1
|
Nakakita SI, Hirabayashi J. Transforming monosaccharides: Recent advances in rare sugar production and future exploration. BBA ADVANCES 2025; 7:100143. [PMID: 39926187 PMCID: PMC11803239 DOI: 10.1016/j.bbadva.2025.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
Rare sugars are defined as monosaccharides and their derivatives that do not exist in nature at all or that exist in extremely limited amounts despite being theoretically possible. At present, no comprehensive dogma has been presented regarding how and why these rare sugars have deviated from the naturally selected monosaccharides. In this minireview, we adopt a hypothesis on the origin and evolution of elementary hexoses, previously presented by one of the authors (Hirabayashi, Q Rev Biol, 1996, 71:365-380). In this scenario, monosaccharides, which constitute various kinds of glycans in nature, are assumed to have been generated by formose reactions on the prebiotic Earth (chemical evolution era). Among them, the most stable hexoses, i.e., fructose, glucose, and mannose remained accumulated. After the birth of life, the "chemical origin" saccharides thus survived were transformed into a variety of "bricolage products", which include galactose and other recognition saccharides like fucose and sialic acid through the invention of diverse metabolic pathways (biological evolution era). The remaining monosaccharides that have deviated from this scenario are considered rare sugars. If we can produce rare sugars as we wish, it is expected that various more useful biomaterials will be created by using them as raw materials. Thanks to the pioneering research of the Izumori group in the 1990's, and to a few other investigations by other groups, almost all monosaccharides including l-sugars can now be produced by combining both chemical and enzymatic approaches. After briefly giving an overview of the origin of elementary hexoses and the current state of the rare sugar production, we will look ahead to the next generation of monosaccharide research which also targets glycosides including disaccharides.
Collapse
Affiliation(s)
- Shin-ichi Nakakita
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
- International Institute of Rare Sugar Research and Education, Kagawa University, Saiwai, Takamatsu, Kagawa 760-8521 Japan
| | - Jun Hirabayashi
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
- Institute for Glyco-core Research, Nagoya University, Furu-cho, Chikusa-ku, Nagoya 464-0814, Japan
| |
Collapse
|
2
|
Yoshida H, Izumori K, Yoshihara A. L-rhamnose isomerase: a crucial enzyme for rhamnose catabolism and conversion of rare sugars. Appl Microbiol Biotechnol 2024; 108:488. [PMID: 39412684 PMCID: PMC11485043 DOI: 10.1007/s00253-024-13325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
L-rhamnose isomerase (L-RhI) plays a key role in the microbial L-rhamnose metabolism by catalyzing the reversible isomerization of L-rhamnose to L-rhamnulose. Additionally, the enzyme exhibits activity on various other aldoses and ketoses, and its broad substrate specificity has attracted attention for its potential application in the production of rare sugars; however, improvement of the enzyme properties is desirable, such as thermal stability, enzymatic activity, and a pH optimum suitable for industrial usage. This review summarizes our current insights into L-RhIs with respect to their substrate recognition mechanism and their relationship with D-xylose isomerase (D-XI) based on structural and phylogenetic analyses. These two enzymes are inherently different, but recognize distinctly different substrates, and share common features that may be phylogenetically related. For example, they both have a flexible loop region that is involved in shaping active sites, and this region may also be responsible for various enzymatic properties of L-RhIs, such as substrate specificity and thermal stability. KEY POINTS: •L-RhIs share structural features with D-XI. •There are two types of L-RhIs: E. coli L-RhI-type and D-XI-type. •Flexible loop regions are involved in the specific enzyme properties.
Collapse
Affiliation(s)
- Hiromi Yoshida
- International Institute of Rare Sugar Research and Education, Kagawa University, Kagawa, Japan.
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan.
| | - Ken Izumori
- International Institute of Rare Sugar Research and Education, Kagawa University, Kagawa, Japan
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| | - Akihide Yoshihara
- International Institute of Rare Sugar Research and Education, Kagawa University, Kagawa, Japan
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| |
Collapse
|
3
|
Tang X, Ravikumar Y, Zhang G, Yun J, Zhao M, Qi X. D-allose, a typical rare sugar: properties, applications, and biosynthetic advances and challenges. Crit Rev Food Sci Nutr 2024:1-28. [PMID: 38764407 DOI: 10.1080/10408398.2024.2350617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
D-allose, a C-3 epimer of D-glucose and an aldose-ketose isomer of D-allulose, exhibits 80% of sucrose's sweetness while being remarkably low in calories and nontoxic, making it an appealing sucrose substitute. Its diverse physiological functions, particularly potent anticancer and antitumor effects, render it a promising candidate for clinical treatment, garnering sustained attention. However, its limited availability in natural sources and the challenges associated with chemical synthesis necessitate exploring biosynthetic strategies to enhance production. This overview encapsulates recent advancements in D-allose's physicochemical properties, physiological functions, applications, and biosynthesis. It also briefly discusses the crucial role of understanding aldoketose isomerase structure and optimizing its performance in D-allose synthesis. Furthermore, it delves into the challenges and future perspectives in D-allose bioproduction. Early efforts focused on identifying and characterizing enzymes responsible for D-allose production, followed by detailed crystal structure analysis to improve performance through molecular modification. Strategies such as enzyme immobilization and implementing multi-enzyme cascade reactions, utilizing more cost-effective feedstocks, were explored. Despite progress, challenges remain, including the lack of efficient high-throughput screening methods for enzyme modification, the need for food-grade expression systems, the establishment of ordered substrate channels in multi-enzyme cascade reactions, and the development of downstream separation and purification processes.
Collapse
Affiliation(s)
- Xinrui Tang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
4
|
Yoshida H, Yamamoto N, Kurahara LH, Izumori K, Yoshihara A. X-ray structure and characterization of a probiotic Lactobacillus rhamnosus Probio-M9 L-rhamnose isomerase. Appl Microbiol Biotechnol 2024; 108:249. [PMID: 38430263 PMCID: PMC10908623 DOI: 10.1007/s00253-024-13075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
A recombinant L-rhamnose isomerase (L-RhI) from probiotic Lactobacillus rhamnosus Probio-M9 (L. rhamnosus Probio-M9) was expressed. L. rhamnosus Probio-M9 was isolated from human colostrum and identified as a probiotic lactic acid bacterium, which can grow using L-rhamnose. L-RhI is one of the enzymes involved in L-rhamnose metabolism and catalyzes the reversible isomerization between L-rhamnose and L-rhamnulose. Some L-RhIs were reported to catalyze isomerization not only between L-rhamnose and L-rhamnulose but also between D-allulose and D-allose, which are known as rare sugars. Those L-RhIs are attractive enzymes for rare sugar production and have the potential to be further improved by enzyme engineering; however, the known crystal structures of L-RhIs recognizing rare sugars are limited. In addition, the optimum pH levels of most reported L-RhIs are basic rather than neutral, and such a basic condition causes non-enzymatic aldose-ketose isomerization, resulting in unexpected by-products. Herein, we report the crystal structures of L. rhamnosus Probio-M9 L-RhI (LrL-RhI) in complexes with L-rhamnose, D-allulose, and D-allose, which show enzyme activity toward L-rhamnose, D-allulose, and D-allose in acidic conditions, though the activity toward D-allose was low. In the complex with L-rhamnose, L-rhamnopyranose was found in the catalytic site, showing favorable recognition for catalysis. In the complex with D-allulose, D-allulofuranose and ring-opened D-allulose were observed in the catalytic site. However, bound D-allose in the pyranose form was found in the catalytic site of the complex with D-allose, which was unfavorable for recognition, like an inhibition mode. The structure of the complex may explain the low activity toward D-allose. KEY POINTS: • Crystal structures of LrL-RhI in complexes with substrates were determined. • LrL-RhI exhibits enzyme activity toward L-rhamnose, D-allulose, and D-allose. • The LrL-RhI is active in acidic conditions.
