1
|
Shi P, Wang B, Shi S, Chu X, Liu C, Kang M, Hui J, Gou Y, Zhou R, Liu Y, Jia Y, Zhang F, Wen Y. Assessing the joint effects of mitochondrial genes and physical activity on the psychiatric phenotype of subjective well-being based on the UK Biobank data. Eur Arch Psychiatry Clin Neurosci 2025; 275:667-678. [PMID: 38767715 DOI: 10.1007/s00406-024-01822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Subjective well-being (SWB) is an important measure for mental health status. Previous research has shown that physical activity can affect an individual's well-being, yet the underlying molecular mechanism remains to be clarified. In this study, we aim to evaluate the potential interactions between mitochondrial genes and physical activity (PA) as well as their combined effects on individual well-being. SWB phenotype data in UK Biobank were enrolled for this study including nine aspects such as work/job satisfaction, health satisfaction, family relationship satisfaction, friendships satisfaction, financial situation satisfaction, ever depressed for a whole week, general happiness, general happiness with own health and belief that own life is meaningful. We made analysis for each aspects separately. Firstly, mitochondria-wide association studies (MiWAS) was conducted to assess the association of mitochondrial Single Nucleotide Polymorphisms SNP with each aspect of SWB. Then an interaction analysis of mitochondrial DNA (mtDNA) mutation and PA was performed to evaluate their joint effect on SWB status. Meanwhile, these two analysis were made for female and male group separately as well as the total samples, all under the control of possible confounding factors including gender, age, Townsend Deprivation Index (TDI), education, alcohol consumption, smoking habits, and 10 principal components. MiWAS analysis identified 45 mtSNPs associated with 9 phenotypes of SWB. For example, m.15218A > G on MT-CYB in the health satisfaction phenotype of the total subjects. Gender-specific analyses found 30 mtSNPs in females and 58 in males, involving 13 mtGenes. In mtDNA-PA interaction analysis, we also identified 10 significant mtDNA-PA interaction sets for SWB. For instance, m.13020 T > C (MT-ND5) was associated with the SWB financial situation satisfaction phenotype in all subjects (P = 0.00577). In addition, MiWAS analysis identified 12 mtGene variants associated with SWB, as MT-ND1 and MT-ND2. However, in mtDNA-PA interactions we detected 7 mtDNA affecting psychiatric disorders occurring, as in the friendships satisfaction phenotype (m.3394 T > C on MT-ND1). Our study results suggest an implication of the interaction between mitochondrial function and physical activity in the risk of psychiatric disorder development.
Collapse
Affiliation(s)
- Panxing Shi
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bingyi Wang
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Sirong Shi
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoge Chu
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chen Liu
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Meijuan Kang
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jingni Hui
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yifan Gou
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruixue Zhou
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ye Liu
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yumeng Jia
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Feng Zhang
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yan Wen
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
2
|
Cetin S, Akbulut N, Orhan K, Bilecenoglu B, Ocak M, Bayram E, Altan A, Eren B, Silsupur S, Oner BS. The micro CT evaluation of crown and root pulp volume versus dentin thickness in teeth in postmortem interval (PMI). Forensic Sci Med Pathol 2025; 21:71-79. [PMID: 38512597 PMCID: PMC11953174 DOI: 10.1007/s12024-024-00805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Determining the postmortem interval (PMI) is one of the main study subjects of forensic sciences. The main purpose of this prospective in vitro study that was the Micro-CT evaluation of teeth crown and root pulp volume versus dentin thickness in terms of PMI determination. The study involved 60 female Wistar rats, with weights ranging from 270 to 320 g. These rats were grouped into six different post-mortem period categories. Following the animals' sacrifice, they were subjected to a natural putrefaction period, with a control group, in the grounds of a sheltered garden. Hemi-mandible samples were then extracted and placed in glass tubes for Micro-CT evaluations, following the progression of putrefaction processes. The pulp volume and dentin thickness were assessed using Micro-CT, and the gathered data underwent statistical analysis. Micro-CT was employed to analyze sixty right mandibular second molar teeth in the hemi-mandible. The crown pulp volume exhibited a reduction in group 6, with a value of 0.239 mm3 after a three-month period of natural putrefaction (p < 0.001). There is statistically differences among groups in case of pairwise comparison (p < 0.05). However, the root pulp volume and dentin thickness variables did not display any statistically significant changes. Despite certain limitations associated with this study, the Micro-CT findings concerning teeth pulp volume can serve as an objective parameter, especially for late postmortem investigations and the estimation of time of death.
