1
|
O'Day DH, Mathavarajah S, Myre MA, Huber RJ. Calmodulin-mediated events during the life cycle of the amoebozoan Dictyostelium discoideum. Biol Rev Camb Philos Soc 2020; 95:472-490. [PMID: 31774219 PMCID: PMC7079120 DOI: 10.1111/brv.12573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
This review focusses on the functions of intracellular and extracellular calmodulin, its target proteins and their binding proteins during the asexual life cycle of Dictyostelium discoideum. Calmodulin is a primary regulatory protein of calcium signal transduction that functions throughout all stages. During growth, it mediates autophagy, the cell cycle, folic acid chemotaxis, phagocytosis, and other functions. During mitosis, specific calmodulin-binding proteins translocate to alternative locations. Translocation of at least one cell adhesion protein is calmodulin dependent. When starved, cells undergo calmodulin-dependent chemotaxis to cyclic AMP generating a multicellular pseudoplasmodium. Calmodulin-dependent signalling within the slug sets up a defined pattern and polarity that sets the stage for the final events of morphogenesis and cell differentiation. Transected slugs undergo calmodulin-dependent transdifferentiation to re-establish the disrupted pattern and polarity. Calmodulin function is critical for stalk cell differentiation but also functions in spore formation, events that begin in the pseudoplasmodium. The asexual life cycle restarts with the calmodulin-dependent germination of spores. Specific calmodulin-binding proteins as well as some of their binding partners have been linked to each of these events. The functions of extracellular calmodulin during growth and development are also discussed. This overview brings to the forefront the central role of calmodulin, working through its numerous binding proteins, as a primary downstream regulator of the critical calcium signalling pathways that have been well established in this model eukaryote. This is the first time the function of calmodulin and its target proteins have been documented through the complete life cycle of any eukaryote.
Collapse
Affiliation(s)
- Danton H. O'Day
- Cell and Systems BiologyUniversity of TorontoTorontoOntarioM5S 3G5Canada
- Department of BiologyUniversity of Toronto MississaugaMississaugaOntarioL5L 1C6Canada
| | | | - Michael A. Myre
- Department of Biological Sciences, Kennedy College of SciencesUniversity of Massachusetts LowellLowellMassachusetts01854USA
| | - Robert J. Huber
- Department of BiologyTrent UniversityPeterboroughOntarioK9L 0G2Canada
| |
Collapse
|
2
|
Proteins of the Nucleolus of Dictyostelium discoideum: Nucleolar Compartmentalization, Targeting Sequences, Protein Translocations and Binding Partners. Cells 2019; 8:cells8020167. [PMID: 30781559 PMCID: PMC6406644 DOI: 10.3390/cells8020167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/31/2022] Open
Abstract
The nucleoli of Dictyostelium discoideum have a comparatively unique, non-canonical, localization adjacent to the inner nuclear membrane. The verified nucleolar proteins of this eukaryotic microbe are detailed while other potential proteins are introduced. Heat shock protein 32 (Hsp32), eukaryotic translation initiation factor 6 (eIF6), and tumour necrosis factor receptor-associated protein 1 (TRAP1) are essential for cell survival. NumA1, a breast cancer type 1 susceptibility protein-C Terminus domain-containing protein linked to cell cycle, functions in the regulation of nuclear number. The cell cycle checkpoint kinase 2 homologue forkhead-associated kinase A (FhkA) and BRG1-associated factor 60a homologue Snf12 are also discussed. While nucleoli appear homogeneous ultrastructurally, evidence for nucleolar subcompartments exists. Nucleolar localization sequences (NoLS) have been defined that target proteins to either the general nucleolar area or to a specific intranucleolar domain. Protein translocations during mitosis are protein-specific and support the multiple functions of the Dictyostelium nucleolus. To enrich the picture, binding partners of NumA1, the most well-characterized nucleolar protein, are examined: nucleolar Ca2+-binding protein 4a (CBP4a), nuclear puromycin-sensitive aminopeptidase A (PsaA) and Snf12. The role of Dictyostelium as a model for understanding the contribution of nucleolar proteins to various diseases and cellular stress is discussed throughout the review.