Collapse
Affiliation(s)
- Hiromi Yoshida
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan.
- International Institute of Rare Sugar Research and Education, Kagawa University, Takamatsu, Kagawa, Japan.
| | - Naho Yamamoto
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| | - Lin Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Ken Izumori
- International Institute of Rare Sugar Research and Education, Kagawa University, Takamatsu, Kagawa, Japan
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| | - Akihide Yoshihara
- International Institute of Rare Sugar Research and Education, Kagawa University, Takamatsu, Kagawa, Japan
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| |
Collapse
|
5
|
Mahmood S, Iqbal MW, Tang X, Zabed HM, Chen Z, Zhang C, Ravikumar Y, Zhao M, Qi X. A comprehensive review of recent advances in the characterization of L-rhamnose isomerase for the biocatalytic production of D-allose from D-allulose. Int J Biol Macromol 2024; 254:127859. [PMID: 37924916 DOI: 10.1016/j.ijbiomac.2023.127859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
D-Allose and D-allulose are two important rare natural monosaccharides found in meager amounts. They are considered to be the ideal substitutes for table sugar (sucrose) for, their significantly lower calorie content with around 80 % and 70 % of the sweetness of sucrose, respectively. Additionally, both monosaccharides have gained much attention due to their remarkable physiological properties and excellent health benefits. Nevertheless, D-allose and D-allulose are rare in nature and difficult to produce by chemical methods. Consequently, scientists are exploring bioconversion methods to convert D-allulose into D-allose, with a key enzyme, L-rhamnose isomerase (L-RhIse), playing a remarkable role in this process. This review provides an in-depth analysis of the extractions, physiological functions and applications of D-allose from D-allulose. Specifically, it provides a detailed description of all documented L-RhIse, encompassing their biochemical properties including, pH, temperature, stabilities, half-lives, metal ion dependence, molecular weight, kinetic parameters, specific activities and specificities of the substrates, conversion ratio, crystal structure, catalytic mechanism as well as their wide-ranging applications across diverse fields. So far, L-RhIses have been discovered and characterized experimentally by numerous mesophilic and thermophilic bacteria. Furthermore, the crystal forms of L-RhIses from E. coli and Stutzerimonas/Pseudomonas stutzeri have been previously cracked, together with their catalytic mechanism. However, there is room for further exploration, particularly the molecular modification of L-RhIse for enhancing its catalytic performance and thermostability through the directed evolution or site-directed mutagenesis.
Collapse
Affiliation(s)
- Shahid Mahmood
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Muhammad Waheed Iqbal
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Xinrui Tang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Ziwei Chen
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Cunsheng Zhang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yuvaraj Ravikumar
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Mei Zhao
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Xianghui Qi
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China; School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
6
|
Yang Y, Liu Y, Zhao H, Liu D, Zhang J, Cheng J, Yang Q, Chu H, Lu X, Luo M, Sheng X, Zhang YHPJ, Jiang H, Ma Y. Construction of an artificial phosphoketolase pathway that efficiently catabolizes multiple carbon sources to acetyl-CoA. PLoS Biol 2023; 21:e3002285. [PMID: 37733785 PMCID: PMC10547157 DOI: 10.1371/journal.pbio.3002285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/03/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023] Open
Abstract
The canonical glycolysis pathway is responsible for converting glucose into 2 molecules of acetyl-coenzyme A (acetyl-CoA) through a cascade of 11 biochemical reactions. Here, we have designed and constructed an artificial phosphoketolase (APK) pathway, which consists of only 3 types of biochemical reactions. The core enzyme in this pathway is phosphoketolase, while phosphatase and isomerase act as auxiliary enzymes. The APK pathway has the potential to achieve a 100% carbon yield to acetyl-CoA from any monosaccharide by integrating a one-carbon condensation reaction. We tested the APK pathway in vitro, demonstrating that it could efficiently catabolize typical C1-C6 carbohydrates to acetyl-CoA with yields ranging from 83% to 95%. Furthermore, we engineered Escherichia coli stain capable of growth utilizing APK pathway when glycerol act as a carbon source. This novel catabolic pathway holds promising route for future biomanufacturing and offering a stoichiometric production platform using multiple carbon sources.
Collapse
Affiliation(s)
- Yiqun Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Yuwan Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- Haihe Laboratory of Synthetic Biology, Tianjin, China
| | - Haodong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Dingyu Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Jie Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jian Cheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Qiaoyu Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Huanyu Chu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Xiaoyun Lu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Mengting Luo
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Yi-Heng P. J. Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Huifeng Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- Haihe Laboratory of Synthetic Biology, Tianjin, China
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
7
|
Characterization of a Recombinant l-rhamnose Isomerase from Paenibacillus baekrokdamisoli to Produce d-allose from d-allulose. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Suzuki T, Morimoto K. Characterization of D-xylose isomerase from Shinella zoogloeoides NN6 and its application for producing D-allulose and two D-ketopentoses in a one-pot multi-step transformation. J GEN APPL MICROBIOL 2022; 68:175-183. [PMID: 35650024 DOI: 10.2323/jgam.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Researchers continue to search for efficient processes to reduce the production costs of rare sugars. In this paper, we report a novel D-xylose isomerase from Shinella zoogloeoides NN6 (SzXI) and its application for efficient rare sugar production. Purified SzXI did not show remarkable properties when compared with those of a previously reported D-xylose isomerase. However, NN6 was found to express inducible SzXI and constitutive D-allulose 3-epimerase (SzAE) when cultivated with D-xylose as the sole carbon source. These two enzymes were partially purified and immobilized onto HPA25L, an anion exchange resin. The co-immobilized SzXI and SzAE (i-XA) showed optimal activity at 65°C in sodium phosphate buffer (pH 7.5) and 90°C in sodium phosphate buffer (pH 6.5), respectively. i-XA produced D-ribulose via D-xylulose from D-xylose at a conversion ratio of D-xylose:D-xylulose:D-ribulose of 72:18:10. Furthermore, D-allulose was also produced via D-fructose using D-glucose as the substrate, with a D-allulose yield of 11.2%. This is the first report describing a bacterium expressing D-xylose isomerase and D-allulose 3-epimerase that converts readily available sugars such as D-glucose and D-xylose to rare sugars.
