1
|
Li W, Yin X, Zhang L. FOXA2 regulates endoplasmic reticulum stress, oxidative stress, and apoptosis in spermatogonial cells by the Nrf2 pathway under hypoxic conditions. Exp Cell Res 2024; 444:114388. [PMID: 39701358 DOI: 10.1016/j.yexcr.2024.114388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/24/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Hypoxia-caused spermatogenesis impairment may contribute to male infertility. FOXA2 has been found to be abundant in spermatogonial stem cells and critical for spermatogenesis. Here we aimed to explore the roles of FOXA2 in regulating spermatogonial cells against hypoxia stimulation. Our results showed that FOXA2 expression was downregulated in hypoxia-stimulated spermatogonial cells. Overexpression of FOXA2 prevented hypoxia-induced endoplasmic reticulum (ER) stress with decreased expression levels of associated markers including GRP78, CHOP, and ATF-4. FOXA2 overexpression caused a decrease in MDA content and an increase in activities of SOD, CAT, and GSH-Px in spermatogonial cells under hypoxic conditions, implying its inhibitory effect on oxidative stress. Besides, cell apoptosis under hypoxic conditions was also prevented by FOXA2 overexpression, as shown by reduced apoptotic rate and caspase-3 activity. Moreover, we found that hypoxia stimulation inactivated the Nrf2 pathway, which could be prevented by FOXA2 overexpression. Nrf2 knockdown attenuated the effects of FOXA2 overexpression on hypoxia-induced ER stress, oxidative stress, and apoptosis in spermatogonial cells. In conclusion, FOXA2 exerted protective effects on spermatogonial cells against hypoxia-induced ER stress, oxidative stress, and apoptosis via regulating Nrf2/HO-1 signaling. These findings suggested that FOXA2 might be a therapeutic target for treating hypoxia-induced spermatogenesis impairment.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Reproductive Medicine, Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, China.
| | - Xiurong Yin
- Department of Reproductive Medicine, Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, China
| | - Lei Zhang
- Biology Teaching and Research Office, Tianjin Vocational Institute, Tianjin, China
| |
Collapse
|
2
|
Butucescu M, Imre M, Rus-Hrincu F, Voicu-Balasea B, Popa A, Moisa M, Ripszky A, Neculau C, Pituru SM, Pârvu S. Cell-Type-Specific ROS–AKT/mTOR–Autophagy Interplay—Should It Be Addressed in Periimplantitis? Diagnostics (Basel) 2024; 14:2784. [DOI: 10.3390/diagnostics14242784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Periimplantitis represents an inflammatory disease of the soft and hard tissues surrounding the osseointegrated dental implant, triggering progressive damage to the alveolar bone. Cumulative data have revealed that periimplantitis plays a crucial part in implant failure. Due to the strategic roles of autophagy and its upstream coordinator, the AKT/mTOR pathway, in inflammatory responses, the crosstalk between them in the context of periimplantitis should become a key research target, as it opens up an area of interesting data with clinical significance. Therefore, in this article, we aimed to briefly review the existing data concerning the complex roles played by ROS in the interplay between the AKT/mTOR signaling pathway and autophagy in periimplantitis, in each of the main cell types involved in periimplantitis pathogenesis and evolution. Knowing how to modulate specifically the autophagic machinery in each of the cellular types involved in the healing and osseointegration steps post implant surgery can help the clinician to make the most appropriate post-surgery decisions. These decisions might be crucial in order to prevent the occurrence of periimplantitis and ensure the proper conditions for effective osseointegration, depending on patients’ clinical particularities.
Collapse
Affiliation(s)
- Mihai Butucescu
- Department of Organization, Professional Legislation and Management of the Dental Office, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania
| | - Marina Imre
- Department of Prosthodontics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Calea Plevnei, 010221 Bucharest, Romania
| | - Florentina Rus-Hrincu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania
| | - Bianca Voicu-Balasea
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania
| | - Alexandra Popa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania
| | - Mihai Moisa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania
| | - Alexandra Ripszky
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania
| | - Cristina Neculau
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania
| | - Silviu Mirel Pituru
- Department of Organization, Professional Legislation and Management of the Dental Office, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania
| | - Simona Pârvu
- National Institute of Public Health, General Medicine Faculty, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
3
|
Wang H, Cheng C, Ding J, Qian R, Luo T, Zheng L, Chen Y. Trifluoperazine effect on human sperm: The accumulation of reactive oxygen species and the decrease in the mitochondrial membrane potential. Reprod Toxicol 2024; 130:108730. [PMID: 39369966 DOI: 10.1016/j.reprotox.2024.108730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
A strong link between antipsychotic drug use and reduced human sperm quality has been reported. Trifluoperazine (TFP), a commonly used antipsychotic, is now being explored for anticancer applications. Although there are hints that TFP might affect the male reproductive system, its impact on human sperm quality remains uncertain. Using a human sperm and TFP in vitro coculture system, we examined the effect of TFP (12.5, 25, 50 and 100 μM) on human sperm function and physiological parameters. The results showed that 50 μM and 100 μM TFP induced the accumulation of reactive oxygen species (ROS) and a decrease in the mitochondrial membrane potential (MMP) of human sperm, leading to decreased sperm viability, while 25 μM TFP inhibited only the penetration ability, total sperm motility, and progressive motility. Although 12.5 μM and 25 μM TFP increased [Ca2+]i in human sperm, they did not affect capacitation or the acrosome reaction. These results may be explained by the observation that 12.5 μM and 25 μM TFP did not increase tyrosine phosphorylation in human sperm, although TFP increased [Ca2+]i in a time-course traces similar to that of progesterone. Our results indicated that TFP could cause male reproductive toxicity by inducing the accumulation of ROS and a decrease in the MMP in human sperm.
Collapse
Affiliation(s)
- Houpeng Wang
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; School of Public Health, Jiangxi Medical College, Nanchang University, China
| | - Cheng Cheng
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jing Ding
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Ruirui Qian
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Tao Luo
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Liping Zheng
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; School of Public Health, Jiangxi Medical College, Nanchang University, China.
| | - Ying Chen
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
4
|
Aitken RJ. Paternal age, de novo mutations, and offspring health? New directions for an ageing problem. Hum Reprod 2024; 39:2645-2654. [PMID: 39361588 PMCID: PMC11630042 DOI: 10.1093/humrep/deae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/07/2024] [Indexed: 10/05/2024] Open
Abstract
This Directions article examines the mechanisms by which a father's age impacts the health and wellbeing of his children. Such impacts are significant and include adverse birth outcomes, dominant genetic conditions, neuropsychiatric disorders, and a variety of congenital developmental defects. As well as age, a wide variety of environmental and lifestyle factors are also known to impact offspring health via changes mediated by the male germ line. This picture of a dynamic germ line responsive to a wide range of intrinsic and extrinsic factors contrasts with the results of trio studies indicating that the incidence of mutations in the male germ line is low and exhibits a linear, monotonic increase with paternal age (∼two new mutations per year). While the traditional explanation for this pattern of mutation has been the metronomic plod of replication errors, an alternative model pivots around the 'faulty male' hypothesis. According to this concept, the genetic integrity of the male germ line can be dynamically impacted by age and a variety of other factors, and it is the aberrant repair of such damage that drives mutagenesis. Fortunately, DNA proofreading during spermatogenesis is extremely effective and these mutant cells are either repaired or deleted by apoptosis/ferroptosis. There appear to be only two mechanisms by which mutant germ cells can escape this apoptotic fate: (i) if the germ cells acquire a mutation that by enhancing proliferation or suppressing apoptosis, permits their clonal expansion (selfish selection hypothesis) or (ii) if a genetically damaged spermatozoon manages to fertilize an oocyte, which then fixes the damage as a mutation (or epimutation) as a result of defective DNA repair (oocyte collusion hypothesis). Exploration of these proposed mechanisms should not only help us better understand the aetiology of paternal age effects but also inform potential avenues of remediation.
