-2 infection. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166634. [PMID: 36577469 PMCID: PMC9790847 DOI: 10.1016/j.bbadis.2022.166634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 19 (COVID-19) is caused by a highly contagious RNA virus Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2), originated in December 2019 in Wuhan, China. Since then, it has become a global public health concern and leads the disease table with the highest mortality rate, highlighting the necessity for a thorough understanding of its biological properties. The intricate interaction between the virus and the host immune system gives rise to diverse implications of COVID-19. RNA viruses are known to hijack the host epigenetic mechanisms of immune cells to regulate antiviral defence. Epigenetics involves processes that alter gene expression without changing the DNA sequence, leading to heritable phenotypic changes. The epigenetic landscape consists of reversible modifications like chromatin remodelling, DNA/RNA methylation, and histone methylation/acetylation that regulates gene expression. The epigenetic machinery contributes to many aspects of SARS-CoV-2 pathogenesis, like global DNA methylation and receptor angiotensin-converting enzyme 2 (ACE2) methylation determines the viral entry inside the host, viral replication, and infection efficiency. Further, it is also reported to epigenetically regulate the expression of different host cytokines affecting antiviral response. The viral proteins of SARS-CoV-2 interact with various host epigenetic enzymes like histone deacetylases (HDACs) and bromodomain-containing proteins to antagonize cellular signalling. The central role of epigenetic factors in SARS-CoV-2 pathogenesis is now exploited as promising biomarkers and therapeutic targets against COVID-19. This review article highlights the ability of SARS-CoV-2 in regulating the host epigenetic landscape during infection leading to immune evasion. It also discusses the ongoing therapeutic approaches to curtail and control the viral outbreak.
Collapse
Affiliation(s)
- Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Debraj Manna
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|