1
|
Shevtsov M, Bobkov D, Yudintceva N, Likhomanova R, Kim A, Fedorov E, Fedorov V, Mikhailova N, Oganesyan E, Shabelnikov S, Rozanov O, Garaev T, Aksenov N, Shatrova A, Ten A, Nechaeva A, Goncharova D, Ziganshin R, Lukacheva A, Sitovskaya D, Ulitin A, Pitkin E, Samochernykh K, Shlyakhto E, Combs SE. Membrane-bound Heat Shock Protein mHsp70 Is Required for Migration and Invasion of Brain Tumors. CANCER RESEARCH COMMUNICATIONS 2024; 4:2025-2044. [PMID: 39015084 PMCID: PMC11317918 DOI: 10.1158/2767-9764.crc-24-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Molecular chaperones, especially 70 kDa heat shock protein, in addition to their intracellular localization in cancer cells, can be exposed on the surface of the plasma membrane. We report that the membrane-associated chaperone mHsp70 of malignant brain tumors is required for high migratory and invasive activity of cancer cells. Live-cell inverted confocal microscopy of tumor samples from adult (n = 23) and pediatric (n = 9) neurooncologic patients showed pronounced protein expression on the membrane, especially in the perifocal zone. Mass spectrometry analysis of lipid rafts isolated from tumor cells confirmed the presence of the protein in the chaperone cluster (including representatives of other families, such as Hsp70, Hsc70, Hsp105, and Hsp90), which in turn, during interactome analysis, was associated with proteins involved in cell migration (e.g., Rac1, RhoC, and myosin-9). The use of small-molecule inhibitors of HSP70 (PES and JG98) led to a substantial decrease in the invasive potential of cells isolated from a tumor sample of patients, which indicates the role of the chaperone in invasion. Moreover, the use of HSP70 inhibitors in animal models of orthotopic brain tumors significantly delayed tumor progression, which was accompanied by an increase in overall survival. Data demonstrate that chaperone inhibitors, particularly JG98, disrupt the function of mHsp70, thereby providing an opportunity to better understand the diverse functions of this protein and offer aid in the development of novel cancer therapies. SIGNIFICANCE Membrane-bound mHsp70 is required for brain tumor cell migration and invasion and therefore could be employed as a target for anticancer therapies.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok, Russia.
| | - Danila Bobkov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russia.
| | - Natalia Yudintceva
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Ruslana Likhomanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Alexander Kim
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Evegeniy Fedorov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Viacheslav Fedorov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Natalia Mikhailova
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Elena Oganesyan
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Sergey Shabelnikov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Oleg Rozanov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Timur Garaev
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Nikolay Aksenov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Alla Shatrova
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Artem Ten
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok, Russia.
| | - Anastasiya Nechaeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Daria Goncharova
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Rustam Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.
| | - Anastasiya Lukacheva
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Daria Sitovskaya
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Alexey Ulitin
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Emil Pitkin
- Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Konstantin Samochernykh
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Evgeny Shlyakhto
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Stephanie E. Combs
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
2
|
Makky A, Czajor J, Konovalov O, Zhakhov A, Ischenko A, Behl A, Singh S, Abuillan W, Shevtsov M. X-ray reflectivity study of the heat shock protein Hsp70 interaction with an artificial cell membrane model. Sci Rep 2023; 13:19157. [PMID: 37932378 PMCID: PMC10628213 DOI: 10.1038/s41598-023-46066-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
Membrane-bound heat shock protein 70 (Hsp70) apart from its intracellular localization was shown to be specifically expressed on the plasma membrane surface of tumor but not normal cells. Although the association of Hsp70 with lipid membranes is well documented the exact mechanisms for chaperone membrane anchoring have not been fully elucidated. Herein, we addressed the question of how Hsp70 interacts with negatively charged phospholipids in artificial lipid compositions employing the X-ray reflectivity (XRR) studies. In a first step, the interactions between dioleoylphosphatidylcholine (DOPC) in the presence or absence of dioleoylphosphatidylserine (DOPS) and Hsp70 had been assessed using Quartz crystal microbalance measurements, suggesting that Hsp70 adsorbs to the surface of DOPC/DOPS bilayer. Atomic force microscopy (AFM) imaging demonstrated that the presence of DOPS is required for stabilization of the lipid bilayer. The interaction of Hsp70 with DOPC/DOPS lipid compositions was further quantitatively determined by high energy X-ray reflectivity. A systematic characterization of the chaperone-lipid membrane interactions by various techniques revealed that artificial membranes can be stabilized by the electrostatic interaction of anionic DOPS lipids with Hsp70.