Collapse
Affiliation(s)
- Selcuk Cetin
- Faculty of Medicine, Department of Forensic Medicine, Tokat Gaziosmanpaşa University, Tokat, Turkey.
| | - Nihat Akbulut
- Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Ondokuzmayis University, Tokat, Turkey
| | - Kaan Orhan
- Faculty of Dentistry, Oral and Maxillofacial Radiology Department, Ankara University, Ankara, Turkey
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, Oral & Maxillofacial Surgery, University of Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Burak Bilecenoglu
- Faculty of Dentistry, Anatomy Department, Ankara University, Ankara, Turkey
| | - Mert Ocak
- Faculty of Dentistry, Anatomy Department, Ankara University, Ankara, Turkey
| | - Emre Bayram
- Faculty of Dentistry, Endodontics Department, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Ahmet Altan
- Faculty of Dentistry, Oral and Maxillofacial Surgery Department, Necmettin Erbakan University, Konya, Turkey
| | - Bulent Eren
- Faculty of Medicine, Department of Forensic Medicine, Kırklareli University, Kırklareli, Turkey
| | - Serkan Silsupur
- Faculty of Dentistry, Endodontics Department, Dicle University, Diyarbakır, Turkey
| | - Bedirhan Sezer Oner
- Faculty of Medicine, Department of Forensic Medicine, Amasya University, Amasya, Turkey
| |
Collapse
|
3
|
Fanlo-Ucar H, Picón-Pagès P, Herrera-Fernández V, ILL-Raga G, Muñoz FJ. The Dual Role of Amyloid Beta-Peptide in Oxidative Stress and Inflammation: Unveiling Their Connections in Alzheimer's Disease Etiopathology. Antioxidants (Basel) 2024; 13:1208. [PMID: 39456461 PMCID: PMC11505517 DOI: 10.3390/antiox13101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, and it is currently the seventh leading cause of death worldwide. It is characterized by the extracellular aggregation of the amyloid β-peptide (Aβ) into oligomers and fibrils that cause synaptotoxicity and neuronal death. Aβ exhibits a dual role in promoting oxidative stress and inflammation. This review aims to unravel the intricate connection between these processes and their contribution to AD progression. The review delves into oxidative stress in AD, focusing on the involvement of metals, mitochondrial dysfunction, and biomolecule oxidation. The distinct yet overlapping concept of nitro-oxidative stress is also discussed, detailing the roles of nitric oxide, mitochondrial perturbations, and their cumulative impact on Aβ production and neurotoxicity. Inflammation is examined through astroglia and microglia function, elucidating their response to Aβ and their contribution to oxidative stress within the AD brain. The blood-brain barrier and oligodendrocytes are also considered in the context of AD pathophysiology. We also review current diagnostic methodologies and emerging therapeutic strategies aimed at mitigating oxidative stress and inflammation, thereby offering potential treatments for halting or slowing AD progression. This comprehensive synthesis underscores the pivotal role of Aβ in bridging oxidative stress and inflammation, advancing our understanding of AD and informing future research and treatment paradigms.
Collapse
Affiliation(s)
- Hugo Fanlo-Ucar
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Pol Picón-Pagès
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
- Laboratory of Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08028 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Gerard ILL-Raga
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Francisco J. Muñoz
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| |
Collapse
|