Collapse
|
3
|
Catalano A, O'Day DH. Rad53 homologue forkhead-associated kinase A (FhkA) and Ca2+-binding protein 4a (CBP4a) are nucleolar proteins that differentially redistribute during mitosis in Dictyostelium. Cell Div 2013; 8:4. [PMID: 23587254 PMCID: PMC3637376 DOI: 10.1186/1747-1028-8-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/05/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND During mitosis most nucleolar proteins redistribute to other locales providing an opportunity to study the relationship between nucleolar protein localization and function. Dictyostelium is a model organism for the study of several fundamental biological processes and human diseases but only two nucleolar proteins have been studied during mitosis: NumA1 and Snf12. Both of them are linked to the cell cycle. To acquire a better understanding of nucleolar protein localization and dynamics in Dictyostelium we studied the nucleolar localization of two additional proteins during mitosis: Snf12-linked forkhead-associated kinase A (FhkA), which is involved in the cell cycle, and Ca2+-binding protein 4a (CBP4a), which is a binding partner of NumA1. METHODS Polyclonal antibodies were produced in-house. Cells were fixed and probed with either anti-FhkA or anti-CBP4a in order to determine cellular localization during interphase and throughout the stages of mitosis. Colocalization with DAPI nuclear stain allowed us to determine the location of the nucleus and nucleolus while colocalization with anti-α-tubulin allowed us to determine the cell cycle stage. RESULTS Here we verify two novel nucleolar proteins, Rad53 homologue FhkA which localized around the edge of the nucleolus and CBP4a which was detected throughout the entire nucleolus. Treatment with the Ca2+ chelator BAPTA (5 mM) showed that the nucleolar localization of CBP4a is Ca2+-dependent. In response to actinomycin D (0.05 mg/mL) CBP4a disappeared from the nucleolus while FhkA protruded from the nucleus, eventually pinching off as cytoplasmic circles. FhkA and CBP4a redistributed differently during mitosis. FhkA redistributed throughout the entire cell and at the nuclear envelope region from prometaphase through telophase. In contrast, during prometaphase CBP4a relocated to many large, discrete "CBP4a islands" throughout the nucleoplasm. Two larger "CBP4a islands" were also detected specifically at the metaphase plate region. CONCLUSIONS FhkA and CBP4a represent the sixth and seventh nucleolar proteins that have been verified to date in Dictyostelium and the third and fourth studied during mitosis. The protein-specific distributions of all of these nucleolar proteins during interphase and mitosis provide unique insight into nucleolar protein dynamics in this model organism setting the stage for future work.
Collapse
Affiliation(s)
- Andrew Catalano
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord st,, Toronto, ON M5S 3G5, Canada.
| | | |
Collapse
|
4
|
Nucleoplasmic/nucleolar translocation and identification of a nuclear localization signal (NLS) in Dictyostelium BAF60a/SMARCD1 homologue Snf12. Histochem Cell Biol 2012; 138:515-30. [PMID: 22623154 DOI: 10.1007/s00418-012-0973-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
Abstract
Dictyostelium is a model eukaryote for the study of several cellular processes; however, comparatively little is known about its nucleolus. Identification of nucleolar proteins is key to understanding this nuclear subcompartment, but only four have been identified in Dictyostelium. As discussed in this article, a potential relationship between nucleolar NumA1 and BAF60a/SMARCD1 suggested BAF60a may also reside in the nucleolus. Here, we identify BAF60a homologue Snf12 as the fifth nucleolar protein in Dictyostelium. Immunolocalization experiments demonstrate that Snf12 is nucleoplasmic, but translocates to nucleoli upon actinomycin-D-induced transcription inhibition (0.05 mg/mL, 4 h). Translocation was accompanied by a microtubule-independent protrusion of nucleolar Snf12 regions from the nucleus followed by detection of Snf12 in cytoplasmic circles for at least 48 h. Residues (372)KRKR(375) are both necessary and sufficient for nucleoplasmic localization of Snf12 and represent a functional nuclear localization signal (NLS), similar to recently identified NLSs in other Dictyostelium proteins. Since nucleolar and nucleoplasmic proteins redistribute during mitosis, we investigated Snf12 dynamics during this time. Dictyostelium undergoes closed mitosis, meaning its nuclear envelope remains intact. Despite this, during metaphase and anaphase Snf12 redistributed throughout the cytoplasm before reaccumulating in the nucleus during telophase, unlike the previously reported nucleoplasmic redistribution of nucleolar NumA1. The nuclear exit of Snf12 was independent of its putative nuclear export signal and not inhibited by exportin inhibition, suggesting that the redistribution of nuclear proteins during mitosis in Dictyostelium is mediated by other mechanisms. Snf12 is the second Dictyostelium nucleolar protein for which its dynamics during mitosis have been investigated.
