1
|
Geerts H, Roberts P, Spiros A. Exploring the relation between BOLD fMRI and cognitive performance using a computer-based quantitative systems pharmacology model: Applications to the COMTVAL158MET genotype and ketamine. Eur Neuropsychopharmacol 2021; 50:12-22. [PMID: 33951587 DOI: 10.1016/j.euroneuro.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/14/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
BOLD fMRI is increasingly used mostly in an observational way to probe the effect of genotypes or therapeutic intervention in normal and diseased subjects. We use a mechanism-based quantitative systems pharmacology computer model of a human cortical microcircuit, previously calibrated for the 2-back working memory paradigm, adding established biophysical principles, of glucose metabolism, oxygen consumption, neurovascular effects and the paramagnetic impact on blood oxygen levels to calculate a readout for the voxel-based BOLD fMRI signal. The objective was to study the effect of the Catechol-O-methyl Transferase Val158Met (COMT) genotype on performance and BOLD fMRI. While the simulation suggests that on average virtual COMTVV genotype subjects perform worse, subjects with lower GABA, lower 5-HT3 and higher 5-HT1A activation can improve cognitive performance to the level of COMTMM subjects but at the expense of higher BOLD fMRI signal. In a schizophrenia condition, increased NMDA, GABA tone and noise levels, and lower D1R activity can improve cognitive outcome with greater BOLD fMRI signal in COMT Val-carriers. We further generate hypotheses about why ketamine in healthy controls increases the BOLD fMRI signal but reduces cognitive performance. These simulations suggest a strong non-linear relationship between BOLD fMRI signal and cognitive performance. When validated, this mechanistic approach can be useful for moving beyond the descriptive nature of BOLD fMRI imaging and supporting the proper interpretation of imaging biomarkers in CNS disorders.
Collapse
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences, Hugo Geerts, 686 Westwind Dr, Berwyn, PA 19312, United States.
| | - Patrick Roberts
- In Silico Biosciences, Hugo Geerts, 686 Westwind Dr, Berwyn, PA 19312, United States
| | - Athan Spiros
- In Silico Biosciences, Hugo Geerts, 686 Westwind Dr, Berwyn, PA 19312, United States
| |
Collapse
|
2
|
Sellami M, Bragazzi NL. Nutrigenomics and Breast Cancer: State-of-Art, Future Perspectives and Insights for Prevention. Nutrients 2020; 12:nu12020512. [PMID: 32085420 PMCID: PMC7071273 DOI: 10.3390/nu12020512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Proper nutrition plays a major role in preventing diseases and, therefore, nutritional interventions constitute crucial strategies in the field of Public Health. Nutrigenomics and nutriproteomics are arising from the integration of nutritional, genomics and proteomics specialties in the era of postgenomics medicine. In particular, nutrigenomics and nutriproteomics focus on the interaction between nutrients and the human genome and proteome, respectively, providing insights into the role of diet in carcinogenesis. Further omics disciplines, like metabonomics, interactomics and microbiomics, are expected to provide a better understanding of nutrition and its underlying factors. These fields represent an unprecedented opportunity for the development of personalized diets in women at risk of developing breast cancer.
Collapse
Affiliation(s)
- Maha Sellami
- Sport Science Program (SSP), College of Arts and Sciences (CAS), Qatar University, Doha 2713, Qatar
- Correspondence: (M.S.); (N.L.B.)
| | - Nicola Luigi Bragazzi
- Postgraduate School of Public Health, Department of Health Sciences (DISSAL), University if Genoa, 16132 Genoa, Italy
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
- Correspondence: (M.S.); (N.L.B.)