Collapse
Affiliation(s)
- Ali Makky
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Julian Czajor
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, 69120, Heidelberg, Germany
| | - Oleg Konovalov
- European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France
| | - Alexander Zhakhov
- Saint-Petersburg Pasteur Institute, Mira Str. 14, 197101, St. Petersburg, Russia
| | - Alexander Ischenko
- Saint-Petersburg Pasteur Institute, Mira Str. 14, 197101, St. Petersburg, Russia
| | - Ankita Behl
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Wasim Abuillan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, 69120, Heidelberg, Germany.
| | - Maxim Shevtsov
- Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia.
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341, St. Petersburg, Russia.
| |
Collapse
|
3
|
Barboza BR, Thomaz SMDO, Junior ADC, Espreafico EM, Miyamoto JG, Tashima AK, Camacho MF, Zelanis A, Roque-Barreira MC, da Silva TA. ArtinM Cytotoxicity in B Cells Derived from Non-Hodgkin's Lymphoma Depends on Syk and Src Family Kinases. Int J Mol Sci 2023; 24:ijms24021075. [PMID: 36674590 PMCID: PMC9863955 DOI: 10.3390/ijms24021075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Receptors on the immune cell surface have a variety of glycans that may account for the immunomodulation induced by lectins, which have a carbohydrate recognition domain (CRD) that binds to monosaccharides or oligosaccharides in a specific manner. ArtinM, a D-mannose-binding lectin obtained from Artocarpus heterophyllus, has affinity for the N-glycans core. Immunomodulation by ArtinM toward the Th1 phenotype occurs via its interaction with TLR2/CD14 N-glycans on antigen-presenting cells, as well as recognition of CD3γ N-glycans on murine CD4+ and CD8+ T cells. ArtinM exerts a cytotoxic effect on Jurkat human leukemic T-cell line and human myeloid leukemia cell line (NB4). The current study evaluated the effects of ArtinM on murine and human B cells derived from non-Hodgkin’s lymphoma. We found that murine B cells are recognized by ArtinM via the CRD, and the ArtinM stimulus did not augment the proliferation rate or production of IL-2. However, murine B cell incubation with ArtinM augmented the rate of apoptosis, and this cytotoxic effect of ArtinM was also seen in human B cell-lines sourced from non-Hodgkin’s lymphoma Raji cell line. This cytotoxic effect was inhibited by the phosphatase activity of CD45 on Lck, and the protein kinases of the Src family contribute to cell death triggered by ArtinM.
Collapse
Affiliation(s)
- Bruno Rafael Barboza
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
| | - Sandra Maria de Oliveira Thomaz
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
| | - Airton de Carvalho Junior
- Laboratory of Cell and Molecular Biology of Cancer, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
| | - Enilza Maria Espreafico
- Laboratory of Cell and Molecular Biology of Cancer, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
| | - Jackson Gabriel Miyamoto
- Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), Sao Paulo 04021-001, SP, Brazil
| | - Alexandre Keiji Tashima
- Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), Sao Paulo 04021-001, SP, Brazil
| | - Maurício Frota Camacho
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo (ICT-UNIFESP), São José dos Campos 04021-001, SP, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo (ICT-UNIFESP), São José dos Campos 04021-001, SP, Brazil
| | - Maria Cristina Roque-Barreira
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
| | - Thiago Aparecido da Silva
- Laboratory of Immunotherapy of Invasive Fungal Infections, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
- Correspondence: or ; Tel.: +55-16-3315-3049
| |
Collapse
|
4
|
Membrane-Associated Heat Shock Proteins in Oncology: From Basic Research to New Theranostic Targets. Cells 2020; 9:cells9051263. [PMID: 32443761 PMCID: PMC7290778 DOI: 10.3390/cells9051263] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Heat shock proteins (HSPs) constitute a large family of conserved proteins acting as molecular chaperones that play a key role in intracellular protein homeostasis, regulation of apoptosis, and protection from various stress factors (including hypoxia, thermal stress, oxidative stress). Apart from their intracellular localization, members of different HSP families such as small HSPs, HSP40, HSP60, HSP70 and HSP90 have been found to be localized on the plasma membrane of malignantly transformed cells. In the current article, the role of membrane-associated molecular chaperones in normal and tumor cells is comprehensively reviewed with implications of these proteins as plausible targets for cancer therapy and diagnostics.