Collapse
Affiliation(s)
| | - Kenji Morimoto
- International Institute of Rare Sugar Research and Education, Kagawa University
| |
Collapse
|
9
|
Morimoto K, Suzuki T, Ikeda H, Nozaki C, Goto S. One-pot multi-step transformation of D-allose from D-fructose using a co-immobilized biocatalytic system. J GEN APPL MICROBIOL 2022; 68:1-9. [DOI: 10.2323/jgam.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kenji Morimoto
- International Institute of Rare Sugar Research and Education, Kagawa University
| | | | | | | | | |
Collapse
|
10
|
Guo Q, Ullah I, Zheng LJ, Gao XQ, Liu CY, Zheng HD, Fan LH, Deng L. Intelligent self-control of carbon metabolic flux in SecY-engineered Escherichia coli for xylitol biosynthesis from xylose-glucose mixtures. Biotechnol Bioeng 2021; 119:388-398. [PMID: 34837379 DOI: 10.1002/bit.28002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/31/2023]
Abstract
Xylitol is a salutary sugar substitute that has been widely used in the food, pharmaceutical, and chemical industries. Co-fermentation of xylose and glucose by metabolically engineered cell factories is a promising alternative to chemical hydrogenation of xylose for commercial production of xylitol. Here, we engineered a mutant of SecY protein-translocation channel (SecY [ΔP]) in xylitol-producing Escherichia coli JM109 (DE3) as a passageway for xylose uptake. It was found that SecY (ΔP) channel could rapidly transport xylose without being interfered by XylB-catalyzed synthesis of xylitol-phosphate, which is impossible for native XylFGH and XylE transporters. More importantly, with the coaction of SecY (ΔP) channel and carbon catabolite repression (CCR), the flux of xylose to the pentose phosphate (PP) pathway and the xylitol synthesis pathway in E. coli could be automatically controlled in response to glucose, thereby ensuring that the mutant cells were able to fully utilize sugars with high xylitol yields. The E. coli cell factory developed in this study has been proven to be applicable to a broad range of xylose-glucose mixtures, which is conducive to simplifying the mixed-sugar fermentation process for efficient and economical production of xylitol.
Collapse
Affiliation(s)
- Qiang Guo
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, People's Republic of China
| | - Irfan Ullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Ling-Jie Zheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, People's Republic of China
| | - Xin-Quan Gao
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, People's Republic of China
| | - Chen-Yang Liu
- Qingyuan Innovation Laboratory, Fuzhou University, Quanzhou, People's Republic of China
| | - Hui-Dong Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, People's Republic of China
- Qingyuan Innovation Laboratory, Fuzhou University, Quanzhou, People's Republic of China
| | - Li-Hai Fan
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, People's Republic of China
- Qingyuan Innovation Laboratory, Fuzhou University, Quanzhou, People's Republic of China
| | - Li Deng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
| |
Collapse
|
11
|
Biochemical synthesis of the medicinal sugar l-gulose using fungal alditol oxidase. Biochem Biophys Res Commun 2021; 575:85-89. [PMID: 34461440 DOI: 10.1016/j.bbrc.2021.08.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022]
Abstract
Some rare sugars can be potently medicinal, such as l-gulose. In this study, we present a novel alditol oxidase (fAldOx) from the soil fungus Penicillium sp. KU-1, and its application for the effective production of l-gulose. To the best of our knowledge, this is the first report of a successful direct conversion of d-sorbitol to l-gulose. We further purified it to homogeneity with a ∼108-fold purification and an overall yield of 3.26%, and also determined the effectors of fAldOx. The enzyme possessed broad substrate specificity for alditols such as erythritol (kcat/KM, 355 m-1 s-1), thus implying that the effective production of multiple rare sugars for medicinal applications may be possible.
Collapse
|
12
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
13
|
Nam KH. Crystal structure of the metal-free state of glucose isomerase reveals its minimal open configuration for metal binding. Biochem Biophys Res Commun 2021; 547:69-74. [PMID: 33610042 DOI: 10.1016/j.bbrc.2021.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 01/18/2023]
Abstract
Glucose/xylose isomerase catalyzes the reversible isomerization of d-glucose and d-xylose to d-fructose and d-xylulose, respectively. This enzyme is not only involved in sugar metabolism but also has industrial applications, such as in the production of high fructose corn syrup and bioethanol. Various crystal structures of glucose isomerase have shown the binding configuration of the substrate and its molecular mechanism; however, the metal binding mechanism required for the isomerization reaction has not been fully elucidated. To better understand the functional metal binding, the crystal structures of the metal-bound and metal-free states of Streptomyces rubiginosus glucose isomerase (SruGI) were determined at 1.4 Å and 1.5 Å resolution, respectively. In the meal-bound state of SruGI, Mg2+ is bound at the M1 and M2 sites, while in the metal-free state, these sites are occupied by water molecules. Structural comparison between the metal binding sites of the metal-bound and metal-free states of SruGI revealed that residues Glu217 and Asp257 exhibit a rigid configuration at the bottom of the metal binding site, suggesting that they serve as a metal-binding platform that defined the location of the metal. In contrast, the side chains of Glu218, His220, Asp255, Asp257, and Asp287 showed configuration changes such as shifts and rotations. Notably, in the metal-free state, the side chains of these amino acids are shifted away from the metal binding site, indicating that the metal-binding residues exhibit a minimal open configuration, which allows metal binding without large conformational changes.