Collapse
Affiliation(s)
- Robert John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
5
|
Chen KY, Cheng CJ, Chang YT, Lin YH, Huang YH, Lin SY, Wang LC, Jhan KY, Chiu CH. Benzaldehyde stimulates autophagy via the sonic hedgehog signaling pathway in mouse brain astrocytes after treatment with Angiostrongylus cantonensis excretory-secretory products. Int J Parasitol Drugs Drug Resist 2024; 26:100560. [PMID: 39146602 PMCID: PMC11372845 DOI: 10.1016/j.ijpddr.2024.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Autophagy is a vital cellular process responsible for digesting various cytoplasmic organelles. This process plays a crucial role in maintaining cell survival and homeostasis, especially under conditions that cause nutrient deficiency, cellular damage, and oxidative stress. Neuroangiostrongyliasis is an infection caused by the parasitic nematode Angiostrongylus cantonensis and is considered as an emerging disease in many parts of the world. However, effective therapeutic strategies for neuroangiostrongyliasis still need to be further developed. In this study, we investigated the effects of benzaldehyde treatment on autophagy and sonic hedgehog (Shh) signaling in A. cantonensis-infected mice and its mechanisms. First, we found autophagosome generation in the central nervous system after A. cantonensis infection. Next, benzaldehyde combined with albendazole treatment reduced eosinophilic meningitis and upregulated the expression of Shh signaling- and autophagy-related molecules in A. cantonensis-infected mouse brains. In vitro experiments demonstrated that benzaldehyde could induce autophagy via the Shh signaling pathway in A. cantonensis excretory-secretory products (ESPs)-treated mouse astrocytes. Finally, benzaldehyde treatment also decreased lipid droplet accumulation and increased cholesterol production by activating the Shh pathway after ESPs treatment. In conclusion, these findings suggested that benzaldehyde treatment could alleviate brain damage by stimulating autophagy generation through the Shh signaling pathway.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
| | - Chien-Ju Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yuan-Ting Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yi-Hsuan Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yi-Hao Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Sheng-Yu Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Lian-Chen Wang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Kai-Yuan Jhan
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| |
Collapse
|
6
|
Li S, Liu W, Chen X, Chen Z, Shi J, Hua J. From Hypoxia to Oxidative Stress: Antioxidants' Role to Reduce Male Reproductive Damage. Reprod Sci 2024:10.1007/s43032-024-01746-x. [PMID: 39557807 DOI: 10.1007/s43032-024-01746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Hypoxia is one of the main reasons causing male reproductive damage for people living in high altitude. Pathological evidences have been presented both in humans and animal models. Spermatogenesis disruption, worse sperm parameters, hormone disorder and erectile dysfunction are emblematic of male reproductive impairments brought by hypoxia. Among many mechanisms impairing male reproductive systems, oxidative stress is always a field of interest to explore. Although previous reviews have discussed about hypoxia or oxidative stress and antioxidants on male fertility respectively, no one has elucidated the concrete role of oxidative stress in hypoxia and correlating antioxidants that can ameliorate the negative effects. In this review, we firstly introduce hypoxia etiology and describe specific damage of hypoxia on male reproductive functions. Then, we emphasized interplays between hypoxia and oxidative stress as well as negative influences brought by oxidative stress. Finally, we listed antioxidants for oxidative stress and hypoxia-induced reproductive damage and discussed their controversial experimental effects for male infertility.
Collapse
Affiliation(s)
- Siyao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhaoyu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jingtian Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Hua
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
Lan Y, Nie P, Yuan H, Xu H. Adolescent F-53B exposure induces ovarian toxicity in rats: Autophagy-apoptosis interplay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175609. [PMID: 39163935 DOI: 10.1016/j.scitotenv.2024.175609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/27/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
As a substitute for perfluorooctane sulfonates, F-53B has permeated into the environment and can reach the human body through the food chain. Adolescent individuals are in a critical stage of development and may be more sensitive to the impacts of F-53B. In the present study, we modeled the exposure of adolescent female rats by allowing them free access to F-53B at concentrations of 0 mg/L, 0.125 mg/L, and 6.25 mg/L in drinking water, aiming to simulate the exposure in the adolescent population. Using the ovary as the focal point, we investigated the impact of developmental exposure to F-53B on female reproduction. The results indicated that F-53B induced reproductive toxicity in adolescent female rats, including ovarian lesions, follicular dysplasia and hormonal disorders. In-depth investigations revealed that F-53B induced ovarian oxidative stress, triggering autophagy within the ovaries, and the autophagy exhibited the interplay with apoptosis in turn, collectively leading to significant ovarian toxicity. Our findings provided deeper insights into the roles of the autophagy-apoptosis interplay in ovarian toxicity, and offered a new perspective on the developmental toxicity inflicted by adolescent F-53B exposure.
Collapse
Affiliation(s)
- Yuzhi Lan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Penghui Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hongbin Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, China.
| |
Collapse
|
8
|
Dogan S, Aydin T, Koroglu N, Yilmazer Y, Albayrak N, Cetin F, Moshfeghi E, Celik O. Assessing the efficacy of a novel sperm-washing medium enriched with serotonin, L-carnitine, and coenzyme Q10: an observational cohort study. Asian J Androl 2024; 26:635-639. [PMID: 38856308 PMCID: PMC11614180 DOI: 10.4103/aja202425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/14/2024] [Indexed: 06/11/2024] Open
Abstract
ABSTRACT This observational cohort study investigated the potential of a novel sperm-washing medium (SWM) enriched with serotonin (5-HT), L-carnitine (L-C), and coenzyme Q10 (CoQ10) to enhance sperm motility and reduce DNA damage. It compared this innovative medium (5-HT/L-C/CoQ10 SWM) with two widely used commercial media (SWM 1 and SWM 2). Ninety-eight volunteers from an infertility clinic provided semen samples, which were divided into three aliquots for analysis in different SWMs: group 1, SWM was composed of hydroxyethyl piperazineethanesulfonic acid (HEPES), sodium bicarbonate, human serum albumin (HSA), taurine, and gentamicin sulfate (SWM 1); group 2, SWM was composed of HEPES, sodium bicarbonate, and HSA (SWM 2); and group 3, SWM was composed of HEPES-buffered human tubal fluid supplemented with 5-HT, L-C, and CoQ10 (5-HT/L-C/CoQ10 SWM). Sperm motility was categorized as progressive, nonprogressive, or immotile. Apoptosis, reactive oxygen species (ROS) production, and DNA fragmentation were also assessed. There were no significant differences in total or progressive sperm motility among the groups. Spermatozoa in group 3 exhibited reduced apoptosis, necrosis, and ROS levels and increased viability. No significant differences were observed in the DNA fragmentation index among groups. The 5-HT/L-C/CoQ10 SWM reduced sperm oxidative stress and apoptosis compared with those of the two commercially available SWMs, suggesting that 5-HT/L-C/CoQ10 SWM could be useful for enhancing in vitro fertilization success rates.
