1
|
Ayasse N, Berg P, Sørensen MV, Svendsen SL, Weinstein AM, Leipziger J. Revisiting voltage-coupled H + secretion in the collecting duct. Am J Physiol Renal Physiol 2024; 327:F931-F945. [PMID: 39323388 DOI: 10.1152/ajprenal.00023.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
Experimental studies have shown that V-type ATPase-driven H+ secretion is dependent on transepithelial voltage. On this basis, the "voltage hypothesis" of urinary acidification by the collecting duct was derived. Accordingly, it has been supposed that the lumen-negative potential created by the reabsorption of Na+ via the epithelial Na+ channel (ENaC) enhances electrogenic H+ secretion via V-type H+-ATPase. This concept continues to be widely used to explain acid/base disorders. Importantly, however, a solid proof of principle for the voltage hypothesis in physiologically relevant situations has not been reached. Rather, it has been challenged by recent in vivo functional studies. In this review, we outline the arguments and experimental observations explaining why voltage-coupled H+ secretion in the collecting duct often appears poorly applicable for rationalizing changes in H+ secretion as a function of more or less ENaC function in the collecting duct.
Collapse
Affiliation(s)
- Niklas Ayasse
- Vth Department of Medicine, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Peder Berg
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Mads V Sørensen
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Samuel L Svendsen
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Alan M Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, United States
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Ayasse N, Berg P, Svendsen SL, Rousing AQ, Sørensen MV, Fedosova NU, Leipziger J. Trimethoprim inhibits renal H +-K +-ATPase in states of K + depletion. Am J Physiol Renal Physiol 2024; 326:F143-F151. [PMID: 37942538 DOI: 10.1152/ajprenal.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023] Open
Abstract
There is growing consensus that under physiological conditions, collecting duct H+ secretion is independent of epithelial Na+ channel (ENaC) activity. We have recently shown that the direct ENaC inhibitor benzamil acutely impairs H+ excretion by blocking renal H+-K+-ATPase. However, the question remains whether inhibition of ENaC per se causes alterations in renal H+ excretion. To revisit this question, we studied the effect of the antibiotic trimethoprim (TMP), which is well known to cause K+ retention by direct ENaC inhibition. The acute effect of TMP (5 µg/g body wt) was assessed in bladder-catheterized mice, allowing real-time measurement of urinary pH, electrolyte, and acid excretion. Dietary K+ depletion was used to increase renal H+-K+-ATPase activity. In addition, the effect of TMP was investigated in vitro using pig gastric H+-K+-ATPase-enriched membrane vesicles. TMP acutely increased natriuresis and decreased kaliuresis, confirming its ENaC-inhibiting property. Under control diet conditions, TMP had no effect on urinary pH or acid excretion. Interestingly, K+ depletion unmasked an acute urine alkalizing effect of TMP. This finding was corroborated by in vitro experiments showing that TMP inhibits H+-K+-ATPase activity, albeit at much higher concentrations than benzamil. In conclusion, under control diet conditions, TMP inhibited ENaC function without changing urinary H+ excretion. This finding further supports the hypothesis that the inhibition of ENaC per se does not impair H+ excretion in the collecting duct. Moreover, TMP-induced urinary alkalization in animals fed a low-K+ diet highlights the importance of renal H+-K+-ATPase-mediated H+ secretion in states of K+ depletion.NEW & NOTEWORTHY The antibiotic trimethoprim (TMP) often mediates K+ retention and metabolic acidosis. We suggest a revision of the underlying mechanism that causes metabolic acidosis. Our results indicate that TMP-induced metabolic acidosis is secondary to epithelial Na+ channel-dependent K+ retention. Under control dietary conditions, TMP does not per se inhibit collecting duct H+ secretion. These findings add further argument against a physiologically relevant voltage-dependent mechanism of collecting duct H+ excretion.
Collapse
Affiliation(s)
- Niklas Ayasse
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
- Vth Department of Medicine, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peder Berg
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Samuel L Svendsen
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | | | | | - Natalya U Fedosova
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Ayasse N, Berg P, Andersen JF, Svendsen SL, Sørensen MV, Fedosova NU, Lynch IJ, Wingo CS, Leipziger J. Benzamil-mediated urine alkalization is caused by the inhibition of H +-K +-ATPases. Am J Physiol Renal Physiol 2021; 320:F596-F607. [PMID: 33554781 DOI: 10.1152/ajprenal.00444.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Epithelial Na+ channel (ENaC) blockers elicit acute and substantial increases of urinary pH. The underlying mechanism remains to be understood. Here, we evaluated if benzamil-induced urine alkalization is mediated by an acute reduction in H+ secretion via renal H+-K+-ATPases (HKAs). Experiments were performed in vivo on HKA double-knockout and wild-type mice. Alterations in dietary K+ intake were used to change renal HKA and ENaC activity. The acute effects of benzamil (0.2 µg/g body wt, sufficient to block ENaC) on urine flow rate and urinary electrolyte and acid excretion were monitored in anesthetized, bladder-catheterized animals. We observed that benzamil acutely increased urinary pH (ΔpH: 0.33 ± 0.07) and reduced NH4+ and titratable acid excretion and that these effects were distinctly enhanced in animals fed a low-K+ diet (ΔpH: 0.74 ± 0.12), a condition when ENaC activity is low. In contrast, benzamil did not affect urine acid excretion in animals kept on a high-K+ diet (i.e., during high ENaC activity). Thus, urine alkalization appeared completely uncoupled from ENaC function. The absence of benzamil-induced urinary alkalization in HKA double-knockout mice confirmed the direct involvement of these enzymes. The inhibitory effect of benzamil was also shown in vitro for the pig α1-isoform of HKA. These results suggest a revised explanation of the benzamil effect on renal acid-base excretion. Considering the conditions used here, we suggest that it is caused by a direct inhibition of HKAs in the collecting duct and not by inhibition of the ENaC function.NEW & NOTEWORTHY Bolus application of epithelial Na+ channel (EnaC) blockers causes marked and acute increases of urine pH. Here, we provide evidence that the underlying mechanism involves direct inhibition of the H+-K+ pump in the collecting duct. This could provide a fundamental revision of the previously assumed mechanism that suggested a key role of ENaC inhibition in this response.
