1
|
Chen W, Dong L, Wei C, Wu H. Role of epigenetic regulation in diminished ovarian reserve. J Assist Reprod Genet 2024:10.1007/s10815-024-03301-8. [PMID: 39644448 DOI: 10.1007/s10815-024-03301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/18/2024] [Indexed: 12/09/2024] Open
Abstract
Diminished ovarian reserve (DOR) is characterized by a decrease in the number and quality of oocytes, with its incidence increasing annually. Its pathogenesis remains unclear, making it one of the most challenging problems in the field of assisted reproduction. Epigenetic modification, a molecular mechanism affecting genomic activity and expression without altering the DNA sequence, has been widely studied in reproductive medicine and has attracted considerable attention regarding DOR. This review comprehensively examines the various epigenetic regulatory changes in ovarian granulosa cells (OGCs) and oocytes during DOR. DNA methylation plays a crucial role in regulating granulosa cell function, hormone production, and oocyte development, maturation, and senescence. Histone modifications are involved in regulating follicular activation, while non-coding RNAs, such as long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), regulate granulosa cell function and oocyte development. N6-methyladenosine (m6A) modifications are associated with age-related oocyte senescence. Epigenetic clocks based on DNA methylation show potential in predicting ovarian reserve in DOR. Furthermore, it discusses the potential for utilizing epigenetic mechanisms to better diagnose and manage DOR.
Collapse
Affiliation(s)
- Wen Chen
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Li Dong
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Chaofeng Wei
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Haicui Wu
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
2
|
Li C, Zhang H, Wu H, Li J, Liu Q, Li Y, Pan M, Zhao X, Wei Q, Peng S, Ma B. Intermittent fasting improves the oocyte quality of obese mice through the regulation of maternal mRNA storage and translation by LSM14B. Free Radic Biol Med 2024; 217:157-172. [PMID: 38552928 DOI: 10.1016/j.freeradbiomed.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Obesity has significant repercussions for female reproductive health, including adverse effects on oocyte quality, fertility, embryo development and offspring health. Here, we showed that intermittent fasting (IF) has several notable effects on follicular development, oocyte development and maturation and offspring health in obese mice. IF treatment prevents obesity-associated germline-soma communication defects, mitochondrial dysfunction, oxidative damage, apoptosis, and spindle/chromosomal disruption. RNA-sequencing analysis of oocytes from normal diet (ND), high-fat diet (HFD), and HFD + IF mice indicated that IF treatment improved mitochondrial oxidative phosphorylation function and mRNA storage and translation, which was potentially mediated by the Smith-like family member 14 B (LSM14B). Knockdown of LSM14B by siRNA injection in oocytes from ND mice recapitulates all the translation, mitochondrial dysfunction and meiotic defect phenotypes of oocytes from HFD mice. Remarkably, the injection of Lsm14b mRNA into oocytes from HFD mice rescued the translation, mitochondrial dysfunction and meiotic defect phenotypes. These results demonstrated that dysfunction in the oocyte translation program is associated with obesity-induced meiotic defects, while IF treatment increased LSM14B expression and maternal mRNA translation and restored oocyte quality. This research has important implications for understanding the effects of obesity on female reproductive health and offers a potential nonpharmacological intervention to improve oocyte quality and fertility in obese individuals.
Collapse
Affiliation(s)
- Chan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Hao Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Jingmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Qingyang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Yanxue Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Menghao Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Sha Peng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
3
|
Xu MT, Zhang M, Wang GL, Gong S, Luo MJ, Zhang J, Yuan HJ, Tan JH. Postovulatory Aging of Mouse Oocytes Impairs Offspring Behavior by Causing Oxidative Stress and Damaging Mitochondria. Cells 2024; 13:758. [PMID: 38727294 PMCID: PMC11083947 DOI: 10.3390/cells13090758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Information on long-term effects of postovulatory oocyte aging (POA) on offspring is limited. Whether POA affects offspring by causing oxidative stress (OS) and mitochondrial damage is unknown. Here, in vivo-aged (IVA) mouse oocytes were collected 9 h after ovulation, while in vitro-aged (ITA) oocytes were obtained by culturing freshly ovulated oocytes for 9 h in media with low, moderate, or high antioxidant potential. Oocytes were fertilized in vitro and blastocysts transferred to produce F1 offspring. F1 mice were mated with naturally bred mice to generate F2 offspring. Both IVA and the ITA groups in low antioxidant medium showed significantly increased anxiety-like behavior and impaired spatial and fear learning/memory and hippocampal expression of anxiolytic and learning/memory-beneficial genes in both male and female F1 offspring. Furthermore, the aging in both groups increased OS and impaired mitochondrial function in oocytes, blastocysts, and hippocampus of F1 offspring; however, it did not affect the behavior of F2 offspring. It is concluded that POA caused OS and damaged mitochondria in aged oocytes, leading to defects in anxiety-like behavior and learning/memory of F1 offspring. Thus, POA is a crucial factor that causes psychological problems in offspring, and antioxidant measures may be taken to ameliorate the detrimental effects of POA on offspring.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong-Jie Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (M.-T.X.); (M.Z.); (G.-L.W.); (S.G.); (M.-J.L.); (J.Z.)