Collapse
Affiliation(s)
- Sinem Dogan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Istanbul 34158, Türkiye
| | - Turgut Aydin
- Department of Obstetrics and Gynecology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34303, Türkiye
| | - Nadiye Koroglu
- Department of Obstetrics and Gynecology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34303, Türkiye
- Department of Obstetrics and Gynecology, School of Medicine, Istanbul Beykent University, Istanbul 34500, Türkiye
| | - Yasemin Yilmazer
- Department of Molecular Biology and Genetics, Istanbul Sabahattin Zaim University, Istanbul 34303, Türkiye
| | - Nazli Albayrak
- Department of Obstetrics and Gynecology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34303, Türkiye
| | - Fadime Cetin
- Department of Bioengineering, Istanbul Yildiz Technical University, Istanbul 34349, Türkiye
| | - Elnaz Moshfeghi
- Department of Molecular Biology and Genetics, Istanbul Yildiz Technical University, Istanbul 34349, Türkiye
| | - Ozge Celik
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Istanbul 34158, Türkiye
| |
Collapse
|
9
|
Li J, Huang X, Luo L, Sun J, Guo Q, Yang X, Zhang C, Ni B. The role of p53 in male infertility. Front Endocrinol (Lausanne) 2024; 15:1457985. [PMID: 39469578 PMCID: PMC11513281 DOI: 10.3389/fendo.2024.1457985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The tumor suppressor p53 is a transcription factor involved in a variety of crucial cellular functions, including cell cycle arrest, DNA repair and apoptosis. Still, a growing number of studies indicate that p53 plays multiple roles in spermatogenesis, as well as in the occurrence and development of male infertility. The representative functions of p53 in spermatogenesis include the proliferation of spermatogonial stem cells (SSCs), spermatogonial differentiation, spontaneous apoptosis, and DNA damage repair. p53 is involved in various male infertility-related diseases. Innovative therapeutic strategies targeting p53 have emerged in recent years. This review focuses on the role of p53 in spermatogenesis and male infertility and analyses the possible underlying mechanism involved. All these conclusions may provide a new perspective on drug intervention targeting p53 for male infertility treatment.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xia Huang
- Department of Human Resource, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Luo
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jialin Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xue Yang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuanzhou Zhang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Beibei Ni
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Souza VVD, Moreira DP, Braz-Mota S, Valente W, Cotta GC, Rodrigues MDS, Nóbrega RH, Corrêa RDS, Hoyos DCDM, Sanches EA, Val AL, Lacerda SMDSN. Simulated climate change and atrazine contamination can synergistically impair zebrafish testicular function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174173. [PMID: 38925398 DOI: 10.1016/j.scitotenv.2024.174173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/25/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Elements that interfere with reproductive processes can have profound impacts on population and the equilibrium of ecosystems. Global warming represents the major environmental challenge of the 21st century, as it will affect all forms of life in the coming decades. Another coexisting concern is the persistent pollution by pesticides, particularly the herbicide Atrazine (ATZ), which is responsible for a significant number of contamination incidents in surface waters worldwide. While it is hypothesized that climate changes will significantly enhance the toxic effects of pesticides, the actual impact of these phenomena remain largely unexplored. Here, we conducted a climate-controlled room experiment to assess the interactive effects of the projected 2100 climate scenario and environmentally realistic ATZ exposures on the reproductive function of male zebrafish. The gonadosomatic index significantly decreased in fish kept in the extreme scenario. Cellular alterations across spermatogenesis phases led to synergic decreased sperm production and increased germ cell sloughing and death. ATZ exposure alone or combined with climate change effects, disrupted the transcription levels of key genes involved in steroidogenesis, hormone signaling and spermatogenesis regulation. An additive modulation with decreased 11-KT production and increased E2 levels was also evidenced, intensifying the effects of androgen/estrogen imbalance. Moreover, climate change and ATZ independently induced oxidative stress, upregulation of proapoptotic gene and DNA damage in post-meiotic germ cell, but the negative effects of ATZ were greater at extreme scenario. Ultimately, exposure to simulated climate changes severely impaired fertilization capacity, due to a drastic reduction in sperm motility and/or viability. These findings indicate that the future climate conditions have the potential to considerably enhance the toxicity of ATZ at low concentrations, leading to significant deleterious consequences for fish reproductive function and fertility. These may provide relevant information to supporting healthcare and environmental managers in decision-making related to climate changes and herbicide regulation.
Collapse
Affiliation(s)
- Victor Ventura de Souza
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Davidson Peruci Moreira
- Laboratory of Ichthiohistology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Susana Braz-Mota
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research in the Amazon, Manaus, Amazonas, Brazil
| | - Wanderson Valente
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo Caldeira Cotta
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maira da Silva Rodrigues
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rafael Henrique Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rebeca Dias Serafim Corrêa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Eduardo Antônio Sanches
- Faculty of Agricultural Sciences of Vale do Ribeira, São Paulo State University (UNESP), Brazil
| | - Adalberto Luís Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research in the Amazon, Manaus, Amazonas, Brazil
| | | |
Collapse
|
11
|
Mokarram P, Ghavami S. Autophagy unveiled: New horizons in health and disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167289. [PMID: 38871032 DOI: 10.1016/j.bbadis.2024.167289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Affiliation(s)
- Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada; Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
12
|
Sun L, Wang Y, Yang M, Xu ZJ, Miao J, Bai Y, Lin T. Delayed Blastocyst Formation Reduces the Quality and Hatching Ability of Porcine Parthenogenetic Blastocysts by Increasing DNA Damage, Decreasing Cell Proliferation, and Altering Transcription Factor Expression Patterns. J Dev Biol 2024; 12:26. [PMID: 39449318 PMCID: PMC11503403 DOI: 10.3390/jdb12040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The purpose of this study was to investigate the influence of blastocyst formation timing on the quality of porcine embryos derived from parthenogenetic activation. Newly formed blastocysts at days 6, 7, and 8 of culture [termed formation 6, 7, and 8 blastocysts (F6, F7, and F8 blastocysts)] were obtained, and a series of parameters related to the quality of blastocysts, including apoptosis incidents, DNA replication, pluripotent factors, and blastocyst hatching capacity, were assessed. Delayed blastocyst formation (F7 and/or F8 blastocysts) led to increased levels of ROS, DNA damage, and apoptosis while decreasing the mitochondrial membrane potential, DNA replication, Oct4 levels, and numbers of Sox2-positive cells. F7 blastocysts showed a significantly reduced hatching rate compared to F6 blastocysts; however, F8 blastocysts were unable to develop to the hatching stage. Collectively, our findings suggest a negative correlation between delayed blastocyst formation and blastocyst quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Bai
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (L.S.); (Y.W.); (M.Y.); (Z.-J.X.); (J.M.)
| | - Tao Lin
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (L.S.); (Y.W.); (M.Y.); (Z.-J.X.); (J.M.)
| |
Collapse
|
13
|
Alotaibi SR, Renno WM, Al-Maghrebi M. c-Jun N-terminal Kinase Supports Autophagy in Testicular Ischemia but Triggers Apoptosis in Ischemia-Reperfusion Injury. Int J Mol Sci 2024; 25:10446. [PMID: 39408774 PMCID: PMC11476662 DOI: 10.3390/ijms251910446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Oxidative stress triggered by testicular torsion and detorsion in young males could negatively impact future fertility. Using a rat animal model for testicular IRI (tIRI), we aim to study the induction of autophagy (ATG) during testicular ischemia and tIRI and the role of oxidative-stress-induced c-Jun N-terminal Kinase (JNK) as a cytoprotective mechanism. Sixty male Sprague-Dawley rats were divided into five groups: sham, ischemia only, ischemia+SP600125 (a JNK inhibitor), tIRI only, and tIRI+SP600125. The tIRI rats underwent an ischemic injury for 1 h followed by 4 h of reperfusion, while ischemic rats were subjected to 1 h of ischemia only without reperfusion. Testicular-ischemia-induced Beclin 1 and LC3B expression was associated with decreased p62/SQSTM1 expression, increased ATP and alkaline phosphatase (AP) activity, and slightly impaired spermatogenesis. SP600125 treatment improved p62 expression and reduced the levels of Beclin 1 and LC3B but did not affect ATP or AP levels. The tIRI-induced apoptosis lowered the expression of the three ATG proteins and AP activity, activated caspase 3, and caused spermatogenic arrest. SP600125-inhibited JNK during tIRI restored sham levels to all investigated parameters. This study emphasizes the regulatory role of JNK in balancing autophagy and apoptosis during testicular oxidative injuries.
Collapse
Affiliation(s)
- Sarah R. Alotaibi
- Department of Biochemistry, College of Medicine, Kuwait University, Safat 13110, Kuwait;
| | - Waleed M. Renno
- Department of Anatomy, College of Medicine, Kuwait University, Safat 13110, Kuwait;
| | - May Al-Maghrebi
- Department of Biochemistry, College of Medicine, Kuwait University, Safat 13110, Kuwait;
| |
Collapse
|
14
|
Frungieri MB, Calandra RS, Matzkin ME, Rossi SP. Melatonin as a natural anti-inflammatory and anti-oxidant therapy in the testis: a focus on infertility and aging†. Biol Reprod 2024; 111:543-556. [PMID: 38869910 DOI: 10.1093/biolre/ioae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Melatonin is a pineal hormone that regulates testicular activity (i.e., steroidogenesis and spermatogenesis) through two complementary mechanisms, indirect effects exerted via the hypothalamic-adenohypophyseal axis and direct actions that take place on the different cell populations of the male gonad. The effects of increased age on the testis and the general mechanisms involved in testicular pathology leading to infertility are still only poorly understood. However, there is growing evidence that link testicular aging and idiopathic male infertility to local inflammatory and oxidative stress events. Because literature data strongly indicate that melatonin exhibits anti-inflammatory and anti-oxidant properties, this review focuses on the potential benefits exerted by this indoleamine at testicular level in male reproductive fertility and aging. Taking into account that the effects of melatonin supplementation on testicular function are currently being investigated, the overview covers not only promising prospects but also many questions concerning the future therapeutic value of this indoleamine as an anti-aging drug as well as in the management of cases of male infertility for which there are no medical treatments currently available.