Collapse
Affiliation(s)
- Ki Hyun Nam
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
14
|
Kim IJ, Kim KH. Thermophilic l-fucose isomerase from Thermanaeromonas toyohensis for l-fucose synthesis from l-fuculose. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Liu Y, Shang L, Zhan Y, Lin M, Liu Z, Yan Y. Genome-Wide Analysis of Sugar Transporters Identifies the gtsA Gene for Glucose Transportation in Pseudomonas stutzeri A1501. Microorganisms 2020; 8:microorganisms8040592. [PMID: 32325908 PMCID: PMC7232493 DOI: 10.3390/microorganisms8040592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas stutzeri A1501 possesses an extraordinary number of transporters which confer this rhizosphere bacterium with the sophisticated ability to metabolize various carbon sources. However, sugars are not a preferred carbon source for P. stutzeri A1501. The P. stutzeri A1501 genome has been sequenced, allowing for the homology-based in silico identification of genes potentially encoding sugar-transport systems by using established microbial sugar transporters as a template sequence. Genomic analysis revealed that there were 10 sugar transporters in P. stutzeri A1501, most of which belong to the ATP-binding cassette (ABC) family (5/10); the others belong to the phosphotransferase system (PTS), major intrinsic protein (MIP) family, major facilitator superfamily (MFS) and the sodium solute superfamily (SSS). These systems might serve for the import of glucose, galactose, fructose and other types of sugar. Growth analysis showed that the only effective medium was glucose and its corresponding metabolic system was relatively complete. Notably, the loci of glucose metabolism regulatory systems HexR, GltR/GtrS, and GntR were adjacent to the transporters ABCMalEFGK, ABCGtsABCD, and ABCMtlEFGK, respectively. Only the ABCGtsABCD expression was significantly upregulated under both glucose-sufficient and -limited conditions. The predicted structure and mutant phenotype data of the key protein GtsA provided biochemical evidence that P. stutzeri A1501 predominantly utilized the ABCGtsABCD transporter for glucose uptake. We speculate that gene absence and gene diversity in P. stutzeri A1501 was caused by sugar-deficient environmental factors and hope that this report can provide guidance for further analysis of similar bacterial lifestyles.
Collapse
Affiliation(s)
- Yaqun Liu
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570100, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.S.); (Y.Z.); (M.L.)
| | - Liguo Shang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.S.); (Y.Z.); (M.L.)
| | - Yuhua Zhan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.S.); (Y.Z.); (M.L.)
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.S.); (Y.Z.); (M.L.)
| | - Zhu Liu
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570100, China;
- Correspondence: (Z.L.); (Y.Y.)
| | - Yongliang Yan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.S.); (Y.Z.); (M.L.)
- Correspondence: (Z.L.); (Y.Y.)
| |
Collapse
|
16
|
Overcoming the thermodynamic equilibrium of an isomerization reaction through oxidoreductive reactions for biotransformation. Nat Commun 2019; 10:1356. [PMID: 30902987 PMCID: PMC6430769 DOI: 10.1038/s41467-019-09288-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/21/2019] [Indexed: 01/22/2023] Open
Abstract
Isomerases perform biotransformations without cofactors but often cause an undesirable mixture of substrate and product due to unfavorable thermodynamic equilibria. We demonstrate the feasibility of using an engineered yeast strain harboring oxidoreductase reactions to overcome the thermodynamic limit of an isomerization reaction. Specifically, a yeast strain capable of consuming lactose intracellularly is engineered to produce tagatose from lactose through three layers of manipulations. First, GAL1 coding for galactose kinase is deleted to eliminate galactose utilization. Second, heterologous xylose reductase (XR) and galactitol dehydrogenase (GDH) are introduced into the ∆gal1 strain. Third, the expression levels of XR and GDH are adjusted to maximize tagatose production. The resulting engineered yeast produces 37.69 g/L of tagatose from lactose with a tagatose and galactose ratio of 9:1 in the reaction broth. These results suggest that in vivo oxidoreaductase reactions can be employed to replace isomerases in vitro for biotransformation. A desired product cannot be obtained at higher concentration than its equilibrium concentration when isomerases are used for biotransformation. Here, the authors engineer in vivo oxidoreductive reactions in yeast to overcome the equilibrium limitation of in vitro isomerases-based tagatose production.
Collapse
|
17
|
Kim IJ, Kim DH, Nam KH, Kim KH. Enzymatic synthesis of l-fucose from l-fuculose using a fucose isomerase from Raoultella sp. and the biochemical and structural analyses of the enzyme. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:282. [PMID: 31827610 PMCID: PMC6894278 DOI: 10.1186/s13068-019-1619-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/24/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND l-Fucose is a rare sugar with potential uses in the pharmaceutical, cosmetic, and food industries. The enzymatic approach using l-fucose isomerase, which interconverts l-fucose and l-fuculose, can be an efficient way of producing l-fucose for industrial applications. Here, we performed biochemical and structural analyses of l-fucose isomerase identified from a novel species of Raoultella (RdFucI). RESULTS RdFucI exhibited higher enzymatic activity for l-fuculose than for l-fucose, and the rate for the reverse reaction of converting l-fuculose to l-fucose was higher than that for the forward reaction of converting l-fucose to l-fuculose. In the equilibrium mixture, a much higher proportion of l-fucose (~ ninefold) was achieved at 30 °C and pH 7, indicating that the enzyme-catalyzed reaction favors the formation of l-fucose from l-fuculose. When biochemical analysis was conducted using l-fuculose as the substrate, the optimal conditions for RdFucI activity were determined to be 40 °C and pH 10. However, the equilibrium composition was not affected by reaction temperature in the range of 30 to 50 °C. Furthermore, RdFucI was found to be a metalloenzyme requiring Mn2+ as a cofactor. The comparative crystal structural analysis of RdFucI revealed the distinct conformation of α7-α8 loop of RdFucI. The loop is present at the entry of the substrate binding pocket and may affect the catalytic activity. CONCLUSIONS RdFucI-catalyzed isomerization favored the reaction from l-fuculose to l-fucose. The biochemical and structural data of RdFucI will be helpful for the better understanding of the molecular mechanism of l-FucIs and the industrial production of l-fucose.
Collapse
Affiliation(s)
- In Jung Kim
- Department of Biotechnology, Korea University Graduate School, Seoul, 02841 South Korea
| | - Do Hyoung Kim
- Department of Biotechnology, Korea University Graduate School, Seoul, 02841 South Korea
| | - Ki Hyun Nam
- Department of Biotechnology, Korea University Graduate School, Seoul, 02841 South Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, 02841 South Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Korea University Graduate School, Seoul, 02841 South Korea
| |
Collapse
|
18
|
Chen Z, Chen J, Zhang W, Zhang T, Guang C, Mu W. Improving Thermostability and Catalytic Behavior of l-Rhamnose Isomerase from Caldicellulosiruptor obsidiansis OB47 toward d-Allulose by Site-Directed Mutagenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12017-12024. [PMID: 30370768 DOI: 10.1021/acs.jafc.8b05107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
d-Allose, a rare sugar, is an ideal table-sugar substitute and has many advantageous physiological functions. l-Rhamnose isomerase (l-RI) is an important d-allose-producing enzyme, but it exhibits comparatively low catalytic activity on d-allulose. In this study, an array of hydrophobic residues located within β1-α1-loop were solely or collectively replaced with polar amino acids by site-directed mutagenesis. A group of mutants was designed to weaken the hydrophobic environment and strengthen the catalytic behavior on d-allulose. Compared with that of the wild-type enzyme, the relative activities of the V48N/G59N/I63N and V48N/G59N/I63N/F335S mutants toward d-allulose were increased by 105.6 and 134.1%, respectively. Another group of mutants was designed to enhance thermostability. Finally, the t1/2 values of mutant S81A were increased by 7.7 and 1.1 h at 70 and 80 °C, respectively. These results revealed that site-directed mutagenesis is efficient for improving thermostability and catalytic behavior toward d-allulose.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
- International Joint Laboratory on Food Safety , Jiangnan University , Wuxi , Jiangsu 214122 , China
| |
Collapse
|
19
|
Isomerases and epimerases for biotransformation of pentoses. Appl Microbiol Biotechnol 2018; 102:7283-7292. [PMID: 29968034 DOI: 10.1007/s00253-018-9150-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023]
Abstract
Pentoses represent monosaccharides with five carbon atoms. They are organized into two main groups, aldopentoses and ketopentoses. There are eight aldopentoses and four ketopentoses and each ketopentose corresponds to two aldopentoses. Only D-xylose, D-ribose, and L-arabinose are natural sugars, but others belong to rare sugars that occur in very small quantities in nature. Recently, rare pentoses attract much attention because of their great potentials for commercial applications, especially as precursors of many important medical drugs. Pentoses Izumoring strategy provides a complete enzymatic approach to link all pentoses using four types of enzymes, including ketose 3-epimerases, aldose-ketose isomerases, polyol dehydrogenases, and aldose reductases. At least 10 types of epimerases and isomerases have been used for biotransformation of all aldopentoses and ketopentoses, and these enzymes are reviewed in detail in this article.