Collapse
|
5
|
Hübner S, Efthymiadis A. Recent progress in histochemistry and cell biology. Histochem Cell Biol 2012; 137:403-57. [PMID: 22366957 DOI: 10.1007/s00418-012-0933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2012] [Indexed: 01/06/2023]
Abstract
Studies published in Histochemistry and Cell Biology in the year 2011 represent once more a manifest of established and newly sophisticated techniques being exploited to put tissue- and cell type-specific molecules into a functional context. The review is therefore the Histochemistry and Cell Biology's yearly intention to provide interested readers appropriate summaries of investigations touching the areas of tissue biology, developmental biology, the biology of the immune system, stem cell research, the biology of subcellular compartments, in order to put the message of such studies into natural scientific-/human- and also pathological-relevant correlations.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
6
|
Bestatin inhibits cell growth, cell division, and spore cell differentiation in Dictyostelium discoideum. EUKARYOTIC CELL 2012; 11:545-57. [PMID: 22345351 DOI: 10.1128/ec.05311-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bestatin methyl ester (BME) is an inhibitor of Zn(2+)-binding aminopeptidases that inhibits cell proliferation and induces apoptosis in normal and cancer cells. We have used Dictyostelium as a model organism to study the effects of BME. Only two Zn(2+)-binding aminopeptidases have been identified in Dictyostelium to date, puromycin-sensitive aminopeptidase A and B (PsaA and PsaB). PSA from other organisms is known to regulate cell division and differentiation. Here we show that PsaA is differentially expressed throughout growth and development of Dictyostelium, and its expression is regulated by developmental morphogens. We present evidence that BME specifically interacts with PsaA and inhibits its aminopeptidase activity. Treatment of cells with BME inhibited the rate of cell growth and the frequency of cell division in growing cells and inhibited spore cell differentiation during late development. Overexpression of PsaA-GFP (where GFP is green fluorescent protein) also inhibited spore cell differentiation but did not affect growth. Using chimeras, we have identified that nuclear versus cytoplasmic localization of PsaA affects the choice between stalk or spore cell differentiation pathway. Cells that overexpressed PsaA-GFP (primarily nuclear) differentiated into stalk cells, while cells that overexpressed PsaAΔNLS2-GFP (cytoplasmic) differentiated into spores. In conclusion, we have identified that BME inhibits cell growth, division, and differentiation in Dictyostelium likely through inhibition of PsaA.
Collapse
|
7
|
Dictyostelium puromycin-sensitive aminopeptidase A is a nucleoplasmic nucleomorphin-binding protein that relocates to the cytoplasm during mitosis. Histochem Cell Biol 2011; 136:677-88. [PMID: 22038042 DOI: 10.1007/s00418-011-0873-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2011] [Indexed: 01/13/2023]
Abstract
Nucleomorphin (NumA1) is a nucleolar/nucleoplasmic protein linked to cell cycle in Dictyostelium. It interacts with puromycin-sensitive aminopeptidase A (PsaA) which in other organisms is a Zn(2+)-metallopeptidase thought to be involved in cell cycle progression and is involved in several human diseases. Here, we have shown that Dictyostelium PsaA contains domains characteristic of the M1 family of Zn(2+)-metallopeptidases: a GAMEN motif and a Zn(2+)-binding domain. PsaA colocalized with NumA1 in the nucleoplasm in vegetative cells and was also present to a lesser extent in the cytoplasm. The same localization pattern was observed in cells from slugs, however, in fruiting bodies PsaA was only detected in spore nuclei. During mitosis PsaA redistributed mainly throughout the cytoplasm. It possesses a functional nuclear localization signal ((680)RKRF(683)) necessary for nuclear entry. To our knowledge, this is the first nuclear localization signal identified in a Psa from any organism. Treatment with Ca(2+) chelators or calmodulin antagonists indicated that neither Ca(2+) nor calmodulin is involved in PsaA localization. These results are interpreted in terms of the inter-relationship between NumA1 and PsaA in cell function in Dictyostelium.