Collapse
Affiliation(s)
- Mónica Beatriz Frungieri
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - Ricardo Saúl Calandra
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - María Eugenia Matzkin
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Cátedra 1, Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Soledad Paola Rossi
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Cátedra 1, Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
15
|
Lee JS, Kim JR, Byeon E, Kim DH, Kim HS, Lee JS. Molecular Events in Response to Triclosan-Induced Oxidative Stress in CRISPR/Cas9-Mediated p53-Targeted Mutants in Daphnia magna. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39261290 DOI: 10.1021/acs.est.4c05105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Triclosan (TCS), a widely used antimicrobial agent, has been implicated in the oxidative stress induction and disruption of cellular processes in aquatic organisms. As TCS is ubiquitous in the aquatic environment, many previous studies have documented the effects of exposure to TCS on aquatic organisms. Nevertheless, most of the research has concentrated on the molecular and physiological responses of TCS, but there are still limited studies on the function of specific genes and the consequences of their absence. In this study, we focused on p53, a gene that is crucial for molecular responses such as autophagy and apoptosis as a result of TCS exposure. In order to ascertain the role and impact of the p53 gene in TCS-induced molecular responses, we examined the molecular responses to TCS-induced oxidative stress in wild-type (WT) and CRISPR/Cas9-mediated p53 mutant (MT) water fleas. The result has been accomplished by examining changes in molecular mechanisms, including in vivo end points, enzyme activities, adenosine triphosphate release rate, and apoptosis, to determine the role and impact of the p53 gene on TCS-induced molecular responses. The results indicated that the sensitivity of MT water fleas to TCS was greater than that of WT water fleas; however, the difference in sensitivity was significant at short exposures within 48 h and decreased toward 48 h. Accordingly, when we confirmed the oxidative stress after 24 h of exposure, the oxidative stress to TCS exposure was stronger in the MT group, with an imbalance of redox. To identify the mechanisms of tolerance to TCS in WT and MT Daphnia magna, we checked mitochondrial and ER-stress-related biomarkers and found an increase in apoptosis and greater sensitivity to TCS exposure in the MT group than in the WT. Our results suggest that the absence of p53 caused alterations in molecular processes in response to TCS exposure, resulting in increased sensitivity to TCS, and that p53 plays a critical role in response to TCS exposure.
Collapse
Affiliation(s)
- Jin-Sol Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Ju Ri Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
16
|
Elmorsy EM, Al-Ghafari AB, Al Doghaither HA, Alrowaili MG, Khired ZA, Toraih EA, Fawzy MS, Shehata SA. Vitamin D Alleviates Heavy Metal-Induced Cytotoxic Effects on Human Bone Osteoblasts Via the Induction of Bioenergetic Disruption, Oxidative Stress, and Apoptosis. Biol Trace Elem Res 2024:10.1007/s12011-024-04337-8. [PMID: 39235540 DOI: 10.1007/s12011-024-04337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024]
Abstract
Cadmium (Cd) and lead (Pb) are heavy metals (HMs) that persistently contaminate the ecosystem, and bioaccumulation in bones is a health concern. We used biochemical and molecular assays to assess the cytoprotective effect of vitamin D (VD) on Cd- and Pd-induced chemical toxicity of human bone osteoblasts in vitro. Exposing Cd and Pb to human osteoblast cultures at concentrations of 0.1-1000 µM for 24-72 h significantly reduced osteoblast viability in an exposure time- and concentration-dependent manner. The cytotoxic effect of Cd on osteoblasts was more severe than Pb's, with 72-h exposure estimated half maximal effective concentration (EC50) of 8 and 12 µM, respectively, and VD (1 and 10 nM) alleviated cytotoxicity. Bioenergetics assays of ATP, mitochondrial membrane potential, and mitochondrial complex I and III activity showed that both Cd and Pb (1 and 10 µM) inhibited cellular bioenergetics after 72-h exposure. Cd and Pb increased lipid peroxidation and reactive oxygen species with reduced catalase/superoxide dismutase antioxidant activities and increased activity of caspases -3, -8, and -9. Co-treatment with VD (1 and 10 nM) counteracted bioenergetic disruption, oxidative damage, and apoptosis in a concentration-dependent manner. These findings suggest that VD is effective in managing the toxic effects of environmental pollutants and in treating bone diseases characterized by oxidative stress, apoptosis, and bioenergetic disruption.
Collapse
Affiliation(s)
- Ekramy M Elmorsy
- Pathology Department, Faculty of Medicine, Northern Border University, 91431, Arar, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| | - Ayat B Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Huda A Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Majed Gorayan Alrowaili
- Department of Surgery (Orthopedic Division), Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Zenat Ahmed Khired
- Department of Surgery, College of Medicine, Jazan University, 45142, Jazan, Saudi Arabia
| | - Eman A Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
- Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia, 41522, Egypt.
| | - Manal S Fawzy
- Center for Health Research, Northern Border University, Arar, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, Northern Border University, 73213, Arar, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Shaimaa A Shehata
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
17
|
Wang X, Zhang R, Zeng N, Li H, Hua B. Panax notoginseng saponins dually modulates autophagy in gastric precancerous lesions complicated with myocardial ischemia-reperfusion injury model through the PI3K/AKT/mTOR pathway. Biomed Pharmacother 2024; 178:117268. [PMID: 39116780 DOI: 10.1016/j.biopha.2024.117268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Gastric precancerous lesion (GPL) is a crucial stage in the development of gastric cancer, characterized by incomplete intestinal epithelial chemotaxis and heterogeneous hyperplasia with high malignant potential. Early intervention in GPL is vital for preventing gastric cancer. Additionally, there are shared risk factors and pathogenesis between tumors and coronary heart disease (CHD), with an increasing number of tumor patients GPL complicated with CHD due to improved survival rates. Reperfusion therapy in CHD can result in myocardial ischemia-reperfusion injury (MIRI). Traditional Chinese medicine (TCM) has demonstrated unique advantages in treating GPL and MIRI by promoting blood circulation and removing blood stasis. Panax ginseng total saponin (PNS), a component of TCM known for its blood circulation benefits, has shown positive effects in inhibiting tumor growth and improving myocardial ischemia. This study utilized a GPL-MIRI mouse model to investigate the effects of PNS in treatment. Results indicated that PNS significantly improved typical GPL lesions in mice, such as incomplete intestinal epithelialization and heteroplasia, and also reduced myocardial infarction. At the molecular level, PNS exhibited a bidirectional regulatory role in the GPL-MIRI model. It enhanced the autophagic process in gastric mucosal cells by inhibiting the PI3K/Akt/mTOR signaling pathway, while suppressed excessive autophagy in cardiomyocytes. These findings offer new insights and treatment strategies for managing GPL and MIRI using the TCM compound PNS.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, No. 6, Huajiadi Street, Chaoyang District, Beijing 100102, China; Tibetan Medicine Administration of Tibet Autonomous Region, Tibetan 850000, China
| | - Ruihang Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, No. 6, Huajiadi Street, Chaoyang District, Beijing 100102, China
| | - Nili Zeng
- Wangjing Hospital, China Academy of Chinese Medical Sciences, No. 6, Huajiadi Street, Chaoyang District, Beijing 100102, China
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, No. 6, Huajiadi Street, Chaoyang District, Beijing 100102, China.
| | - Baojin Hua
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixiangge, Xicheng District, Beijing 100053, China.