Collapse
|
20
|
Chen Z, Xu W, Zhang W, Zhang T, Jiang B, Mu W. Characterization of a thermostable recombinant l-rhamnose isomerase from Caldicellulosiruptor obsidiansis OB47 and its application for the production of l-fructose and l-rhamnulose. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2184-2193. [PMID: 28960307 DOI: 10.1002/jsfa.8703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND l-Hexoses are rare sugars that are important components and precursors in the synthesis of biological compounds and pharmaceutical drugs. l-Rhamnose isomerase (L-RI, EC 5.3.1.14) is an aldose-ketose isomerase that plays a significant role in the production of l-sugars. In this study, a thermostable, l-sugar-producing L-RI from the hyperthermophile Caldicellulosiruptor obsidiansis OB47 was characterized. RESULTS The recombinant L-RI displayed maximal activity at pH 8.0 and 85 °C and was significantly activated by Co2+ . It exhibited a relatively high thermostability, with measured half-lives of 24.75, 11.55, 4.15 and 3.30 h in the presence of Co2+ at 70, 75, 80 and 85 °C, respectively. Specific activities of 277.6, 57.9, 13.7 and 9.6 U mg-1 were measured when l-rhamnose, l-mannose, d-allose and l-fructose were used as substrates, respectively. l-Rhamnulose was produced with conversion ratios of 44.0% and 38.6% from 25 and 50 g L-1 l-rhamnose, respectively. l-Fructose was also efficiently produced by the L-RI, with conversion ratios of 67.0% and 58.4% from 25 and 50 g L-1 l-mannose, respectively. CONCLUSION The recombinant L-RI could effectively catalyze the formation of l-rhamnulose and l-fructose, suggesting that it was a promising candidate for industrial production of l-rhamnulose and l-fructose. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
21
|
Chen Z, Chen J, Zhang W, Zhang T, Guang C, Mu W. Recent research on the physiological functions, applications, and biotechnological production of D-allose. Appl Microbiol Biotechnol 2018; 102:4269-4278. [PMID: 29577167 DOI: 10.1007/s00253-018-8916-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023]
Abstract
D-Allose is a rare monosaccharide, which rarely appears in the natural environment. D-Allose has an 80% sweetness relative to table sugar but is ultra-low calorie and non-toxic and is thus an ideal candidate to take the place of table sugar in food products. It displays unique health benefits and physiological functions in various fields, including food systems, clinical treatment, and the health care fields. However, it is difficult to produce chemically. The biotechnological production of D-allose has become a research hotspot in recent years. Therefore, an overview of recent studies on the physiological functions, applications, and biotechnological production of D-allose is presented. In this review, the physiological functions of D-allose are introduced in detail. In addition, the different types of D-allose-producing enzymes are compared for their enzymatic properties and for the biotechnological production of D-allose. To date, very little information is available on the molecular modification and food-grade expression of D-allose-producing enzymes, representing a very large research space yet to be explored.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China. .,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
22
|
Kim YS, Kim DY, Park CS. Production of l-rhamnulose, a rare sugar, from l-rhamnose using commercial immobilized glucose isomerase. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1388374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yeong-Su Kim
- Division of Plant Resource Industry, Baekdudaegan National Arboretum, Bonghwa, South Korea
| | - Do-Yeon Kim
- Department of Convergence Industrialization, International Ginseng and Herb Research Institute, Geumsan, South Korea
| | - Chang-Su Park
- Department of Food Science and Technology, Catholic University of Daegu, Hayang, South Korea
| |
Collapse
|
23
|
Characterization of a novel thermostable l-rhamnose isomerase from Thermobacillus composti KWC4 and its application for production of d-allose. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Wen L, Huang K, Zheng Y, Fang J, Kondengaden SM, Wang PG. Two-step enzymatic synthesis of 6-deoxy-L-psicose. Tetrahedron Lett 2016; 57:3819-3822. [PMID: 27546917 DOI: 10.1016/j.tetlet.2016.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Rare sugars offer a plethora of applications in the pharmaceutical, medicinal, and industries, as well as in synthetic chemistry. However, studies of rare sugars have been hampered by their relative scarcity. In this work, we describe a two-step strategy to efficiently and conveniently prepare 6-deoxy-L-psicose from L-rhamnose. In the first reaction step, the isomerization of L-rhamnose (6-deoxy-L-mannose) to L-rhamnulose (6-deoxy-L-fructose) catalyzed by L-rhamnose isomerase (RhaI), and the epimerization of L-rhamnulose to 6-deoxy-L-psicose catalyzed by D-tagatose 3-epimerase (DTE) were coupled with selective phosphorylation reaction by fructose kinase from human (HK), which selectively phosphorylate 6-deoxy-L-psicose at C-1 position. 6-deoxy-L-psicose 1-phosphate was purified by a silver nitrate precipitation method. In the second step, the phosphate group of the 6-deoxy-L-sorbose 1-phosphate was hydrolyzed with acid phosphatase (AphA) to produce 6-deoxy-L-psicose in 81% yield with respect to L-rhamnose. This method allows that the 6-deoxy-L-psicose to be obtained from readily available starting materials with high purity and without having to undergo isomer separation.