Collapse
|
5
|
Shevtsov M, Stangl S, Nikolaev B, Yakovleva L, Marchenko Y, Tagaeva R, Sievert W, Pitkin E, Mazur A, Tolstoy P, Galibin O, Ryzhov V, Steiger K, Smirnov O, Khachatryan W, Chester K, Multhoff G. Granzyme B Functionalized Nanoparticles Targeting Membrane Hsp70-Positive Tumors for Multimodal Cancer Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900205. [PMID: 30828968 DOI: 10.1002/smll.201900205] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/11/2019] [Indexed: 05/20/2023]
Abstract
Functionalized superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as potential clinical tools for cancer theranostics. Membrane-bound 70 kDa heat shock protein (mHsp70) is ubiquitously expressed on the cell membrane of various tumor types but not normal cells and therefore provides a tumor-specific target. The serine protease granzyme B (GrB) that is produced as an effector molecule by activated T and NK cells has been shown to specifically target mHsp70 on tumor cells. Following binding to Hsp70, GrB is rapidly internalized into tumor cells. Herein, it is demonstrated that GrB functionalized SPIONs act as a contrast enhancement agent for magnetic resonance imaging and induce specific tumor cell apoptosis. Combinatorial regimens employing stereotactic radiotherapy and/or magnetic targeting are found to further enhance the therapeutic efficacy of GrB-SPIONs in different tumor mouse models.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Center for Translational Cancer Research Technische Universität München (TranslaTUM), Radiation Immuno-Oncology group, Klinikum rechts der Isar, Einsteinstr. 25, 81675, Munich, Germany
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky ave., 4, St. Petersburg, 194064, Russia
- First Pavlov State Medical University of St. Petersburg, L'va Tolstogo str. 6/8, St. Petersburg, 197022, Russia
- Almazov National Medical Research Centre, Russian Polenov Neurosurgical Institute, Mayakovskogo str. 12, St. Petersburg, 191104, Russia
| | - Stefan Stangl
- Center for Translational Cancer Research Technische Universität München (TranslaTUM), Radiation Immuno-Oncology group, Klinikum rechts der Isar, Einsteinstr. 25, 81675, Munich, Germany
| | - Boris Nikolaev
- Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg, 191014, Russia
| | - Ludmila Yakovleva
- Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg, 191014, Russia
| | - Yaroslav Marchenko
- Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg, 191014, Russia
| | - Ruslana Tagaeva
- Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg, 191014, Russia
| | - Wolfgang Sievert
- Center for Translational Cancer Research Technische Universität München (TranslaTUM), Radiation Immuno-Oncology group, Klinikum rechts der Isar, Einsteinstr. 25, 81675, Munich, Germany
| | - Emil Pitkin
- Wharton School, University of Pennsylvania, Walnut Street 3730, Philadelphia, PA, 19104, USA
| | - Anton Mazur
- Saint Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, 199034, Russia
| | - Peter Tolstoy
- Saint Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, 199034, Russia
| | - Oleg Galibin
- First Pavlov State Medical University of St. Petersburg, L'va Tolstogo str. 6/8, St. Petersburg, 197022, Russia
| | - Vyacheslav Ryzhov
- NRC "Kurchatov Institute", Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia
| | - Katja Steiger
- Institute of Pathology, Technische Universität München, Trogerstr. 18, 81675, Munich, Germany
| | - Oleg Smirnov
- NRC "Kurchatov Institute", Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia
| | - William Khachatryan
- Almazov National Medical Research Centre, Russian Polenov Neurosurgical Institute, Mayakovskogo str. 12, St. Petersburg, 191104, Russia
| | - Kerry Chester
- UCL Cancer Institute, University College London, 72 Huntley Street, WC1E 6DD, London, UK
| | - Gabriele Multhoff
- Center for Translational Cancer Research Technische Universität München (TranslaTUM), Radiation Immuno-Oncology group, Klinikum rechts der Isar, Einsteinstr. 25, 81675, Munich, Germany
| |
Collapse
|
6
|
Barreca MM, Spinello W, Cavalieri V, Turturici G, Sconzo G, Kaur P, Tinnirello R, Asea AAA, Geraci F. Extracellular Hsp70 Enhances Mesoangioblast Migration via an Autocrine Signaling Pathway. J Cell Physiol 2017; 232:1845-1861. [PMID: 27925208 DOI: 10.1002/jcp.25722] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022]
Abstract
Mouse mesoangioblasts are vessel-associated progenitor stem cells endowed with the ability of multipotent mesoderm differentiation. Therefore, they represent a promising tool in the regeneration of injured tissues. Several studies have demonstrated that homing of mesoangioblasts into blood and injured tissues are mainly controlled by cytokines/chemokines and other inflammatory factors. However, little is known about the molecular mechanisms regulating their ability to traverse the extracellular matrix (ECM). Here, we demonstrate that membrane vesicles released by mesoangioblasts contain Hsp70, and that the released Hsp70 is able to interact by an autocrine mechanism with Toll-like receptor 4 (TLR4) and CD91 to stimulate migration. We further demonstrate that Hsp70 has a positive role in regulating matrix metalloproteinase 2 (MMP2) and MMP9 expression and that MMP2 has a more pronounced effect on cell migration, as compared to MMP9. In addition, the analysis of the intracellular pathways implicated in Hsp70 regulated signal transduction showed the involvement of both PI3K/AKT and NF-κB. Taken together, our findings present a paradigm shift in our understanding of the molecular mechanisms that regulate mesoangioblast stem cells ability to traverse the extracellular matrix (ECM). J. Cell. Physiol. 232: 1845-1861, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria M Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Walter Spinello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Giuseppina Turturici