| |
Collapse
|
18
|
Zhao ZX, Yuan YM, Zhao ZH, Yao QH, Ye XQ, Wang YY, Liu HM, Jha R, Balasubramanian B, Liu WC. Phlorotannin Alleviates Liver Injury by Regulating Redox Balance, Apoptosis, and Ferroptosis of Broilers under Heat Stress. Antioxidants (Basel) 2024; 13:1048. [PMID: 39334707 PMCID: PMC11428727 DOI: 10.3390/antiox13091048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Heat stress (HS) poses a great challenge to the poultry industry by inducing oxidative damage to the liver, endangering the health and production of broilers. As an important type of seaweed polyphenols, phlorotannin has been shown to have antioxidant properties. The present study evaluated the protective effects of dietary phlorotannin on HS-induced liver injury in broilers based on oxidative damage parameters. A total of 108 twenty-one days old male Arbor Acres plus (AA+) broilers were randomly divided into three groups: TN group (thermoneutral, 24 ± 1 °C, fed with basal diet), HS group (HS, 33 ± 1 °C for 8 h/day, fed with basal diet), and HS + phlorotannin group (HS + 600 mg/kg phlorotannin). Each group has six replicate cages with six birds per cage. The feeding experiment lasted 21 days. At the termination of the feeding experiment (42 days old), samples were collected for analysis of morphological and biochemical features. The results showed that HS decreased the liver index, serum albumin (ALB) content, hepatic antioxidant enzymes activities of catalase (CAT), total superoxide dismutase (T-SOD), glutathione S-transferase (GST), and glutathione peroxidase (GSH-Px) (p < 0.05), while increasing the hepatic histopathology score, apoptosis rate, and malondialdehyde (MDA) content (p < 0.05) in 42-day-old broilers. Compared with the HS group, dietary phlorotannin improved the activities of antioxidant enzymes (GST and GSH-Px) but decreased the histopathology score and apoptosis rate in the liver (p < 0.05). Moreover, HS down-regulated hepatic mRNA expression of CAT1, NQO1, HO-1, and SLC7A11 (p < 0.05), while up-regulated hepatic mRNA expression of Keap1, MafG, IκBα, NF-κB P65, IFN-γ, TFR1, ACSL4, Bax, and Caspase-9 (p < 0.05). Compared with HS group, dietary phlorotannin up-regulated hepatic mRNA expression of Nrf2, CAT1, MafF, GSTT1, NQO1, HO-1, GCLC, GPX1, TNF-α, Fpn1, and SLC7A11 (p < 0.05), while down-regulated hepatic mRNA expression of IκBα, Bax, Caspase-9, and TFR1 (p < 0.05). In conclusion, dietary supplementation of 600 mg/kg phlorotannin could alleviate HS-induced liver injury via regulating oxidative status, apoptosis, and ferroptosis in broilers; these roles of phlorotannin might be associated with the regulation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Zhong-Xiang Zhao
- Department of Animal Science, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Z.-X.Z.); (Y.-M.Y.); (Z.-H.Z.); (Q.-H.Y.); (X.-Q.Y.); (Y.-Y.W.); (H.-M.L.)
| | - Yue-Ming Yuan
- Department of Animal Science, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Z.-X.Z.); (Y.-M.Y.); (Z.-H.Z.); (Q.-H.Y.); (X.-Q.Y.); (Y.-Y.W.); (H.-M.L.)
| | - Zhi-Hui Zhao
- Department of Animal Science, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Z.-X.Z.); (Y.-M.Y.); (Z.-H.Z.); (Q.-H.Y.); (X.-Q.Y.); (Y.-Y.W.); (H.-M.L.)
| | - Qing-Hua Yao
- Department of Animal Science, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Z.-X.Z.); (Y.-M.Y.); (Z.-H.Z.); (Q.-H.Y.); (X.-Q.Y.); (Y.-Y.W.); (H.-M.L.)
| | - Xue-Qing Ye
- Department of Animal Science, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Z.-X.Z.); (Y.-M.Y.); (Z.-H.Z.); (Q.-H.Y.); (X.-Q.Y.); (Y.-Y.W.); (H.-M.L.)
| | - Yao-Yao Wang
- Department of Animal Science, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Z.-X.Z.); (Y.-M.Y.); (Z.-H.Z.); (Q.-H.Y.); (X.-Q.Y.); (Y.-Y.W.); (H.-M.L.)
| | - Hui-Mei Liu
- Department of Animal Science, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Z.-X.Z.); (Y.-M.Y.); (Z.-H.Z.); (Q.-H.Y.); (X.-Q.Y.); (Y.-Y.W.); (H.-M.L.)
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | | | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Z.-X.Z.); (Y.-M.Y.); (Z.-H.Z.); (Q.-H.Y.); (X.-Q.Y.); (Y.-Y.W.); (H.-M.L.)
| |
Collapse
|
19
|
Wu L, Wang XJ, Luo X, Zhang J, Zhao X, Chen Q. Diabetic peripheral neuropathy based on Schwann cell injury: mechanisms of cell death regulation and therapeutic perspectives. Front Endocrinol (Lausanne) 2024; 15:1427679. [PMID: 39193373 PMCID: PMC11348392 DOI: 10.3389/fendo.2024.1427679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a complication of diabetes mellitus that lacks specific treatment, its high prevalence and disabling neuropathic pain greatly affects patients' physical and mental health. Schwann cells (SCs) are the major glial cells of the peripheral nervous system, which play an important role in various inflammatory and metabolic neuropathies by providing nutritional support, wrapping axons and promoting repair and regeneration. Increasingly, high glucose (HG) has been found to promote the progression of DPN pathogenesis by targeting SCs death regulation, thus revealing the specific molecular process of programmed cell death (PCD) in which SCs are disrupted is an important link to gain insight into the pathogenesis of DPN. This paper is the first to review the recent progress of HG studies on apoptosis, autophagy, pyroptosis, ferroptosis and necroptosis pathways in SCs, and points out the crosstalk between various PCDs and the related therapeutic perspectives, with the aim of providing new perspectives for a deeper understanding of the mechanisms of DPN and the exploration of effective therapeutic targets.
Collapse
Affiliation(s)
- Lijiao Wu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Jin Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, China
| | - Xi Luo
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingqi Zhang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyi Zhao
- College of lntegrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
20
|
Xie B, Liu Y, Chen C, Velkov T, Tang S, Shen J, Dai C. Colistin Induces Oxidative Stress and Apoptotic Cell Death through the Activation of the AhR/CYP1A1 Pathway in PC12 Cells. Antioxidants (Basel) 2024; 13:827. [PMID: 39061896 PMCID: PMC11273690 DOI: 10.3390/antiox13070827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Colistin is commonly regarded as the "last-resort" antibiotic for combating life-threatening infections caused by multidrug-resistant (MDR) gram-negative bacteria. Neurotoxicity is a potential adverse event associated with colistin application in clinical settings, yet the exact molecular mechanisms remain unclear. This study examined the detrimental impact of colistin exposure on PC12 cells and the associated molecular mechanisms. Colistin treatment at concentrations of 0-400 μM decreased cell viability and induced apoptotic cell death in both time- and concentration-dependent manners. Exposure to colistin triggered the production of reactive oxygen species (ROS) and caused oxidative stress damage in PC12 cells. N-acetylcysteine (NAC) supplementation partially mitigated the cytotoxic and apoptotic outcomes of colistin. Evidence of mitochondrial dysfunction was observed through the dissipation of membrane potential. Additionally, colistin treatment upregulated the expression of AhR and CYP1A1 mRNAs in PC12 cells. Pharmacological inhibition of AhR (e.g., using α-naphthoflavone) or intervention with the CYP1A1 gene significantly decreased the production of ROS induced by colistin, subsequently lowering caspase activation and cell apoptosis. In conclusion, our findings demonstrate, for the first time, that the activation of the AhR/CYP1A1 pathway contributes partially to colistin-induced oxidative stress and apoptosis, offering insights into the cytotoxic effects of colistin.