Collapse
Affiliation(s)
- Liuqing Wen
- Department of Chemistry, Georgia State University, Atlanta, GA 30303. USA
| | - Kenneth Huang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303. USA
| | - Yuan Zheng
- Department of Chemistry, Georgia State University, Atlanta, GA 30303. USA
| | - Junqiang Fang
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100. People's Republic of China
| | | | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303. USA
| |
Collapse
|
25
|
Advances in the enzymatic production of L-hexoses. Appl Microbiol Biotechnol 2016; 100:6971-9. [PMID: 27344591 DOI: 10.1007/s00253-016-7694-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
Abstract
Rare sugars have recently drawn attention because of their potential applications and huge market demands in the food and pharmaceutical industries. All L-hexoses are considered rare sugars, as they rarely occur in nature and are thus very expensive. L-Hexoses are important components of biologically relevant compounds as well as being used as precursors for certain pharmaceutical drugs and thus play an important role in the pharmaceutical industry. Many general strategies have been established for the synthesis of L-hexoses; however, the only one used in the biotechnology industry is the Izumoring strategy. In hexose Izumoring, four entrances link the D- to L-enantiomers, ketose 3-epimerases catalyze the C-3 epimerization of L-ketohexoses, and aldose isomerases catalyze the specific bioconversion of L-ketohexoses and the corresponding L-aldohexoses. In this article, recent studies on the enzymatic production of various L-hexoses are reviewed based on the Izumoring strategy.
Collapse
|
26
|
Bioproduction of D-Tagatose from D-Galactose Using Phosphoglucose Isomerase from Pseudomonas aeruginosa PAO1. Appl Biochem Biotechnol 2016; 179:715-27. [PMID: 26922727 DOI: 10.1007/s12010-016-2026-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
Abstract
Pseudomonas aeruginosa PAO1 phosphoglucose isomerase was purified as an active soluble form by a single-step purification using Ni-NTA chromatography that showed homogeneity on SDS-PAGE with molecular mass ∼62 kDa. The optimum temperature and pH for the maximum isomerization activity with D-galactose were 60 °C and 7.0, respectively. Generally, sugar phosphate isomerases show metal-independent activity but PA-PGI exhibited metal-dependent isomerization activity with aldosugars and optimally catalyzed the D-galactose isomerization in the presence of 1.0 mM MnCl2. The apparent Km and Vmax for D-galactose under standardized conditions were calculated to be 1029 mM (±31.30 with S.E.) and 5.95 U/mg (±0.9 with S.E.), respectively. Equilibrium reached after 180 min with production of 567.51 μM D-tagatose from 1000 mM of D-galactose. Though, the bioconversion ratio is low but it can be increased by immobilization and enzyme engineering. Although various L-arabinose isomerases have been characterized for bioproduction of D-tagatose, P. aeruginosa glucose phosphate isomerase is distinguished from the other L-arabinose isomerases by its optimal temperature (60 °C) for D-tagatose production being mesophilic bacteria, making it an alternate choice for bulk production.
Collapse
|
27
|
Xu W, Zhang W, Zhang T, Jiang B, Mu W. l-Rhamnose isomerase and its use for biotechnological production of rare sugars. Appl Microbiol Biotechnol 2016; 100:2985-92. [DOI: 10.1007/s00253-016-7369-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/27/2016] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
|
28
|
Mu W, Yu L, Zhang W, Zhang T, Jiang B. Isomerases for biotransformation of D-hexoses. Appl Microbiol Biotechnol 2015; 99:6571-84. [DOI: 10.1007/s00253-015-6788-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
|
29
|
Shompoosang S, Yoshihara A, Uechi K, Asada Y, Morimoto K. Novel process for producing 6-deoxy monosaccharides from l-fucose by coupling and sequential enzymatic method. J Biosci Bioeng 2015; 121:1-6. [PMID: 26031195 DOI: 10.1016/j.jbiosc.2015.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/15/2015] [Accepted: 04/23/2015] [Indexed: 11/20/2022]
Abstract
We biosynthesized 6-deoxy-L-talose, 6-deoxy-L-sorbose, 6-deoxy-L-gulose, and 6-deoxy-L-idose, which rarely exist in nature, from L-fucose by coupling and sequential enzymatic reactions. The first product, 6-deoxy-L-talose, was directly produced from L-fucose by the coupling reactions of immobilized D-arabinose isomerase and immobilized L-rhamnose isomerase. In one-pot reactions, the equilibrium ratio of L-fucose, L-fuculose, and 6-deoxy-L-talose was 80:9:11. In contrast, 6-deoxy-L-sorbose, 6-deoxy-L-gulose, and 6-deoxy-L-idose were produced from L-fucose by sequential enzymatic reactions. D-Arabinose isomerase converted L-fucose into L-fuculose with a ratio of 88:12. Purified L-fuculose was further epimerized into 6-deoxy-L-sorbose by D-allulose 3-epimerase with a ratio of 40:60. Finally, purified 6-deoxy-L-sorbose was isomerized into both 6-deoxy-L-gulose with an equilibrium ratio of 40:60 by L-ribose isomerase, and 6-deoxy-L-idose with an equilibrium ratio of 73:27 by D-glucose isomerase. Based on the amount of L-fucose used, the production yields of 6-deoxy-L-talose, 6-deoxy-L-sorbose, 6-deoxy-L-gulose, and 6-deoxy-L-idose were 7.1%, 14%, 2%, and 2.4%, respectively.
Collapse
Affiliation(s)
- Sirinan Shompoosang
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Rare Sugar Research Center, Kagawa University, Miki, Kagawa 761-0795, Japan; Institute of Food Research and Product Development, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Akihide Yoshihara
- Rare Sugar Research Center, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Keiko Uechi
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Rare Sugar Research Center, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Yasuhiko Asada
- Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Kenji Morimoto
- Rare Sugar Research Center, Kagawa University, Miki, Kagawa 761-0795, Japan.