Collapse
|
8
|
Nucleolar localization and identification of nuclear/nucleolar localization signals of the calmodulin-binding protein nucleomorphin during growth and mitosis in Dictyostelium. Histochem Cell Biol 2011; 135:239-49. [PMID: 21327858 DOI: 10.1007/s00418-011-0785-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2011] [Indexed: 10/18/2022]
Abstract
The calmodulin-binding protein nucleomorphin isoform NumA1 is a nuclear number regulator in Dictyostelium that localizes to intra-nuclear patches adjacent to the nuclear envelope and to a lesser extent the nucleoplasm. Earlier studies have shown similar patches to be nucleoli but only three nucleolar proteins have been identified in Dictyostelium. Here, actinomycin-D treatment caused the loss of NumA1 localization, while calcium and calmodulin antagonists had no effect. In keeping with a nucleolar function, NumA1 moved out of the presumptive nucleoli during mitosis redistributing to areas within the nucleus, the spindle fibers, and centrosomal region before re-accumulating in the presumptive nucleoli at telophase. Together, these data verify NumA1 as a true nucleolar protein. Prior to this study, the dynamics of specific nucleolar proteins had not been determined during mitosis in Dictyostelium. FITC-conjugated peptides equivalent to presumptive nuclear localization signals within NumA1 localized to nucleoli indicating that they also act as nucleolar localization signals. To our knowledge, these represent the first precisely defined nucleolar localization signals as well as the first nuclear/nucleolar localization signals identified in Dictyostelium. Together, these results reveal that NumA1 is a true nucleolar protein and the only nucleolar calmodulin-binding protein identified in Dictyostelium. The possible use of nuclear/nucleolar localization signal-mediated drug targeting to nucleoli is discussed.
Collapse
|
9
|
O'Day DH, Poloz Y, Myre MA. Differentiation inducing factor-1 (DIF-1) induces gene and protein expression of the Dictyostelium nuclear calmodulin-binding protein nucleomorphin. Cell Signal 2008; 21:317-23. [PMID: 19000924 DOI: 10.1016/j.cellsig.2008.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Revised: 10/25/2008] [Accepted: 10/27/2008] [Indexed: 11/18/2022]
Abstract
The nucleomorphin gene numA1 from Dictyostelium codes for a multi-domain, calmodulin binding protein that regulates nuclear number. To gain insight into the regulation of numA, we assessed the effects of the stalk cell differentiation inducing factor-1 (DIF-1), an extracellular signalling molecule, on the expression of numA1 RNA and protein. For comparison, the extracellular signalling molecules cAMP (mediates chemotaxis, prestalk and prespore differentiation) and ammonia (NH(3)/NH(4)(+); antagonizes DIF) were also studied. Starvation, which is a signal for multicellular development, results in a greater than 80% decrease in numA1 mRNA expression within 4 h. Treatment with ammonium chloride led to a greater than 90% inhibition of numA1 RNA expression within 2 h. In contrast, the addition of DIF-1 completely blocked the decrease in numA1 gene expression caused by starvation. Treatment of vegetative cells with cAMP led to decreases in numA1 RNA expression that were equivalent to those seen with starvation. Western blotting after various morphogen treatments showed that the maintenance of vegetative levels of numA1 RNA by DIF-1 in starved cells was reflected in significantly increased numA1 protein levels. Treatment with cAMP and/or ammonia led to decreased protein expression and each of these morphogens suppressed the stimulatory effects of DIF-1. Protein expression levels of CBP4a, a calcium-dependent binding partner of numA1, were regulated in the same manner as numA1 suggesting this potential co-regulation may be related to their functional relationship. NumA1 is the first calmodulin binding protein shown to be regulated by developmental morphogens in Dictyostelium being upregulated by DIF-1 and down-regulated by cAMP and ammonia.
Collapse
Affiliation(s)
- Danton H O'Day
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L 1C6.