| |
Collapse
|
3
|
Wen C, Wu L, Fu L, Wang B, Zhou H. Unifying mechanism in the initiation of breast cancer by metabolism of estrogen (Review). Mol Med Rep 2017. [PMID: 28627646 DOI: 10.3892/mmr.2017.6738] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excessive exposure to estrogen is associated with increased risk of breast cancer. The mechanisms of carcinogenesis in the breast caused by estrogen metabolism include formation of depurinating adducts which are released from DNA to generate apurinic sites, and production of reactive oxygen species (ROS). Excess ROS not only exerts genotoxicity by indirectly increasing genomic instability, but also stimulates progression of mammary carcinogenicity by inducing a redox‑associated signaling pathway. Estrogen metabolism enzymes serve an important role in estrogen metabolism. Alterations in the expression and activity of estrogen metabolism enzymes may influence estrogen metabolism homeostasis. The present review discusses the process of estrogen metabolism, the role of estrogen metabolites and ROS in breast carcinogenesis, and the effect of metabolism enzyme polymorphisms on generation of pro‑carcinogens and breast cancer susceptibility.
Collapse
Affiliation(s)
- Chunjie Wen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lanxiang Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lijuan Fu
- Institute of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bing Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Honghao Zhou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
4
|
Sak K. The Val158Met polymorphism in COMT gene and cancer risk: role of endogenous and exogenous catechols. Drug Metab Rev 2016; 49:56-83. [PMID: 27826992 DOI: 10.1080/03602532.2016.1258075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Catechol-O-methyltransferase, COMT, is an important phase II enzyme catalyzing the transfer of a methyl-group from S-adenosylmethionine to a catechol-containing substrate molecule. A genetic variant Val158Met in the COMT gene leads to a several-fold decrease in the enzymatic activity giving rise to the accumulation of potentially carcinogenic endogenous catechol estrogens and their reactive intermediates and increasing thus the risk of tumorigenesis. However, numerous association studies between the COMT genotype and susceptibility to various malignancies have shown inconsistent and controversial findings indicating that additional gene-gene and gene-environment interactions might be crucial in modulating the physiological role of the COMT. In this review article, the important contribution of dietary catechol-containing flavonoids to modification of the relationships between the COMT genotype and cancer risk is discussed. Whereas, the diverse anticancer activities of common phytochemicals, such as green tea polyphenols, quercetin, fisetin or luteolin, can be markedly changed (both decreased or increased) by the COMT-mediated O-methylation of these exogenous substrates, flavonoids can also behave as potent inhibitors of the COMT enzyme slowing detoxification of endogenous catechol estrogens. Such a many-featured functioning of the COMT and its complex regulation by several different genetic and environmental factors, including plant-based food ingredients, emphasizes the necessity to further stratify the association studies between the COMT genotype and tumor risk by consumption of catechol-containing dietary flavonoids. Currently, it can be only speculated that some of the possible associations might be masked by the regular intake of specific food polyphenols, taking effect in certain communities or populations.
Collapse
Affiliation(s)
- Katrin Sak
- a Department of Hematology and Oncology , Institute of Clinical Medicine, University of Tartu , Tartu , Estonia
| |
Collapse
|
5
|
Jatana N, Sharma A, Latha N. Pharmacophore modeling and virtual screening studies to design potential COMT inhibitors as new leads. J Mol Graph Model 2012; 39:145-64. [PMID: 23280413 DOI: 10.1016/j.jmgm.2012.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/15/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
Abstract
Catechol-O-methyltransferase (COMT) catalyzes the methylation of catecholamines, including neurotransmitters like dopamine, epinephrine and norepinephrine, leading to their degradation. COMT has been a subject of study for its implications in numerous neurological disorders like Parkinson's disease (PD), schizophrenia, and depression. The COMT gene is associated with many allelic variants, the Val108Met polymorphism being the most clinically significant. Availability of crystal structure of both 108V and 108M forms of human soluble-COMT (S-COMT) facilitated us to use structure-based virtual screening approach to obtain new hits by screening a library of CNS permeable compounds from ZINC database. In this study, E-pharmacophore was also used to generate pharmacophore models based on a series of known COMT inhibitors. A five-point pharmacophore model consisting of one hydrogen-bond acceptor (A), two hydrogen bond donors (D), and two aromatic rings (R) was generated for both the polymorphic forms of COMT. These models were then used for filtering ZINC-CNS permeable library to obtain new hits. Physicochemical properties were also calculated for all the hits obtained from both the approaches for favorable ADME properties. These identified hits maybe of interest for further structural optimization and biological evaluation assays.