| |
Collapse
|
30
|
Bai W, Shen J, Zhu Y, Men Y, Sun Y, Ma Y. Characteristics and Kinetic Properties of L-Rhamnose Isomerase from Bacillus Subtilis by Isothermal Titration Calorimetry for the Production of D-Allose. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Wei Bai
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| | - Jie Shen
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| | - Yueming Zhu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| | - Yan Men
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| |
Collapse
|
31
|
|
32
|
Characterization ofMesorhizobium lotiL-Rhamnose Isomerase and Its Application toL-Talose Production. Biosci Biotechnol Biochem 2014; 75:1006-9. [DOI: 10.1271/bbb.110018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Park CS. Characterization of a recombinant l-rhamnose isomerase from Bacillus subtilis and its application on production of l-lyxose and l-mannose. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0597-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Pham TV, Hong SH, Hong MK, Ngo HPT, Oh DK, Kang LW. Expression, crystallization and preliminary X-ray crystallographic analysis of cellobiose 2-epimerase from Dictyoglomus turgidum DSM 6724. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1163-6. [PMID: 24100573 PMCID: PMC3792681 DOI: 10.1107/s1744309113024391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/02/2013] [Indexed: 11/10/2022]
Abstract
Cellobiose 2-epimerase epimerizes and isomerizes β-1,4- and α-1,4-gluco-oligosaccharides. N-Acyl-D-glucosamine 2-epimerase (DT_epimerase) from Dictyoglomus turgidum has an unusually high catalytic activity towards its substrate cellobiose. DT_epimerase was expressed, purified and crystallized. Crystals were obtained of both His-tagged DT_epimerase and untagged DT_epimerase. The crystals of His-tagged DT_epimerase diffracted to 2.6 Å resolution and belonged to the monoclinic space group P2₁, with unit-cell parameters a=63.9, b=85.1, c=79.8 Å, β=110.8°. With a Matthews coefficient VM of 2.18 Å3 Da(-1), two protomers were expected to be present in the asymmetric unit with a solvent content of 43.74%. The crystals of untagged DT_epimerase diffracted to 1.85 Å resolution and belonged to the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a=55.9, b=80.0, c=93.7 Å. One protomer in the asymmetric unit was expected, with a corresponding VM of 2.26 Å3 Da(-1) and a solvent content of 45.6%.
Collapse
Affiliation(s)
- Tan-Viet Pham
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Seung-Hye Hong
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Myoung-ki Hong
- Department of Biological Sciences, Konkuk University, 1 Hwayang dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Ho-Phuong-Thuy Ngo
- Department of Biological Sciences, Konkuk University, 1 Hwayang dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, 1 Hwayang dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| |
Collapse
|
35
|
Preparation of D-Gulose from Disaccharide Lactitol Using Microbial and Chemical Methods. Biosci Biotechnol Biochem 2013; 77:253-8. [DOI: 10.1271/bbb.120657] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Yoshida H, Yoshihara A, Teraoka M, Yamashita S, Izumori K, Kamitori S. Structure of l-rhamnose isomerase in complex with l-rhamnopyranose demonstrates the sugar-ring opening mechanism and the role of a substrate sub-binding site. FEBS Open Bio 2012; 3:35-40. [PMID: 23772372 PMCID: PMC3668531 DOI: 10.1016/j.fob.2012.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 11/30/2012] [Indexed: 11/26/2022] Open
Abstract
l-Rhamnose isomerase (l-RhI) catalyzes the reversible isomerization of l-rhamnose to l-rhamnulose. Previously determined X-ray structures of l-RhI showed a hydride-shift mechanism for the isomerization of substrates in a linear form, but the mechanism for opening of the sugar-ring is still unclear. To elucidate this mechanism, we determined X-ray structures of a mutant l-RhI in complex with l-rhamnopyranose and d-allopyranose. Results suggest that a catalytic water molecule, which acts as an acid/base catalyst in the isomerization reaction, is likely to be involved in pyranose-ring opening, and that a newly found substrate sub-binding site in the vicinity of the catalytic site may recognize different anomers of substrates.
Collapse
Key Words
- D327N, mutant P. stutzeril-RhI, with a substitution of Asp327 with Asn
- E. coli, Escherichia coli
- H101N, mutant P. stutzeril-RhI, with a substitution of H101 with Asn
- P. stutzeri, Pseudomonas stutzeri
- Pseudomonas stutzeri
- RNS, l-rhamnose in a linear form
- Rare sugar
- Sugar-ring opening mechanism
- X-ray structure
- l-RhI, l-rhamnose isomerase
- l-Rhamnose isomerase
- α-APS, α-d-allopyranose
- α-RPS, α-l-rhamnopyranose
- β-RPS, β-l-rhamnopyranose
Collapse
Affiliation(s)
- Hiromi Yoshida
- Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Characterization of a recombinant L-rhamnose isomerase from Dictyoglomus turgidum and its application for L-rhamnulose production. Biotechnol Lett 2012; 35:259-64. [PMID: 23070627 DOI: 10.1007/s10529-012-1069-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
A putative recombinant enzyme from Dictyoglomus turgidum was characterized and immobilized on Duolite A568 beads. The native enzyme was a 46 kDa tetramer. Its activity was highest for L-rhamnose, indicating that it is an L-rhamnose isomerase. The maximum activities of both the free and immobilized enzymes for L-rhamnose isomerization were at pH 8.0 and 75 °C in the presence of Mn(2+). Under these conditions, the half-lives of the free and immobilized enzymes were 28 and 112 h, respectively. In a packed-bed bioreactor, the immobilized enzyme produced an average of 130 g L-rhamnulose l(-1) from 300 g L-rhamnose l(-1) after 240 h at pH 8.0, 70 °C, and 0.6 h(-1), with a productivity of 78 g l(-1) h(-1) and a conversion yield of 43 %. To the best of our knowledge, this is the first report describing the enzymatic production of L-rhamnulose.
Collapse
|
38
|
Beerens K, Desmet T, Soetaert W. Enzymes for the biocatalytic production of rare sugars. ACTA ACUST UNITED AC 2012; 39:823-34. [DOI: 10.1007/s10295-012-1089-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/13/2012] [Indexed: 11/24/2022]
Abstract
Abstract
Carbohydrates are much more than just a source of energy as they also mediate a variety of recognition processes that are central to human health. As such, saccharides can be applied in the food and pharmaceutical industries to stimulate our immune system (e.g., prebiotics), to control diabetes (e.g., low-calorie sweeteners), or as building blocks for anticancer and antiviral drugs (e.g., l-nucleosides). Unfortunately, only a small number of all possible monosaccharides are found in nature in sufficient amounts to allow their commercial exploitation. Consequently, so-called rare sugars have to be produced by (bio)chemical processes starting from cheap and widely available substrates. Three enzyme classes that can be used for rare sugar production are keto–aldol isomerases, epimerases, and oxidoreductases. In this review, the recent developments in rare sugar production with these biocatalysts are discussed.