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (M.-T.X.); (M.Z.); (G.-L.W.); (S.G.); (M.-J.L.); (J.Z.)
| |
Collapse
|
4
|
Winstanley YE, Liu J, Adhikari D, Gonzalez MB, Russell DL, Carroll J, Robker RL. Dynamics of Mitochondrial DNA Copy Number and Membrane Potential in Mouse Pre-Implantation Embryos: Responses to Diverse Types of Oxidative Stress. Genes (Basel) 2024; 15:367. [PMID: 38540426 PMCID: PMC10970549 DOI: 10.3390/genes15030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 06/14/2024] Open
Abstract
Mitochondria undergo a myriad of changes during pre-implantation embryo development, including shifts in activity levels and mitochondrial DNA (mtDNA) replication. However, how these distinct aspects of mitochondrial function are linked and their responsiveness to diverse stressors is not well understood. Here, we show that mtDNA content increased between 8-cell embryos and the blastocyst stage, with similar copy numbers per cell in the inner cell mass (ICM) and trophectoderm (TE). In contrast, mitochondrial membrane potential (MMP) was higher in TE than ICM. Culture in ambient oxygen (20% O2) altered both aspects of mitochondrial function: the mtDNA copy number was upregulated in ICM, while MMP was diminished in TE. Embryos cultured in 20% O2 also exhibited delayed development kinetics, impaired implantation, and reduced mtDNA levels in E18 fetal liver. A model of oocyte mitochondrial stress using rotenone showed only a modest effect on on-time development and did not alter the mtDNA copy number in ICM; however, following embryo transfer, mtDNA was higher in the fetal heart. Lastly, endogenous mitochondrial dysfunction, induced by maternal age and obesity, altered the blastocyst mtDNA copy number, but not within the ICM. These results demonstrate that mitochondrial activity and mtDNA content exhibit cell-specific changes and are differentially responsive to diverse types of oxidative stress during pre-implantation embryogenesis.
Collapse
Affiliation(s)
- Yasmyn E. Winstanley
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (Y.E.W.)
| | - Jun Liu
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Deepak Adhikari
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Macarena B. Gonzalez
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (Y.E.W.)
| | - Darryl L. Russell
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (Y.E.W.)
| | - John Carroll
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Rebecca L. Robker
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (Y.E.W.)
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
5
|
Meulders B, Marei WFA, Xhonneux I, Loier L, Smits A, Leroy JLMR. Preconception Diet Interventions in Obese Outbred Mice and the Impact on Female Offspring Metabolic Health and Oocyte Quality. Int J Mol Sci 2024; 25:2236. [PMID: 38396912 PMCID: PMC10888670 DOI: 10.3390/ijms25042236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Obese individuals often suffer from metabolic health disorders and reduced oocyte quality. Preconception diet interventions in obese outbred mice restore metabolic health and oocyte quality and mitochondrial ultrastructure. Also, studies in inbred mice have shown that maternal obesity induces metabolic alterations and reduces oocyte quality in offspring (F1). Until now, the effect of maternal high-fat diet on F1 metabolic health and oocyte quality and the potential beneficial effects of preconception dietary interventions have not been studied together in outbred mice. Therefore, we fed female mice a high-fat/high-sugar (HF/HS) diet for 7 weeks and switched them to a control (CONT) or caloric-restriction (CR) diet or maintained them on the HF/HS diet for 4 weeks before mating, resulting in three treatment groups: diet normalization (DN), CR, and HF/HS. In the fourth group, mice were fed CONT diet for 11 weeks (CONT). HF/HS mice were fed an HF/HS diet from conception until weaning, while all other groups were then fed a CONT diet. After weaning, offspring were kept on chow diet and sacrificed at 11 weeks. We observed significantly elevated serum insulin concentrations in female HF/HS offspring and a slightly increased percentage of mitochondrial ultrastructural abnormalities, mitochondrial size, and mitochondrial mean gray intensity in HF/HS F1 oocytes. Also, global DNA methylation was increased and cellular stress-related proteins were downregulated in HF/HS F1 oocytes. Mostly, these alterations were prevented in the DN group, while, in CR, this was only the case for a few parameters. In conclusion, this research has demonstrated for the first time that a maternal high-fat diet in outbred mice has a moderate impact on female F1 metabolic health and oocyte quality and that preconception DN is a better strategy to alleviate this compared to CR.
Collapse
Affiliation(s)
- Ben Meulders
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium; (B.M.); (W.F.A.M.); (I.X.); (L.L.); (A.S.)
| | - Waleed F. A. Marei
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium; (B.M.); (W.F.A.M.); (I.X.); (L.L.); (A.S.)
- Faculty of Veterinary Medicine, Department of Theriogenology, Cairo University, Giza 12211, Egypt
| | - Inne Xhonneux
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium; (B.M.); (W.F.A.M.); (I.X.); (L.L.); (A.S.)
| | - Lien Loier
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium; (B.M.); (W.F.A.M.); (I.X.); (L.L.); (A.S.)
| | - Anouk Smits
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium; (B.M.); (W.F.A.M.); (I.X.); (L.L.); (A.S.)
| | - Jo L. M. R. Leroy
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium; (B.M.); (W.F.A.M.); (I.X.); (L.L.); (A.S.)
| |
Collapse
|
6
|
Schmidt AM. Obesity research: Moving from bench to bedside to population. PLoS Biol 2023; 21:e3002448. [PMID: 38048365 PMCID: PMC10721162 DOI: 10.1371/journal.pbio.3002448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/14/2023] [Indexed: 12/06/2023] Open
Abstract
Globally, obesity is on the rise. Research over the past 20 years has highlighted the far-reaching multisystem complications of obesity, but a better understanding of its complex pathogenesis is needed to identify safe and lasting solutions.
Collapse
Affiliation(s)
- Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
| |
Collapse
|