Collapse
Affiliation(s)
- Baofu Xie
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yue Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chunhong Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tony Velkov
- Department of Pharmacology, Biodiscovery Institute, Monash University Clayton, Melbourne, VIC 3800, Australia
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Shojaedini M, Hemadi M, Saki G, Fakhredini F, Khodayar MJ, Khorsandi L. Thymoquinone effects on autophagy, apoptosis, and oxidative stress in cisplatin-induced testicular damage in mice. J Assist Reprod Genet 2024; 41:1881-1891. [PMID: 38568464 PMCID: PMC11263301 DOI: 10.1007/s10815-024-03097-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/12/2024] [Indexed: 07/23/2024] Open
Abstract
PURPOSE In this study, the effect of thymoquinone (TQ) on CP-induced spermatogenesis defects in mice has been investigated. METHODS Sperm parameters, serum testosterone concentration, histology, Bax/Bcl-2 ratio, and expression of autophagy-related biomarkers have been assessed. Total antioxidant capacity (TAC), total oxidant status (TOS), and oxidative stress index (OSI) in testicular tissue were examined for the evaluation of oxidative stress levels. RESULTS CP has induced histological changes and significantly increased the Bax/Bcl-2 ratio, decreased testosterone concentration, testicular weight, and sperm quality. CP induced oxidative stress by elevating OSI in the testicular tissue (p < 0.05). Expression of the autophagy-inducer genes (ATG7, ATG5, and Beclin-1) and ratio of LC3B/LC3A proteins were significantly decreased, while mTOR expression was increased in the CP group. TQ pretreatment dose-dependently decreased the Bax/Bcl-2 ratio and mTOR gene expression while increasing the expression of ATG5 and ATG7 genes, LC3B/LC3A ratio, and Beclin-1 proteins. TQ could also dose-dependently reverse the histology, testosterone level, and sperm quality of the CP-intoxicated mice. CONCLUSIONS These findings show that TQ pretreatment can enhance sperm production by inducing autophagy and reducing apoptosis and oxidative stress in the CP-intoxicated mouse testicles.
Collapse
Affiliation(s)
- Mina Shojaedini
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Hemadi
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereshtehsadat Fakhredini
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
22
|
Ouyang KW, Wang TT, Wang H, Luo YX, Hu YF, Zheng XM, Ling Q, Wang KW, Xiong YW, Zhang J, Chang W, Zhang YF, Yuan Z, Li H, Gao L, Xu DX, Zhu HL, Yang L, Wang H. m6A-methylated Lonp1 drives mitochondrial proteostasis stress to induce testicular pyroptosis upon environmental cadmium exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172938. [PMID: 38703850 DOI: 10.1016/j.scitotenv.2024.172938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Cadmium (Cd) is a widely distributed typical environmental pollutant and one of the most toxic heavy metals. It is well-known that environmental Cd causes testicular damage by inducing classic types of cell death such as cell apoptosis and necrosis. However, as a new type of cell death, the role and mechanism of pyroptosis in Cd-induced testicular injury remain unclear. In the current study, we used environmental Cd to generate a murine model with testicular injury and AIM2-dependent pyroptosis. Based on the model, we found that increased cytoplasmic mitochondrial DNA (mtDNA), activated mitochondrial proteostasis stress occurred in Cd-exposed testes. We used ethidium bromide to generate mtDNA-deficient testicular germ cells and further confirmed that increased cytoplasmic mtDNA promoted AIM2-dependent pyroptosis in Cd-exposed cells. Uracil-DNA glycosylase UNG1 overexpression indicated that environmental Cd blocked UNG-dependent repairment of damaged mtDNA to drive the process in which mtDNA releases to cytoplasm in the cells. Interestingly, we found that environmental Cd activated mitochondrial proteostasis stress by up-regulating protein expression of LONP1 in testes. Testicular specific LONP1-knockdown significantly reversed Cd-induced UNG1 protein degradation and AIM2-dependent pyroptosis in mouse testes. In addition, environmental Cd significantly enhanced the m6A modification of Lonp1 mRNA and its stability in testicular germ cells. Knockdown of IGF2BP1, a reader of m6A modification, reversed Cd-induced upregulation of LONP1 protein expression and pyroptosis activation in testicular germ cells. Collectively, environmental Cd induces m6A modification of Lonp1 mRNA to activate mitochondrial proteostasis stress, increase cytoplasmic mtDNA content, and trigger AIM2-dependent pyroptosis in mouse testes. These findings suggest that mitochondrial proteostasis stress is a potential target for the prevention of testicular injury.
Collapse
Affiliation(s)
- Kong-Wen Ouyang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Center of Prenatal Diagnosis, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi 214000, China
| | - Tian-Tian Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Department of Respiratory Medicine, Anhui Provincial Children's Hospital, Hefei, Anhui 230000, China
| | - Ye-Xin Luo
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yi-Fan Hu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qing Ling
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kai-Wen Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Lan Yang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Center of Prenatal Diagnosis, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi 214000, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
23
|
Zhang Y, Yang A, Zhao Z, Chen F, Yan X, Han Y, Wu D, Wu Y. Protein disulfide isomerase is essential for spermatogenesis in mice. JCI Insight 2024; 9:e177743. [PMID: 38912589 PMCID: PMC11383184 DOI: 10.1172/jci.insight.177743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Spermatogenesis requires precise posttranslational control in the endoplasmic reticulum (ER), but the mechanism remains largely unknown. The protein disulfide isomerase (PDI) family is a group of thiol oxidoreductases responsible for catalyzing the disulfide bond formation of nascent proteins. In this study, we generated 14 strains of KO mice lacking the PDI family enzymes and found that only PDI deficiency caused spermatogenesis defects. Both inducible whole-body PDI-KO (UBC-Cre/Pdifl/fl) mice and premeiotic PDI-KO (Stra8-Cre/Pdifl/fl) mice experienced a significant decrease in germ cells, testicular atrophy, oligospermia, and complete male infertility. Stra8-Cre/Pdifl/fl spermatocytes had significantly upregulated ER stress-related proteins (GRP78 and XBP1) and apoptosis-related proteins (Cleaved caspase-3 and BAX), together with cell apoptosis. PDI deletion led to delayed DNA double-strand break repair and improper crossover at the pachytene spermatocytes. Quantitative mass spectrometry indicated that PDI deficiency downregulated vital proteins in spermatogenesis such as HSPA4L, SHCBP1L, and DDX4, consistent with the proteins' physical association with PDI in normal testes tissue. Furthermore, PDI served as a thiol oxidase for disulfide bond formation of SHCBP1L. Thus, PDI plays an essential role in protein quality control for spermatogenesis in mice.
Collapse
Affiliation(s)
- Yaqiong Zhang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Aizhen Yang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Zhenzhen Zhao
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Fengwu Chen
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Xiaofeng Yan
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Wu
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| |
Collapse
|
24
|
Wu Z, Ma Y, Chen S, Liu Y, Liu X, Cao H, Jin T, Li L, Huang M, Yang F, Dong W. Arginine Biosynthesis Mediates Wulingzhi Extract Resistance to Busulfan-Induced Male Reproductive Toxicity. Int J Mol Sci 2024; 25:6320. [PMID: 38928028 PMCID: PMC11203605 DOI: 10.3390/ijms25126320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Busulfan, an indispensable medicine in cancer treatment, can cause serious reproductive system damage to males as a side effect of its otherwise excellent therapeutic results. Its widespread use has also caused its accumulation in the environment and subsequent ecotoxicology effects. As a Chinese medicine, Wulingzhi (WLZ) has the effects of promoting blood circulation and improving female reproductive function. However, the potential effects of WLZ in male reproduction and in counteracting busulfan-induced testis damage, as well as its probable mechanisms, are still ambiguous. In this study, busulfan was introduced in a mouse model to evaluate its production of the testicular damage. The components of different WLZ extracts were compared using an untargeted metabolome to select extracts with greater efficacy, which were further confirmed in vivo. Here, we demonstrate abnormal spermatogenesis and low sperm quality in busulfan-injured testes. The WLZ extracts showed a strong potential to rehabilitate the male reproductive system; this effect was more prominent in room-temperature extracts. Additionally, both water and ethanol WLZ extracts at room temperature alleviated various busulfan-induced adverse effects. In particular, WLZ recovered spermatogenesis, re-activated arginine biosynthesis, and alleviated the increased oxidative stress and inflammation in the testis, ultimately reversing the busulfan-induced testicular injury. Collectively, these results suggest a promising approach to protecting the male reproductive system from busulfan-induced adverse side effects, as well as those of other similar anti-cancer drugs.