| | | | | |
Collapse
|
10
|
Catalano A, O'Day DH. Calmodulin-binding proteins in the model organism Dictyostelium: a complete & critical review. Cell Signal 2007; 20:277-91. [PMID: 17897809 DOI: 10.1016/j.cellsig.2007.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
Calmodulin is an essential protein in the model organism Dictyostelium discoideum. As in other organisms, this small, calcium-regulated protein mediates a diversity of cellular events including chemotaxis, spore germination, and fertilization. Calmodulin works in a calcium-dependent or -independent manner by binding to and regulating the activity of target proteins called calmodulin-binding proteins. Profiling suggests that Dictyostelium has 60 or more calmodulin-binding proteins with specific subcellular localizations. In spite of the central importance of calmodulin, the study of these target proteins is still in its infancy. Here we critically review the history and state of the art of research into all of the identified and presumptive calmodulin-binding proteins of Dictyostelium detailing what is known about each one with suggestions for future research. Two individual calmodulin-binding proteins, the classic enzyme calcineurin A (CNA; protein phosphatase 2B) and the nuclear protein nucleomorphin (NumA), which is a regulator of nuclear number, have been particularly well studied. Research on the role of calmodulin in the function and regulation of the various myosins of Dictyostelium, especially during motility and chemotaxis, suggests that this is an area in which future active study would be particularly valuable. A general, hypothetical model for the role of calmodulin in myosin regulation is proposed.
Collapse
Affiliation(s)
- Andrew Catalano
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd., Mississauga, ON, Canada L5L 1C6
| | | |
Collapse
|
11
|
O'Day DH, Suhre K, Myre MA, Chatterjee-Chakraborty M, Chavez SE. Isolation, characterization, and bioinformatic analysis of calmodulin-binding protein cmbB reveals a novel tandem IP22 repeat common to many Dictyostelium and Mimivirus proteins. Biochem Biophys Res Commun 2006; 346:879-88. [PMID: 16777069 DOI: 10.1016/j.bbrc.2006.05.204] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 05/27/2006] [Indexed: 11/20/2022]
Abstract
A novel calmodulin-binding protein cmbB from Dictyostelium discoideum is encoded in a single gene. Northern analysis reveals two cmbB transcripts first detectable at 4 h during multicellular development. Western blotting detects an approximately 46.6 kDa protein. Sequence analysis and calmodulin-agarose binding studies identified a "classic" calcium-dependent calmodulin-binding domain (179IPKSLRSLFLGKGYNQPLEF198) but structural analyses suggest binding may not involve classic alpha-helical calmodulin-binding. The cmbB protein is comprised of tandem repeats of a newly identified IP22 motif ([I,L]Pxxhxxhxhxxxhxxxhxxxx; where h = any hydrophobic amino acid) that is highly conserved and a more precise representation of the FNIP repeat. At least eight Acanthamoeba polyphaga Mimivirus proteins and over 100 Dictyostelium proteins contain tandem arrays of the IP22 motif and its variants. cmbB also shares structural homology to YopM, from the plague bacterium Yersenia pestis.
Collapse
Affiliation(s)
- Danton H O'Day
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L 1C6.
| | | | | | | | | |
Collapse
|
12
|
O'Day DH, Chatterjee-Chakraborty M, Wagler S, Myre MA. Isolation and characterization of Dictyostelium thymidine kinase 1 as a calmodulin-binding protein. Biochem Biophys Res Commun 2005; 331:1494-502. [PMID: 15883042 DOI: 10.1016/j.bbrc.2005.04.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2005] [Indexed: 11/28/2022]
Abstract
Probing of a cDNA expression library from multicellular development of Dictyostelium discoideum using a recombinant radiolabelled calmodulin probe (35S-VU1-CaM) led to the isolation of a cDNA encoding a putative CaM-binding protein (CaMBP). The cDNA contained an open reading frame of 951 bp encoding a 227aa polypeptide (25.5 kDa). Sequence comparisons led to highly significant matches with cytosolic thymidine kinases (TK1; EC 2.7.1.21) from a diverse number of species including humans (7e-56; 59% Identities; 75% Positives) indicating that the encoded protein is D. discoideum TK1 (DdTK1; ThyB). DdTK1 has not been previously characterized in this organism. In keeping with its sequence similarity with DdTK1, antibodies against humanTK1 recognize DdTK1, which is expressed during growth but decreases in amount after starvation. A CaM-binding domain (CaMBD; 20GKTTELIRRIKRFNFANKKC30) was identified and wild type DdTK1 plus two constructs (DdTK deltaC36, DdTK deltaC75) possessing the domain were shown to bind CaM in vitro but only in the presence of calcium while a construct (DdTK deltaN72) lacking the region failed to bind to CaM. Thus, DdTK1 is a Ca2+-dependent CaMBP. Sequence alignments against TK1 from vertebrates to viruses show that CaM-binding region is highly conserved. The identified CaMBD overlaps the ATP-binding (P-loop) domain suggesting CaM might affect the activity of this kinase. Recombinant DdTK is enzymatically active and showed stimulation by CaM (113+/-0.5%) an in vitro enhancement that was prevented by co-addition of the CaM antagonists W7 (91.2+/-0.8%) and W13 (96.6+/-0.6%). The discovery that TK1 from D. discoideum, and possibly other species including humans and a large number of human viruses, is a Ca2+-dependent CaMBP opens up new avenues for research on this medically relevant protein.
