1
|
Carr D, Gunari S, Gorostiza G, Mercado M, Pavana L, Duong L, Gomez K, Salinas S, Garcia C, Tsang A, Morisseau C, Hammock BD, Pecic S, Kandasamy R. Synthesis and evaluation of isoquinolinyl and pyridinyl-based dual inhibitors of fatty acid amide hydrolase and soluble epoxide hydrolase to alleviate orofacial hyperalgesia in the rat. Biochem Biophys Rep 2025; 42:102009. [PMID: 40275962 PMCID: PMC12018053 DOI: 10.1016/j.bbrep.2025.102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
The treatment of orofacial pain disorders is poor. Both opioids and serotonin agonists are commonly used; however, they produce dangerous and unpleasant side effects. Therefore, there is an urgent need to identify new pharmacological treatments that can resolve orofacial pain. Moreover, a treatment that engages multiple mechanisms using one compound may be advantageous. Fatty acid amide hydrolase (FAAH) and soluble epoxide hydrolase (sEH) are two enzymes that can regulate both pain and inflammation via independent pathways. Small molecules that inhibit both enzymes simultaneously were previously synthesized and produced antinociception in vivo. Quinolinyl-based dual inhibitors of FAAH and sEH can inhibit acute inflammatory pain in rats. Here, following on these findings, we generated 7 new isoquinolinyl- and 7 pyridinyl-based analogs and tested their inhibition at both enzymes. Structure-activity relationship study coupled with docking experiments, revealed that the isoquinoline moiety is well-tolerated in the binding pockets of both enzymes, yielding several analogs with nanomolar activity in enzymatic assays. All newly synthesized analogs were assessed in the solubility assay at pH 7.4, and we determined that isoquinolinyl- and substituted pyridinyl-analogs exhibit limited solubility under the experimental conditions. The most potent inhibitor, 4f, with IC50 values in the low nanomolar range for both enzymes, was evaluated in a plasma stability assay in human and rat plasma where it showed a moderate stability. Primary binding assays revealed that 4f does not engage any opioid or serotonin receptors. A high dose (3 mg/kg) of 4f reversed orofacial hyperalgesia following pretreatment with nitroglycerin and orofacial injection of formalin; however, this same dose did not inhibit acute orofacial inflammatory pain or restore pain-depressed wheel running. These findings indicate that simultaneous inhibition of FAAH and sEH using isoquinolinyl-based dual inhibitors may only reverse certain components of orofacial hyperalgesia.
Collapse
Affiliation(s)
- Daniel Carr
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Siena Gunari
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Gabrielle Gorostiza
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Madison Mercado
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Lucy Pavana
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Leah Duong
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Karen Gomez
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Steve Salinas
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Coral Garcia
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Amanda Tsang
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA, USA
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA, USA
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Ram Kandasamy
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| |
Collapse
|
2
|
Yuan C, Tsang A, Berumen M, Rodriguez A, Yun F, Mesic A, Olivares A, Dubon L, Nguyen A, Pavana L, Mercado M, Gorostiza G, Morisseau C, Hammock BD, Kandasamy R, Pecic S. Structure-activity relationship studies and pharmacological evaluation of 4-phenylthiazoles as dual soluble epoxide hydrolase/fatty acid amide hydrolase inhibitors. Bioorg Med Chem 2025; 121:118112. [PMID: 39983408 PMCID: PMC11910963 DOI: 10.1016/j.bmc.2025.118112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025]
Abstract
Forty-two 4-phenylthiazole analogs, organized in two libraries 4a-u and 6a-u, were prepared and biologically evaluated in human fatty acid amide hydrolase (FAAH), and human, rat and mouse soluble epoxide hydrolase (sEH) inhibition assays. This structure-activity relationship (SAR) study explores the impact of electronic and steric changes on the molecule's potency and binding affinity to better understand the structural features important for dual sEH/FAAH inhibition which will guide the development of novel treatments for pain and inflammation. Our SAR revealed that electron-donating groups on the aromatic ring of the 4-phenylthiazole moiety are particularly well tolerated by both enzymes when placed at the ortho, meta and para positions; however, the overall 3D shape of the molecule is very important for the potent FAAH inhibition, suggesting more restricted size of the FAAH binding pocket compared to sEH binding pocket. Two selected dual inhibitors, 4p and 4s, were tested in the rat liver microsomes stability assays and evaluated in vivo in the formalin test. Systemic administration of 4p and 4s via intraperitoneal injection decreased nociceptive behavior (i.e., licking of the injected paw) in male rats, and this effect was dose-dependent for both compounds. Two doses, 1 and 3 mg/kg of 4p, decreased nociceptive behavior to a similar extent to that of 30 mg/kg ketoprofen, a traditional nonsteroidal anti-inflammatory drug. However, only 3 mg/kg of 4s decreased nociceptive behavior compared to vehicle-treated animals, and this effect was comparable to ketoprofen-treated animals. Taken together, these findings reveal the antinociceptive potential of 4-phenylthiazole-based dual FAAH and sEH inhibitors and suggest pharmacodynamic differences within this class of inhibitors despite similar potencies in vitro.
Collapse
Affiliation(s)
- Cassandra Yuan
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Amanda Tsang
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Manuel Berumen
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Adriana Rodriguez
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Faye Yun
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Anesa Mesic
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Annie Olivares
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Lissette Dubon
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Allen Nguyen
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Lucy Pavana
- Department of Psychology, California State University, East Bay, 25800 Carlos Bee Blvd. Science S229, Hayward, CA 94542, United States
| | - Madison Mercado
- Department of Psychology, California State University, East Bay, 25800 Carlos Bee Blvd. Science S229, Hayward, CA 94542, United States
| | - Gabrielle Gorostiza
- Department of Psychology, California State University, East Bay, 25800 Carlos Bee Blvd. Science S229, Hayward, CA 94542, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Ram Kandasamy
- Department of Psychology, California State University, East Bay, 25800 Carlos Bee Blvd. Science S229, Hayward, CA 94542, United States.
| | - Stevan Pecic
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States.
| |
Collapse
|