Collapse
Affiliation(s)
- Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Yuxuan Ma
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Shaoxian Chen
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Yuyan Liu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Xianglin Liu
- College of Forestry, Northwest A&F University, Xianyang 712100, China;
| | - Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Mengqi Huang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Xianyang 712100, China;
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
- College of Forestry, Northwest A&F University, Xianyang 712100, China;
| |
Collapse
|
25
|
Kim SG, Jeon JH, Shin SH, Varias DC, Moon SH, Ryu BY. Inhibition of reactive oxygen species generation by N-Acetyl Cysteine can mitigate male germ cell toxicity induced by bisphenol analogs. Food Chem Toxicol 2024; 188:114652. [PMID: 38583502 DOI: 10.1016/j.fct.2024.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The estrogen-like effect of bisphenol A (BPA) disrupting the maintenance of functional male germ cells is associated with male sub-fertility. This study investigated toxicity of male germ cells induced by four bisphenol analogs: BPA, BPAF, BPF, and BPS. The investigation of bisphenol analogs' impact on male germ cells included assessing proliferation, apoptosis induction, and the capacity to generate reactive oxygen species (ROS) in GC-1 spermatogonia (spg) cells, specifically type B spermatogonia. Additionally, the therapeutic potential and protective effects of N-Acetyl Cysteine (NAC) and NF-κB inhibitor parthenolide was evaluated. In comparison to BPA, BPF and BPS, BPAF exhibited the most pronounced adverse effect in GC-1 spg cell proliferation. This effect was characterized by pronounced inhibition of phosphorylation of PI3K, AKT, and mTOR, along with increased release of cytochrome c and subsequent cleavages of caspase 3, caspase 7, and poly (ADP-ribose) polymerase. Both NAC and parthenolide were effective reducing cellular ROS induced by BPAF. However, only NAC demonstrated a substantial recovery in proliferation, accompanied by a significant reduction in cytochrome c release and cleaved PARP. These results suggest that NAC supplementation may play an effective therapeutic role in countering germ cell toxicity induced by environmental pollutants with robust oxidative stress-generating capacity.
Collapse
Affiliation(s)
- Seul Gi Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Jeong Hoon Jeon
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Seung Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Daniel Chavez Varias
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Sung-Hwan Moon
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
26
|
Zhu Y, Zhang S, Shao Y, Tang L, Zhang C, Tang S, Lu H. Regulatory role of oxidative stress in retrorsine - Induced apoptosis and autophagy in primary rat hepatocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116515. [PMID: 38810283 DOI: 10.1016/j.ecoenv.2024.116515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Pyrrolizidine alkaloids (PAs) are a group of naturally occurring alkaloids widely present in plants. PAs are highly hepatotoxic and have been documented to cause many incidents of human and animal poisoning. Retrorsine (RTS) is a pyrrolizidine alkaloid (PA) derived from the Compositae Senecio, which has been shown to cause hepatotoxicity. Human liver poisoning occurs through the consumption of RTS-contaminated food, and animals can also be poisoned by ingesting RTS-containing toxic plants. The mechanism of RTS-induced liver toxicity is not fully understood. In this study, we demonstrated that RTS-induced oxidative stress plays a pivotal role in RTS-induced liver toxicity involving apoptosis and autophagy. The results showed that RTS treatment in the cultured Primary rat hepatocytes caused cytotoxicity and release of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in a time- and dose-dependent manner. Our study showed that treatment of RTS induced ROS and MDA (malondialdehyde, a lipid peroxidation marker) in the hepatocytes, and reduced antioxidant capacity (GSH content, SOD activity), suggesting RTS treatment caused oxidative stress response in the hepatocytes. Furthermore, we found that RTS induced apoptosis and autophagy in the hepatocytes, and RTS-induced apoptosis and autophagy could be alleviated by ROS scavenger N-acetylcysteine (NAC) and the MAPK pathway inhibitors suggesting ROS/MAPK signaling pathway plays a role in RTS induced apoptosis and autophagy. Collectively, this study reveals the regulatory mechanism of oxidative stress in RTS-induced apoptosis and autophagy in the hepatocytes, providing important insights of molecular mechanisms of hepatotoxicity induced by RTS and related pyrrolizidine alkaloids in liver. This mechanism provides a basis for the prevention and treatment of PA poisoning in humans and animals.
Collapse
Affiliation(s)
- Yanli Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuhang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yin Shao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lihui Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Congcheng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shiyu Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
27
|
Khan MZ, Khan A, Chen W, Chai W, Wang C. Advancements in Genetic Biomarkers and Exogenous Antioxidant Supplementation for Safeguarding Mammalian Cells against Heat-Induced Oxidative Stress and Apoptosis. Antioxidants (Basel) 2024; 13:258. [PMID: 38539792 PMCID: PMC10967571 DOI: 10.3390/antiox13030258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 11/11/2024] Open
Abstract
Heat stress represents a pervasive global concern with far-reaching implications for the reproductive efficiency of both animal and human populations. An extensive body of published research on heat stress effects utilizes controlled experimental environments to expose cells and tissues to heat stress and its disruptive influence on the physiological aspects of reproductive phenotypic traits, encompassing parameters such as sperm quality, sperm motility, viability, and overall competence. Beyond these immediate effects, heat stress has been linked to embryo losses, compromised oocyte development, and even infertility across diverse species. One of the primary mechanisms underlying these adverse reproductive outcomes is the elevation of reactive oxygen species (ROS) levels precipitating oxidative stress and apoptosis within mammalian reproductive cells. Oxidative stress and apoptosis are recognized as pivotal biological factors through which heat stress exerts its disruptive impact on both male and female reproductive cells. In a concerted effort to mitigate the detrimental consequences of heat stress, supplementation with antioxidants, both in natural and synthetic forms, has been explored as a potential intervention strategy. Furthermore, reproductive cells possess inherent self-protective mechanisms that come into play during episodes of heat stress, aiding in their survival. This comprehensive review delves into the multifaceted effects of heat stress on reproductive phenotypic traits and elucidates the intricate molecular mechanisms underpinning oxidative stress and apoptosis in reproductive cells, which compromise their normal function. Additionally, we provide a succinct overview of potential antioxidant interventions and highlight the genetic biomarkers within reproductive cells that possess self-protective capabilities, collectively offering promising avenues for ameliorating the negative impact of heat stress by restraining apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
28
|
Zhao Y, Duan C, Zhang H, Gong W, Wang Y, Ren J, Nie X, Li J. Response of lipid metabolism, energy supply, and cell fate in yellowstripe goby (Mugilogobius chulae) exposed to environmentally relevant concentrations atorvastatin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122991. [PMID: 37995957 DOI: 10.1016/j.envpol.2023.122991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
The usage of typical pharmaceuticals and personal care products (PPCPs) such as cardiovascular and lipid-modulating drugs in clinical care accounts for the largest share of pharmaceutical consumption in most countries. Atorvastatin (ATV), one of the most commonly used lipid-lowering drugs, is frequently detected with lower concentrations in aquatic environments owing to its wide application, low removal, and degradation rates. However, the adverse effects of ATV on non-target aquatic organisms, especially the molecular mechanisms behind the toxic effects, still remain unclear. Therefore, this study investigated the potentially toxic effects of ATV exposure (including environmental concentrations) on yellowstripe goby (Mugilogobius chulae) and addressed the multi-dimensional responses. The results showed that ATV caused typical hepatotoxicity to M. chulae. ATV interfered with lipid metabolism by blocking fatty acid β-oxidation and led to the over-consumption of lipids. Thus, the exposed organism was obliged to alter the energy supply patterns and substrates utilization pathways to keep the normal energy supply. In addition, the higher concentration of ATV exposure caused oxidative stress to the organism. Subsequently, M. chulae triggered the autophagy and apoptosis processes with the help of key stress-related transcriptional regulators FOXOs and Sestrins to degrade the damaged organelles and proteins to maintain intracellular homeostasis.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Chunni Duan