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Gabriella Sconzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Punit Kaur
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia
| | - Rosaria Tinnirello
- Biomedicine and Molecular Immunology Institute, National Center of Research, Palermo, Italy
| | - Alexzander A A Asea
- Department of Neurology and the Deanship for Scientific Research, University of Dammam, Dammam, Saudi Arabia
| | - Fabiana Geraci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| |
Collapse
|
7
|
Liao JH, Chien CTH, Wu HY, Huang KF, Wang I, Ho MR, Tu IF, Lee IM, Li W, Shih YL, Wu CY, Lukyanov PA, Hsu STD, Wu SH. A Multivalent Marine Lectin from Crenomytilus grayanus Possesses Anti-cancer Activity through Recognizing Globotriose Gb3. J Am Chem Soc 2016; 138:4787-95. [PMID: 27010847 DOI: 10.1021/jacs.6b00111] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this study, we report the structure and function of a lectin from the sea mollusk Crenomytilus grayanus collected from the sublittoral zone of Peter the Great Bay of the Sea of Japan. The crystal structure of C. grayanus lectin (CGL) was solved to a resolution of 1.08 Å, revealing a β-trefoil fold that dimerizes into a dumbbell-shaped quaternary structure. Analysis of the crystal CGL structures bound to galactose, galactosamine, and globotriose Gb3 indicated that each CGL can bind three ligands through a carbohydrate-binding motif involving an extensive histidine- and water-mediated hydrogen bond network. CGL binding to Gb3 is further enhanced by additional side-chain-mediated hydrogen bonds in each of the three ligand-binding sites. NMR titrations revealed that the three binding sites have distinct microscopic affinities toward galactose and galactosamine. Cell viability assays showed that CGL recognizes Gb3 on the surface of breast cancer cells, leading to cell death. Our findings suggest the use of this lectin in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | - Chih-Ta Henry Chien
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan.,Department of Chemistry, National Taiwan University , Taipei 106, Taiwan
| | - Han-Ying Wu
- Institute of Biological Chemistry, Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica , Taipei 115, Taiwan.,Department of Chemistry, National Tsing Hua University , Hsinchu 30043, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | - Iren Wang
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | - I-Fan Tu
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | - I-Ming Lee
- Institute of Biochemical Science, National Taiwan University , Taipei 106, Taiwan
| | - Wei Li
- Key Laboratory of Aquatic Products Processing and Utilization of Liaoning Province, Dalian Ocean University , Dalian 116023, P.R. China
| | - Yu-Ling Shih
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica , Taipei 11529, Taiwan
| | - Pavel A Lukyanov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences , Vladivostok 690022, Russian Federation
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan.,Institute of Biological Chemistry, Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemical Science, National Taiwan University , Taipei 106, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan.,Department of Chemistry, National Taiwan University , Taipei 106, Taiwan.,Institute of Biological Chemistry, Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemical Science, National Taiwan University , Taipei 106, Taiwan
| |
Collapse
|
8
|
Leczyme: a new candidate drug for cancer therapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:421415. [PMID: 24864241 PMCID: PMC4017849 DOI: 10.1155/2014/421415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/27/2014] [Indexed: 11/18/2022]
Abstract
Sialic acid-binding lectin (SBL), isolated from oocytes of Rana catesbeiana, is leczyme and has both lectin and ribonuclease (RNase) activities. A remarkable antitumor effect of SBL has also been reported. SBL agglutinates various kinds of tumor cells but not normal cells. SBL agglutination activity is not affected by mono- or oligosaccharides. However, SBL-induced agglutination and antitumor effects are inhibited by sialomucin but not asialomucin. In addition, SBL has very little effect on sialidase-treated cells. SBL causes cancer-selective induction of apoptosis by multiple signaling pathways, which target RNA. Synergistic antitumor effects with other molecules, such as tumor necrosis factor-related apoptosis ligand (TRAIL) and interferon-γ (IFN-γ), have been reported. Thus, SBL may be a novel candidate molecule for anticancer drug development. Sialoglycoconjugates on the tumor cell surface may be associated with lectin activity and antitumor effects of SBL. We review the properties of SBL, particularly its lectin, RNase, and antitumor activities, and comprehensively examine the potential application of SBL for clinical purposes.