Collapse
Affiliation(s)
- Danton H O'Day
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ont., Canada.
| | | | | | | |
Collapse
|
13
|
Myre MA, O'Day DH. An N-terminal nuclear localization sequence but not the calmodulin-binding domain mediates nuclear localization of nucleomorphin, a protein that regulates nuclear number in Dictyostelium. Biochem Biophys Res Commun 2005; 332:157-66. [PMID: 15896312 DOI: 10.1016/j.bbrc.2005.04.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 04/13/2005] [Indexed: 11/25/2022]
Abstract
Nucleomorphin is a novel nuclear calmodulin (CaM)-binding protein (CaMBP) containing an extensive DEED (glu/asp repeat) domain that regulates nuclear number. GFP-constructs of the 38 kDa NumA1 isoform localize as intranuclear patches adjacent to the inner nuclear membrane. The translocation of CaMBPs into nuclei has previously been shown by others to be mediated by both classic nuclear localization sequences (NLSs) and CaM-binding domains (CaMBDs). Here we show that NumA1 possesses a CaMBD (171EDVSRFIKGKLLQKQQKIYKDLERF195) containing both calcium-dependent-binding motifs and an IQ-like motif for calcium-independent binding. GFP-constructs containing only NumA1 residues 1-129, lacking the DEED and CaMBDs, still localized as patches at the internal periphery of nuclei thus ruling out a direct role for the CaMBD in nuclear import. These constructs contained the amino acid residues 48KKSYQDPEIIAHSRPRK64 that include both a putative bipartite and classical NLS. GFP-bipartite NLS constructs localized uniformly within nuclei but not as patches. As with previous work, removal of the DEED domain resulted in highly multinucleate cells. However as shown here, multinuclearity only occurred when the NLS was present allowing the protein to enter nuclei. Site-directed mutation analysis in which the NLS was changed to 48EF49 abolished the stability of the GFP fusion at the protein but not RNA level preventing subcellular analyses. Cells transfected with the 48EF49 construct exhibited slowed growth when compared to parental AX3 cells and other GFP-NumA1 deletion mutants. In addition to identifying an NLS that is sufficient for nuclear translocation of nucleomorphin and ruling out CaM-binding in this event, this work shows that the nuclear localization of NumA1 is crucial to its ability to regulate nuclear number in Dictyostelium.
Collapse
Affiliation(s)
- Michael A Myre
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ont., Canada
| | | |
Collapse
|
14
|
Myre MA, O'Day DH. Dictyostelium calcium-binding protein 4a interacts with nucleomorphin, a BRCT-domain protein that regulates nuclear number. Biochem Biophys Res Commun 2004; 322:665-71. [PMID: 15325281 DOI: 10.1016/j.bbrc.2004.07.168] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Indexed: 10/26/2022]
Abstract
Nucleomorphin from Dictyostelium discoideum is a nuclear calmodulin-binding protein that is a member of the BRCT-domain containing cell cycle checkpoint proteins. Two differentially expressed isoforms, NumA and NumB, share an extensive acidic domain (DEED) that when deleted produces highly multinucleated cells. We performed a yeast two-hybrid screen of a Dictyostelium cDNA library using NumA as bait. Here we show that nucleomorphin interacts with calcium-binding protein 4a (CBP4a) in a Ca(2+)-dependent manner. Further deletion analysis suggests this interaction requires residues found within the DEED domain. NumA and CBP4a mRNAs are expressed at the same stages of development. CBP4a belongs to a large family of Dictyostelium CBPs, for which no cellular or developmental functions had previously been determined. Since the interaction of CBP4a with nucleomorphin requires the DEED domain, this suggests that CBP4a may respond to Ca(2+)-signalling through modulating factors that might function in concert to regulate nuclear number.
Collapse
Affiliation(s)
- Michael A Myre
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ont., Canada
| | | |
Collapse
|