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Huiyu Zhang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Weibo Gong
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Jinzhi Ren
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| | - Jianjun Li
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, China
| |
Collapse
|
29
|
Peluso G, Tisato V, Singh AV, Gemmati D, Scarpellini F. Semen Cryopreservation to Expand Male Fertility in Cancer Patients: Intracase Evaluation of Semen Quality. J Pers Med 2023; 13:1654. [PMID: 38138881 PMCID: PMC10744704 DOI: 10.3390/jpm13121654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
To preserve male fertility after diagnosis of any kind of cancer, a prompt assessment of the semen quality and an appropriate semen cryopreservation must be performed before radio-chemotherapy starts. The present work aims to evaluate the semen parameters at diagnosis of different cancer patients before cryopreservation and after thawing. Testicular tumors and lymphomas are among the most common cancers in younger patients, and while chemotherapy significantly increases patients' survival, it can epigenetically alter the semen fluid, resulting in temporary or permanent infertility. We analyzed data from the database of the Gamete Cryopreservation Center (Annunziata Hospital, CS; Italy) in the period of 2011-2020 from a cohort of 254 cancer patients aged 18-56 years. The evaluation was performed in a blind manner and anonymously recovered; the main parameters referring to semen quality were assessed in accordance with the WHO guidelines and decision limits (6th edition; 2021). The cancer types were as follows: testis cancers (TC; n = 135; 53.1%), hematological cancers (HC; n = 76; 29.9%), and other types of cancer (OC; n = 43; 17%). Comparing TC vs. HC (P1) and vs. OC (P2), TC had the worst semen quality: sperm number/mL (P1 = 0.0014; P2 = 0.004), total motility (P1 = 0.02; P2 = 0.07), progressive motility (P1 = 0.04; P2 = 0.05), viability (P1 = 0.01; P2 = 0.02), and percentage of atypical morphology (P1 = 0.05; P2 = 0.03). After semen thawing, viability and progressive motility recovery lowered, accounting for 46.82% and 16.75%, respectively, in the whole cohort; similarly, in the subgroups ascribed to TC, they showed the lowest recovery. Strong correlation existed between pre- and post-cryopreservation viability and progressive motility in the whole cohort (p < 0.001) and in the TC subgroup (p < 0.05). All cancer subgroups, to significantly different extents, had semen findings below the WHO reference values, suggesting diverse sperm susceptibilities to different cancers and cryodamage. Cancer and associated treatments epigenetically affect patients' semen quality, meaning cryopreservation should be considered a useful personalized prerogative for any kind of cancer in a timely manner.
Collapse
Affiliation(s)
- Giuseppina Peluso
- Sperm Bank, Department of Maternal Infant, Annunziata Hospital of Cosenza, 87100 Cosenza, Italy
| | - Veronica Tisato
- Department of Translational Medicine, Hemostasis & Thrombosis Centre, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Donato Gemmati
- Department of Translational Medicine, Hemostasis & Thrombosis Centre, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | | |
Collapse
|
30
|
Mo P, Zhao Z, Ke X, Fan Y, Li C. Effects of clinical medications on male fertility and prospects for stem cell therapy. Front Cell Dev Biol 2023; 11:1258574. [PMID: 37791073 PMCID: PMC10543686 DOI: 10.3389/fcell.2023.1258574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023] Open
Abstract
An increasing number of men require long-term drug therapy for various diseases. However, the effects of long-term drug therapy on male fertility are often not well evaluated in clinical practice. Meanwhile, the development of stem cell therapy and exosomes treatment methods may provide a new sight on treating male infertility. This article reviews the influence and mechanism of small molecule medications on male fertility, as well as progress of stem cell and exosomes therapy for male infertility with the purpose on providing suggestions (recommendations) for evaluating the effect of drugs on male fertility (both positive and negative effect on male fertility) in clinical application and providing strategies for diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
| | | | | | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Obstetrics and Gynecology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chaohui Li
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Obstetrics and Gynecology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Yu H, Yuan L, Yan Z, Zhou M, Ye J, Wu K, Chen W, Chen R, Xia N, Guan Y, Zhu H. Butyrate Protects against SARS-CoV-2-Induced Tissue Damage in Golden Hamsters. Int J Mol Sci 2023; 24:14191. [PMID: 37762492 PMCID: PMC10532055 DOI: 10.3390/ijms241814191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Butyrate, produced by gut microbe during dietary fiber fermentation, has anti-inflammatory and antioxidant effects on chronic inflammation diseases, yet it remains to be explored whether butyrate has protective effects against viral infections. Here, we demonstrated that butyrate alleviated tissue injury in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected golden hamsters supplemented with butyrate before and during the infection. Butyrate-treated hamsters showed augmentation of type I interferon (IFN) response and activation of endothelial cells without exaggerated inflammation. In addition, butyrate regulated redox homeostasis by enhancing the activity of superoxide dismutase (SOD) to inhibit excessive apoptotic cell death. Therefore, butyrate exhibited effective prevention against SARS-CoV-2 by upregulating antiviral immune responses and promoting cell survival.
Collapse
Affiliation(s)
- Huan Yu
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University Medical College, Shantou 515063, China
| | - Lunzhi Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhigang Yan
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University Medical College, Shantou 515063, China
| | - Ming Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jianghui Ye
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kun Wu
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wenjia Chen
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University Medical College, Shantou 515063, China
| | - Rirong Chen
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University Medical College, Shantou 515063, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yi Guan
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University Medical College, Shantou 515063, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- EKIH (Gewuzhikang) Advanced Pathogen Research Institute, Futian District, Shenzhen 518045, China
| | - Huachen Zhu
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University Medical College, Shantou 515063, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- EKIH (Gewuzhikang) Advanced Pathogen Research Institute, Futian District, Shenzhen 518045, China
| |
Collapse
|
32
|
Romano MZ, Ben Rhouma M, Messaoudi I, Aniello F, Minucci S, Venditti M. Expression of RSPH6A in the first wave of rat spermatogenesis and oxidative stress conditions: Attenuation by melatonin. Reprod Med Biol 2023; 22:e12542. [PMID: 37795044 PMCID: PMC10545975 DOI: 10.1002/rmb2.12542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
Purpose Here, we report, for the first time, the temporal expression and localization of axonemal radial spoke head homolog A (RSPH6A) protein during the first wave of rat spermatogenesis and in oxidative stress conditions. Methods For the developmental study, testes were collected from rats at different developmental stages (7, 14, 21, 28, 35, 42, and 60 postnatal days); for in vivo treatment, 24 rats were treated with cadmium and/or melatonin. From each sample, western blot (WB) and immunofluorescence (IF) analyses for RSPH6A were performed. Results RSPH6A expression starts at 21 PND alongside the appearance of I spermatocytes (SPC) with a significant increase up to 60 PND. Data were confirmed by IF analysis, showing that RPSH6A expression is restricted to I and II SPC, spermatids, and mature sperm. In vivo experiments showed that the expression and localization of RSPH6A in the testis and epididymal spermatozoa of adult rats treated with cadmium were impaired. Interestingly, melatonin (an antioxidant), given together with Cd, can counteract its damaging effects. Conclusions All combined data confirm that RSPH6A contributes to the onset of fertility by acting on sperm motility, raising the possibility of using RSPH6A as a marker for normal fertility in the general population.
Collapse
Affiliation(s)
- Maria Zelinda Romano
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”Università degli Studi della Campania “Luigi Vanvitelli”NapoliItaly
| | - Mariem Ben Rhouma
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio‐RessourcésInstitut Supérieur de Biotechnologie de Monastir, Université de MonastirMonastirTunisia
| | - Imed Messaoudi
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio‐RessourcésInstitut Supérieur de Biotechnologie de Monastir, Université de MonastirMonastirTunisia
| | - Francesco Aniello
- Dipartimento di BiologiaUniversità di Napoli “Federico II”NapoliItaly
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”Università degli Studi della Campania “Luigi Vanvitelli”NapoliItaly
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”Università degli Studi della Campania “Luigi Vanvitelli”NapoliItaly
| |
Collapse
|