Collapse
|
9
|
Exogenous expression of marine lectins DlFBL and SpRBL induces cancer cell apoptosis possibly through PRMT5-E2F-1 pathway. Sci Rep 2014; 4:4505. [PMID: 24675921 PMCID: PMC3968455 DOI: 10.1038/srep04505] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/04/2014] [Indexed: 02/03/2023] Open
Abstract
Lectins are widely existed in marine bioresources, and some purified marine lectins were found toxic to cancer cells. In this report, genes encoding Dicentrarchus labrax fucose-binding lectin (DlFBL) and Strongylocentrotus purpuratus rhamnose-binding lectin (SpRBL) were inserted into an adenovirus vector to form Ad.FLAG-DlFBL and Ad.FLAG-SpRBL, which elicited significant in vitro suppressive effect on a variety of cancer cells. Anti-apoptosis factors Bcl-2 and XIAP were determined to be downregulated by Ad.FLAG-DlFBL and Ad.FLAG-SpRBL. Subcellular localization studies showed that DlFBL but not SpRBL widely distributed in membrane systems. Both DlFBL and SpRBL were shown associated with protein arginine methyltransferase 5 (PRMT5), and PRMT5-E2F-1 pathway was suggested to be responsible for the DlFBL and SpRBL induced apoptosis. Further investigations revealed that PRMT5 acted as a common binding target for various exogenous lectin and non-lectin proteins, suggesting a role of PRMT5 as a barrier for foreign gene invasion. The cellular response to exogenous lectins may provide insights into a novel way for cancer gene therapy.
Collapse
|
10
|
Sialyl-glycoconjugates in cholesterol-rich microdomains of P388 cells are the triggers for apoptosis induced by Rana catesbeiana oocyte ribonuclease. Glycoconj J 2013; 31:171-84. [PMID: 24271942 DOI: 10.1007/s10719-013-9513-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 10/21/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022]
Abstract
SBL/RC-RNase was originally isolated from frog (Rana catesbeiana) oocytes and purified as a novel sialic acid-binding lectin (SBL) that displayed strong anti-cancer activity. SBL was later shown to be identical to a ribonuclease (RC-RNase) from oocytes of the same species. The administration of SBL/RC-RNase induced apoptosis (with nuclear condensation and DNA fragmentation) in mouse leukemia P388 cells but did not kill umbilical vein endothelial or fibroblast cells derived from normal tissues. The cytotoxic activity of SBL/RC-RNase was inhibited by desialylation of P388 cells and/or the co-presence of free bovine submaxillary mucin. FACS analysis showed that SBL/RC-RNase was incorporated into cells after attachment to cholesterol-rich microdomains. Addition of the cholesterol remover methyl-β-cyclodextrin reduced SBL/RC-RNase-induced apoptosis. Apoptosis occurred through the caspase-3 pathway following activation of caspase-8 by SBL/RC-RNase. A heat shock cognate protein (Hsc70) and a heat shock protein (Hsp70) (each 70 kDa) on the cell membrane were shown to bind to SBL/RC-RNase by mass spectrometric and flow cytometric analyses. Quercetin, an inhibitor of Hsc70 and Hsp70, significantly reduced SBL/RC-RNase-induced apoptosis. Taken together, our findings suggest that sialyl-glycoconjugates present in cholesterol-rich microdomains form complexes with Hsc70 or Hsp70 that act as triggers for SBL/RC-RNase to induce apoptosis through a pathway involving the activation of caspase-3 and caspase-8.