Collapse
Affiliation(s)
- Nidhi Jatana
- Bioinformatics Infrastructure Facility, Sri Venkateswara College (University of Delhi), Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | | | | |
Collapse
|
6
|
Yager JD. Catechol- O-methyltransferase: characteristics, polymorphisms and role in breast cancer. ACTA ACUST UNITED AC 2012; 9:e41-e46. [PMID: 23734165 DOI: 10.1016/j.ddmec.2012.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Catechol estrogens are carcinogenic, probably because of their estrogenicity and potential for further oxidative metabolism to reactive quinones. Estrogenic quinones cause oxidative DNA damage as well as form mutagenic depurinating adenine and guanine adducts. O-Methylation by catechol-O-methyltransferase (COMT) blocks their estrogenicity and prevents their oxidation to quinones. A single gene encodes both membrane bound (MB) and soluble (S) forms of COMT. The COMT gene contains 34 single nucleotide polymorphisms (SNPs). The valine108 (S-COMT)/158 (MB-COMT) SNP encodes a low activity form of COMT and has been widely studied as a putative risk factor for breast cancer, with inconsistent results. Investigations of two other SNPs in the promoter of MB-COMT that may affect its expression have also provided mixed results. Future studies on the role of COMT in breast cancer should incorporate measurement of biomarkers that reflect COMT activity and its protective effects.
Collapse
Affiliation(s)
- James D Yager
- Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, United States
| |
Collapse
|
7
|
Spiros A, Geerts H. A quantitative way to estimate clinical off-target effects for human membrane brain targets in CNS research and development. J Exp Pharmacol 2012; 4:53-61. [PMID: 27186116 PMCID: PMC4863548 DOI: 10.2147/jep.s30808] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although many preclinical programs in central nervous system research and development intend to develop highly selective and potent molecules directed at the primary target, they often act upon other off-target receptors. The simple rule of taking the ratios of affinities for the candidate drug at the different receptors is flawed since the affinity of the endogenous ligand for that off-target receptor or drug exposure is not taken into account. We have developed a mathematical receptor competition model that takes into account the competition between active drug moiety and the endogenous neurotransmitter to better assess the off-target effects on postsynaptic receptor activation under the correct target exposure conditions. As an example, we investigate the possible functional effects of the weak off-target effects for dopamine-1 receptor (D1R) in a computer simulation of a dopaminergic cortical synapse that is calibrated using published fast-cyclic rodent voltammetry and human imaging data in subjects with different catechol-O-methyltransferase genotypes. We identify the conditions under which off-target effects at the D1R can lead to clinically detectable consequences on cognitive tests, such as the N-back working memory test. We also demonstrate that certain concentrations of dimebolin (Dimebon), a recently tested Alzheimer drug, can affect D1R activation resulting in clinically detectable cognitive decrease. This approach can be extended to other receptor systems and can improve the selection of clinical candidate compounds by potentially dialing-out harmful off-target effects or dialing-in beneficial off-target effects in a quantitative and controlled way.