Collapse
Affiliation(s)
- Koen Beerens
- grid.5342.0 0000000120697798 Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering Ghent University Coupure links 653 9000 Gent Belgium
| | - Tom Desmet
- grid.5342.0 0000000120697798 Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering Ghent University Coupure links 653 9000 Gent Belgium
| | - Wim Soetaert
- grid.5342.0 0000000120697798 Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering Ghent University Coupure links 653 9000 Gent Belgium
| |
Collapse
|
39
|
Usvalampi A, Turunen O, Valjakka J, Pastinen O, Leisola M, Nyyssölä A. Production of l-xylose from l-xylulose using Escherichia coli l-fucose isomerase. Enzyme Microb Technol 2012; 50:71-6. [DOI: 10.1016/j.enzmictec.2011.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 09/11/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
|
40
|
Lin CJ, Tseng WC, Fang TY. Characterization of a thermophilic L-rhamnose isomerase from Caldicellulosiruptor saccharolyticus ATCC 43494. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:8702-8708. [PMID: 21761877 DOI: 10.1021/jf201428b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
L-Rhamnose isomerase (EC 5.3.1.14, l-RhI) catalyzes the reversible aldose-ketose isomerization between L-rhamnose and L-rhamnulose. In this study, the L-rhi gene encoding L-RhI was PCR-cloned from Caldicellulosiruptor saccharolyticus ATCC 43494 and then expressed in Escherichia coli. A high yield of active L-RhI, 3010 U/g of wet cells, was obtained after 20 °C induction for 20 h. The enzyme was purified sequentially using heat treatment, nucleic acid precipitation, and ion-exchange chromatography. The purified L-RhI showed an apparent optimal pH of 7 and an optimal temperature at 90 °C. The enzyme was stable at pH values ranging from 4 to 11 and retained >90% activity after a 6 h incubation at 80 °C and pH 7-8. Compared with other previously characterized L-RhIs, the L-RhI from C. saccharolyticus ATCC 43494 has a good thermostability, the widest pH-stable range, and the highest catalytic efficiencies (k(cat)/K(M)) against L-rhamnose, L-lyxose, L-mannose, D-allose, and D-ribose, suggesting that this enzyme has the potential to be applied in rare sugar production.
Collapse
Affiliation(s)
- Chia-Jui Lin
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | | | | |
Collapse
|
41
|
Microbial metabolism and biotechnological production of d-allose. Appl Microbiol Biotechnol 2011; 91:229-35. [DOI: 10.1007/s00253-011-3370-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
|
42
|
Song YS, Kim JE, Park C, Kim SW. Enhancement of glucose isomerase activity by pretreatment with substrates prior to immobilization. KOREAN J CHEM ENG 2011. [DOI: 10.1007/s11814-010-0464-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Yoshida H, Takeda K, Izumori K, Kamitori S. Elucidation of the role of Ser329 and the C-terminal region in the catalytic activity of Pseudomonas stutzeri L-rhamnose isomerase. Protein Eng Des Sel 2010; 23:919-27. [PMID: 20977999 DOI: 10.1093/protein/gzq077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pseudomonas stutzeri l-rhamnose isomerase (l-RhI) is capable of catalyzing the isomerization between various aldoses and ketoses, showing high catalytic activity with broad substrate-specificity compared with Escherichia coli l-RhI. In a previous study, the crystal structure of P. stutzeri l-RhI revealed an active site comparable with that of E. coli l-RhI and d-xylose isomerases (d-XIs) with structurally conserved amino acids, but also with a different residue seemingly responsible for the specificity of P. stutzeri l-RhI, though the residue itself does not interact with the bound substrate. This residue, Ser329, corresponds to Phe336 in E. coli l-RhI and Lys294 in Actinoplanes missouriensis d-XI. To elucidate the role of Ser329 in P. stutzeri l-RhI, we constructed mutants, S329F (E. coli l-RhI type), S329K (A. missouriensis d-XI type), S329L and S329A. Analyses of the catalytic activity and crystal structure of the mutants revealed a hydroxyl group of Ser329 to be crucial for catalytic activity via interaction with a water molecule. In addition, in complexes with substrate, the mutants S329F and S329L exhibited significant electron density in the C-terminal region not observed in the wild-type P. stutzeri l-RhI. The C-terminal region of P. stutzeri l-RhI has flexibility and shows a flip-flop movement at the inter-molecular surface of the dimeric form.
Collapse
Affiliation(s)
- Hiromi Yoshida
- Division of Structural Biology, Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | |
Collapse
|
44
|
Lin CJ, Tseng WC, Lin TH, Liu SM, Tzou WS, Fang TY. Characterization of a thermophilic L-rhamnose isomerase from Thermoanaerobacterium saccharolyticum NTOU1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:10431-10436. [PMID: 20822145 DOI: 10.1021/jf102063q] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
L-rhamnose isomerase (EC 5.3.1.14, L-RhI) catalyzes the reversible aldose-ketose isomerization between L-rhamnose and L-rhamnulose. In this study, the L-Rhi gene encoding L-Rhi was PCR-cloned from Thermoanaerobacterium saccharolyticum NTOU1 and then expressed in Escherichia coli. A high yield of the active L-RhI, 9780 U/g of wet cells, was obtained in the presence of 0.2 mM IPTG induction. L-RhI was purified sequentially using heat treatment, nucleic acid precipitation, and anion-exchange chromatography. The purified L-RhI showed an apparent optimal pH of 7 and an optimal temperature at 75 °C. The enzyme was stable at pH values ranging from 5 to 9, and the activity was fully retained after a 2 h incubation at 40-70 °C. L-RhI from T. saccharolyticum NTOU1 is the most thermostable L-RhI to date, and it has a high specific activity (163 U/mg) and an acceptable purity after heat treatment, suggesting that this enzyme has the potential to be used in rare sugar production.
Collapse
Affiliation(s)
- Chia-Jui Lin
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | | | | | | | | | | |
Collapse
|
45
|
Cloning and characterization of a rhamnose isomerase from Bacillus halodurans. Appl Microbiol Biotechnol 2010; 89:635-44. [DOI: 10.1007/s00253-010-2844-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/07/2010] [Accepted: 08/14/2010] [Indexed: 10/19/2022]
|
46
|
Characterization of a recombinant thermostable l-rhamnose isomerase from Thermotoga maritima ATCC 43589 and its application in the production of l-lyxose and l-mannose. Biotechnol Lett 2010; 32:1947-53. [PMID: 20809285 DOI: 10.1007/s10529-010-0385-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 08/18/2010] [Indexed: 10/19/2022]
|
47
|
Park CS, Yeom SJ, Lim YR, Kim YS, Oh DK. Substrate specificity of a recombinant d-lyxose isomerase from Serratia proteamaculans that produces d-lyxose and d-mannose. Lett Appl Microbiol 2010; 51:343-50. [DOI: 10.1111/j.1472-765x.2010.02903.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Substrate specificity of a recombinant ribose-5-phosphate isomerase from Streptococcus pneumoniae and its application in the production of l-lyxose and l-tagatose. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0511-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Kwon HJ, Yeom SJ, Park CS, Oh DK. Substrate specificity of a recombinant d-lyxose isomerase from Providencia stuartii for monosaccharides. J Biosci Bioeng 2010; 110:26-31. [DOI: 10.1016/j.jbiosc.2009.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 12/26/2009] [Accepted: 12/29/2009] [Indexed: 10/19/2022]
|
50
|
Yoshida H, Yamaji M, Ishii T, Izumori K, Kamitori S. Catalytic reaction mechanism of Pseudomonas stutzeri l-rhamnose isomerase deduced from X-ray structures. FEBS J 2010; 277:1045-57. [DOI: 10.1111/j.1742-4658.2009.07548.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|