Collapse
|
11
|
Tatsuta T, Hosono M, Ogawa Y, Inage K, Sugawara S, Nitta K. Downregulation of Hsp70 inhibits apoptosis induced by sialic acid-binding lectin (leczyme). Oncol Rep 2013; 31:13-8. [PMID: 24173532 PMCID: PMC3868503 DOI: 10.3892/or.2013.2814] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/23/2013] [Indexed: 11/30/2022] Open
Abstract
Heat shock proteins (Hsps) are molecular chaperones that maintain homeostasis of organisms. In regards to the Hsps, many studies have investigated the structure, expression, localization and functions of Hsp70 and Hsc70 including expression in the glycosphingolipid-enriched microdomain (GEM) on the cell surface and involvement in cell death. Sialic acid-binding lectin (SBL) isolated from oocytes of Rana catesbeiana is a multifunctional protein which has lectin activity, ribonuclease activity and antitumor activity. SBL has potential as a new type of anticancer drug, since it causes cancer-selective induction of apoptosis by multiple signaling pathways in which RNA is its target; and the participation of the mitochondrial pathway and the endoplasmic reticulum (ER) stress-mediated pathway has been suggested. It has also been suggested that receptor(s) for SBL (SBLR) may exist in the GEM on the cell surface. In the present study, we studied the possible involvement of Hsp70 and Hsc70 in SBL-induced apoptosis. We showed that Hsp70 and Hsc70 were expressed on the P388 cell surface similar to SBLR, and their distribution in cells dramatically changed immediately prior to the execution of apoptosis following stimulation of SBL. Functional study of Hsp70 revealed that decreased expression of Hsp70 diminished the apoptosis induced by SBL. It is suggested that Hsp70 participates in the antitumor effect of SBL.
Collapse
Affiliation(s)
- Takeo Tatsuta
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai 981-8558, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Hajj GNM, Arantes CP, Dias MVS, Roffé M, Costa-Silva B, Lopes MH, Porto-Carreiro I, Rabachini T, Lima FR, Beraldo FH, Prado MMA, Linden R, Martins VR. The unconventional secretion of stress-inducible protein 1 by a heterogeneous population of extracellular vesicles. Cell Mol Life Sci 2013; 70:3211-27. [PMID: 23543276 PMCID: PMC11113396 DOI: 10.1007/s00018-013-1328-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 01/03/2023]
Abstract
The co-chaperone stress-inducible protein 1 (STI1) is released by astrocytes, and has important neurotrophic properties upon binding to prion protein (PrP(C)). However, STI1 lacks a signal peptide and pharmacological approaches pointed that it does not follow a classical secretion mechanism. Ultracentrifugation, size exclusion chromatography, electron microscopy, vesicle labeling, and particle tracking analysis were used to identify three major types of extracellular vesicles (EVs) released from astrocytes with sizes ranging from 20-50, 100-200, and 300-400 nm. These EVs carry STI1 and present many exosomal markers, even though only a subpopulation had the typical exosomal morphology. The only protein, from those evaluated here, present exclusively in vesicles that have exosomal morphology was PrP(C). STI1 partially co-localized with Rab5 and Rab7 in endosomal compartments, and a dominant-negative for vacuolar protein sorting 4A (VPS4A), required for formation of multivesicular bodies (MVBs), impaired EV and STI1 release. Flow cytometry and PK digestion demonstrated that STI1 localized to the outer leaflet of EVs, and its association with EVs greatly increased STI1 activity upon PrP(C)-dependent neuronal signaling. These results indicate that astrocytes secrete a diverse population of EVs derived from MVBs that contain STI1 and suggest that the interaction between EVs and neuronal surface components enhances STI1-PrP(C) signaling.
Collapse
Affiliation(s)
- Glaucia N. M. Hajj
- International Research Center, A.C. Camargo Hospital, Rua Taguá 540, São Paulo, 01508-010 Brazil
- National Institute for Translational Neuroscience and National Institute of Oncogenomics, São Paulo, Brazil
| | - Camila P. Arantes
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| | - Marcos Vinicios Salles Dias
- International Research Center, A.C. Camargo Hospital, Rua Taguá 540, São Paulo, 01508-010 Brazil
- National Institute for Translational Neuroscience and National Institute of Oncogenomics, São Paulo, Brazil
| | - Martín Roffé
- International Research Center, A.C. Camargo Hospital, Rua Taguá 540, São Paulo, 01508-010 Brazil
- National Institute for Translational Neuroscience and National Institute of Oncogenomics, São Paulo, Brazil
| | - Bruno Costa-Silva
- International Research Center, A.C. Camargo Hospital, Rua Taguá 540, São Paulo, 01508-010 Brazil
- National Institute for Translational Neuroscience and National Institute of Oncogenomics, São Paulo, Brazil
| | - Marilene H. Lopes
- Department of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Isabel Porto-Carreiro
- Instituto de Biofisica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Flávia R. Lima
- Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávio H. Beraldo
- Department of Anatomy and Cell Biology and Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, London, Canada
| | - Marco M. A. Prado
- Department of Anatomy and Cell Biology and Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, London, Canada
| | - Rafael Linden
- Instituto de Biofisica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vilma R. Martins
- International Research Center, A.C. Camargo Hospital, Rua Taguá 540, São Paulo, 01508-010 Brazil
- National Institute for Translational Neuroscience and National Institute of Oncogenomics, São Paulo, Brazil