Collapse
Affiliation(s)
| | - Hugo Geerts
- In Silico Biosciences, Berwyn, PA, USA; School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Naushad SM, Reddy CA, Rupasree Y, Pavani A, Digumarti RR, Gottumukkala SR, Kuppusamy P, Kutala VK. Cross-Talk Between One-Carbon Metabolism and Xenobiotic Metabolism: Implications on Oxidative DNA Damage and Susceptibility to Breast Cancer. Cell Biochem Biophys 2011; 61:715-23. [DOI: 10.1007/s12013-011-9245-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Ivanova TI, Kondrashova TV, Krikunova LI, Smirnova IA, Shentereva NI, Sychenkova NI, Rykova EV, Zharikova IA, Khorokhorina VA, Ryabchenko NI, Zamulaeva IA. Polymorphism of genes for catechol-O-methyltransferase (COMT) and hemochromatosis (HFE) in residents of radiocontaminated regions varying in chromosome aberration frequency. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350910060333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Geerts H. Mechanistic disease modeling as a useful tool for improving CNS drug research and development. Drug Dev Res 2010. [DOI: 10.1002/ddr.20403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences, Berwyn, Pennsylvania
- University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Rutherford K, Daggett V. Polymorphisms and disease: hotspots of inactivation in methyltransferases. Trends Biochem Sci 2010; 35:531-8. [PMID: 20382027 DOI: 10.1016/j.tibs.2010.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/10/2010] [Accepted: 03/10/2010] [Indexed: 01/13/2023]
Abstract
Methyltransferases catalyze the methylation processes essential for protein/DNA repair, transcriptional regulation, and drug metabolism in vivo. More than 500 human methyltransferase polymorphisms have been identified, many of which are linked to disease. We mapped all available coding polymorphisms of seven methyltransferases onto their structures to address their structural significance, and identified a polymorphic hotspot ∼20Å from the active site in four of the proteins. Molecular dynamics simulations of these proteins reveal a common mechanism of destabilization: the mutations alter important side-chain contacts within the polymorphic site that are propagated through the protein, thereby distorting the active site. We propose that this hotspot might have arisen to modulate enzymatic activity, with decreased activity actually conferring an advantage in three of the four methyltransferases.
Collapse
Affiliation(s)
- Karen Rutherford
- Department of Biochemistry, Box 355013, University of Washington, Seattle WA 98195-5013, USA
| | | |
Collapse
|
12
|
Rutherford K, Daggett V. A hotspot of inactivation: The A22S and V108M polymorphisms individually destabilize the active site structure of catechol O-methyltransferase. Biochemistry 2009; 48:6450-60. [PMID: 19435324 DOI: 10.1021/bi900174v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human catechol O-methyltransferase (COMT) contains three common polymorphisms (A22S, A52T, and V108M), two of which (A22S and V108M) render the protein susceptible to deactivation by temperature or oxidation. We have performed multiple molecular dynamics simulations of the wild-type, A22S, A52T, and V108M COMT proteins to explore the structural consequences of these mutations. In total, we have amassed more than 1.4 micros of simulation time, representing the largest set of simulations detailing the effects of polymorphisms on a protein system to date. The A52T mutation had no significant effect on COMT structure in accord with experiment, thereby serving as a good negative control for the simulation set. Residues 22 (alpha2) and 108 (alpha5) interact with each other throughout the simulations and are located in a polymorphic hotspot approximately 20 A from the active site. Introduction of either the larger Ser (22) or Met (108) tightens this interaction, pulling alpha2 and alpha5 toward each other and away from the protein core. The V108M polymorphism rearranges active-site residues in alpha5, beta3, and alpha6, increasing the S-adenosylmethionine site solvent exposure. The A22S mutation reorients alpha2, moving critical catechol-binding residues away from the substrate-binding pocket. The A22S and V108M polymorphisms evolved independently in Northern European and Asian populations. While the decreased activities of both A22S and V108M COMT are associated with an increased risk for schizophrenia, the V108M-induced destabilization is also linked with improved cognitive function. These results suggest that polymorphisms within this hotspot may have evolved to regulate COMT activity and that heterozygosity for either mutation may be advantageous.
Collapse
Affiliation(s)
- Karen Rutherford
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-5013, USA
| | | |
Collapse
|
13
|
Rutherford K, Alphandéry E, McMillan A, Daggett V, Parson W. The V108M mutation decreases the structural stability of catechol O-methyltransferase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1098-105. [DOI: 10.1016/j.bbapap.2008.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/01/2008] [Accepted: 04/03/2008] [Indexed: 12/31/2022]
|