| |
Collapse
|
13
|
Abstract
Inhibiting the growth of tumor vasculature represents one of the relevant strategies against tumor progression. Between all the different pro-angiogenic molecular targets, plasma membrane glycosphingolipids have been under-investigated. In this present study, we explore the anti-angiogenic therapeutic advantage of a tumor immunotherapy targeting the globotriaosylceramide Gb3. In this purpose, a monoclonal antibody against Gb3, named 3E2 was developed and characterized. We first demonstrate that Gb3 is over-expressed in proliferative endothelial cells relative to quiescent cells. Then, we demonstrate that 3E2 inhibits endothelial cell proliferation in vitro by slowing endothelial cell proliferation and by increasing mitosis duration. Antibody 3E2 is further effective in inhibiting ex vivo angiogenesis in aorta ring assays. Moreover, 3E2 treatment inhibits NXS2 neuroblastoma development and liver metastases spreading in A/J mice. Immunohistology examination of the NXS2 metastases shows that only endothelial cells, but not cancer cells express Gb3. Finally, 3E2 treatment diminishes tumor vessels density, proving a specific therapeutic action of our monoclonal antibody to tumor vasculature. Our study demonstrates that Gb3 is a viable alternative target for immunotherapy and angiogenesis inhibition.
Collapse
|
14
|
Vasta GR, Nita-Lazar M, Giomarelli B, Ahmed H, Du S, Cammarata M, Parrinello N, Bianchet MA, Amzel LM. Structural and functional diversity of the lectin repertoire in teleost fish: relevance to innate and adaptive immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1388-99. [PMID: 21896283 PMCID: PMC3429948 DOI: 10.1016/j.dci.2011.08.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 07/28/2011] [Accepted: 08/23/2011] [Indexed: 05/11/2023]
Abstract
Protein-carbohydrate interactions mediated by lectins have been recognized as key components of innate immunity in vertebrates and invertebrates, not only for recognition of potential pathogens, but also for participating in downstream effector functions, such as their agglutination, immobilization, and complement-mediated opsonization and killing. More recently, lectins have been identified as critical regulators of mammalian adaptive immune responses. Fish are endowed with virtually all components of the mammalian adaptive immunity, and are equipped with a complex lectin repertoire. In this review, we discuss evidence suggesting that: (a) lectin repertoires in teleost fish are highly diversified, and include not only representatives of the lectin families described in mammals, but also members of lectin families described for the first time in fish species; (b) the tissue-specific expression and localization of the diverse lectin repertoires and their molecular partners is consistent with their distinct biological roles in innate and adaptive immunity; (c) although some lectins may bind endogenous ligands, others bind sugars on the surface of potential pathogens; (d) in addition to pathogen recognition and opsonization, some lectins display additional effector roles, such as complement activation and regulation of immune functions; (e) some lectins that recognize exogenous ligands mediate processes unrelated to immunity: they may act as anti-freeze proteins or prevent polyspermia during fertilization.
Collapse
Affiliation(s)
- Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Program in the Biology of Model Systems, Baltimore, MD 21202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kawsar SMA, Matsumoto R, Fujii Y, Matsuoka H, Masuda N, Chihiro I, Yasumitsu H, Kanaly RA, Sugawara S, Hosono M, Nitta K, Ishizaki N, Dogasaki C, Hamako J, Matsui T, Ozeki Y. Cytotoxicity and Glycan-Binding Profile of a d-Galactose-Binding Lectin from the Eggs of a Japanese Sea Hare (Aplysia kurodai). Protein J 2011; 30:509-19. [DOI: 10.1007/s10930-011-9356-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
De Maio A. Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: a form of communication during injury, infection, and cell damage. It is never known how far a controversial finding will go! Dedicated to Ferruccio Ritossa. Cell Stress Chaperones 2011; 16:235-49. [PMID: 20963644 PMCID: PMC3077223 DOI: 10.1007/s12192-010-0236-4] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 12/27/2022] Open
Abstract
Heat shock proteins (hsp) have been found to play a fundamental role in the recovery from multiple stress conditions and to offer protection from subsequent insults. The function of hsp during stress goes beyond their intracellular localization and chaperone role as they have been detected outside cells activating signaling pathways. Extracellular hsp are likely to act as indicators of the stress conditions, priming other cells, particularly of the immune system, to avoid the propagation of the insult. Some extracellular hsp, for instance Hsp70, are associated with export vesicles, displaying a robust activation of macrophages. We have coined the term Stress Observation System (SOS) for the mechanism for sensing extracellular hsp, which we propose is a form of cellular communication during stress conditions. An enigmatic and still poorly understood process is the mechanism for the release of hsp, which do not contain any consensus secretory signal. The export of hsp appears to be a very complex phenomenon encompassing different alternative pathways. Moreover, extracellular hsp may not come in a single flavor, but rather in a variety of physical conditions. This review addresses some of our current knowledge about the release and function of extracellular hsp, in particular those associated with vesicles.
Collapse
Affiliation(s)
- Antonio De Maio
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0739, USA.
| |
Collapse
|
17
|
Targeting membrane heat-shock protein 70 (Hsp70) on tumors by cmHsp70.1 antibody. Proc Natl Acad Sci U S A 2010; 108:733-8. [PMID: 21187371 DOI: 10.1073/pnas.1016065108] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Immunization of mice with a 14-mer peptide TKDNNLLGRFELSG, termed "TKD," comprising amino acids 450-461 (aa(450-461)) in the C terminus of inducible Hsp70, resulted in the generation of an IgG1 mouse mAb cmHsp70.1. The epitope recognized by cmHsp70.1 mAb, which has been confirmed to be located in the TKD sequence by SPOT analysis, is frequently detectable on the cell surface of human and mouse tumors, but not on isogenic cells and normal tissues, and membrane Hsp70 might thus serve as a tumor-specific target structure. As shown for human tumors, Hsp70 is associated with cholesterol-rich microdomains in the plasma membrane of mouse tumors. Herein, we show that the cmHsp70.1 mAb can selectively induce antibody-dependent cellular cytotoxicity (ADCC) of membrane Hsp70(+) mouse tumor cells by unstimulated mouse spleen cells. Tumor killing could be further enhanced by activating the effector cells with TKD and IL-2. Three consecutive injections of the cmHsp70.1 mAb into mice bearing CT26 tumors significantly inhibited tumor growth and enhanced the overall survival. These effects were associated with infiltrations of NK cells, macrophages, and granulocytes. The Hsp70 specificity of the ADCC response was confirmed by preventing the antitumor response in tumor-bearing mice by coinjecting the cognate TKD peptide with the cmHsp70.1 mAb, and by blocking the binding of cmHsp70.1 mAb to CT26 tumor cells using either TKD peptide or the C-terminal substrate-binding domain of Hsp70.
Collapse
|
18
|
Watanabe K, Tachibana M, Kim S, Watarai M. Participation of ezrin in bacterial uptake by trophoblast giant cells. Reprod Biol Endocrinol 2009; 7:95. [PMID: 19737422 PMCID: PMC2748081 DOI: 10.1186/1477-7827-7-95] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 09/09/2009] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Trophoblast giant (TG) cells are involved in systematic removal of bacterial pathogens from the maternal-fetal interface of the placenta. In particular, TG cells have the ability to take up extracellular antigens by active phagocytosis induced by interferon-gamma (IFN-gamma). We previously reported that heat shock cognate protein 70 (Hsc70) present on the surface of TG cells mediated the uptake of Brucella abortus. However, the mechanism of bacterial uptake by TG cells is not completely understood. Here we identified ezrin, a member of ezrin-radixin-moesin (ERM) protein family, as a molecule associated with Hsc70. METHODS Mouse TG cells were employed in all experiments, and B. abortus was used as the bacterial antigen. Confirmation of the binding capacity of ERM protein was assessed by pull-down assay and ELISA using recombinant Hsc70 and ERM proteins. Ezrin was depleted using siRNA and the depletion examined by immunoblotting or immunofluorescence staining. RESULTS The expression level of ezrin was higher in TG cells than in trophoblast stem (TS) cells, and ezrin knockdown TG cells showed a reduction in bacterial uptake ability. Although tyrosine phosphorylation of ezrin was not related to bacterial uptake activity, localization of Hsc70 on the membrane was affected by the depletion of ezrin in TG cells. CONCLUSION Ezrin associates with Hsc70 that locates on the membrane of TG cells and participates in the bacterial uptake by TG cells.
Collapse
Affiliation(s)
- Kenta Watanabe
- Department of Veterinary Public Health, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Masato Tachibana
- Department of Veterinary Public Health, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Suk Kim
- Department of Veterinary Public Health, Gyeongsang National University, Gyeongnam 660-701, Korea
| | - Masahisa Watarai
- Department of Veterinary Public Health, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|