Collapse
Affiliation(s)
- Niklas Ayasse
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Peder Berg
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | | | | | - Mads V Sørensen
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Natalya U Fedosova
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - I Jeanette Lynch
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, Florida.,North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, Florida.,North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Stumpff F. A look at the smelly side of physiology: transport of short chain fatty acids. Pflugers Arch 2018; 470:571-598. [PMID: 29305650 DOI: 10.1007/s00424-017-2105-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
Abstract
Fermentative organs such as the caecum, the colon, and the rumen have evolved to produce and absorb energy rich short chain fatty acids (SCFA) from otherwise indigestible substrates. Classical models postulate diffusional uptake of the undissociated acid (HSCFA). However, in net terms, a major part of SCFA absorption occurs with uptake of Na+ and resembles classical, coupled electroneutral NaCl transport. Considerable evidence suggests that the anion transporting proteins expressed by epithelia of fermentative organs are poorly selective and that their main function may be to transport acetate-, propionate-, butyrate- and HCO3- as the physiologically relevant anions. Apical uptake of SCFA thus involves non-saturable diffusion of the undissociated acid (HSCFA), SCFA-/HCO3- exchange via DRA (SLC26A3) and/or SCFA--H+ symport (MCT1, SLC16A1). All mechanisms lead to cytosolic acidification with stimulation of Na+/H+ exchange via NHE (SLC9A2/3). Basolaterally, Na+ leaves via the Na+/K+-ATPase with recirculation of K+. Na+ efflux drives the transport of SCFA- anions through volume-regulated anion channels, such as maxi-anion channels (possibly SLCO2A1), LRRC8, anoctamins, or uncoupled exchangers. When luminal buffering is inadequate, basolateral efflux will increasingly involve SCFA-/ HCO3- exchange (AE1/2, SCL4A1/2), or efflux of SCFA- with H+ (MCT1/4, SLC16A1/3). Furthermore, protons can be basolaterally removed by NHE1 (SCL9A1) or NBCe1 (SLC4A4). The purpose of these transport proteins is to maximize the amount of SCFA transported from the tightly buffered ingesta while minimizing acid transport through the epithelium. As known from the rumen for many decades, a disturbance of these processes is likely to cause severe colonic disease.
Collapse
Affiliation(s)
- Friederike Stumpff
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany.
| |
Collapse
|
5
|
Mironova E, Lynch IJ, Berman JM, Gumz ML, Stockand JD, Wingo CS. ENaC activity in the cortical collecting duct of HKα 1 H +,K +-ATPase knockout mice is uncoupled from Na + intake. Am J Physiol Renal Physiol 2017; 312:F1073-F1080. [PMID: 28179253 DOI: 10.1152/ajprenal.00401.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 11/22/2022] Open
Abstract
Modulation of the epithelial Na+ channel (ENaC) activity in the collecting duct (CD) is an important mechanism for normal Na+ homeostasis. ENaC activity is inversely related to dietary Na+ intake, in part due to inhibitory paracrine purinergic regulation. Evidence suggests that H+,K+-ATPase activity in the CD also influences Na+ excretion. We hypothesized that renal H+,K+-ATPases affect Na+ reabsorption by the CD by modulating ENaC activity. ENaC activity in HKα1 H+,K+-ATPase knockout (HKα1-/-) mice was uncoupled from Na+ intake. ENaC activity on a high-Na+ diet was greater in the HKα1-/- mice than in WT mice. Moreover, dietary Na+ content did not modulate ENaC activity in the HKα1-/- mice as it did in WT mice. Purinergic regulation of ENaC was abnormal in HKα1-/- mice. In contrast to WT mice, where urinary [ATP] was proportional to dietary Na+ intake, urinary [ATP] did not increase in response to a high-Na+ diet in the HKα1-/- mice and was significantly lower than in the WT mice. HKα1-/- mice fed a high-Na+ diet had greater Na+ retention than WT mice and had an impaired dipsogenic response. These results suggest an important role for the HKα1 subunit in the regulation of purinergic signaling in the CD. They are also consistent with HKα1-containing H+,K+-ATPases as important components for the proper regulation of Na+ balance and the dipsogenic response to a high-salt diet. Such observations suggest a previously unrecognized element in Na+ regulation in the CD.
Collapse
Affiliation(s)
- Elena Mironova
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas
| | - I Jeanette Lynch
- North Florida/South Georgia Veterans Health Service, Gainesville, Florida; and.,Department of Medicine, University of Florida, Gainesville, Florida
| | - Jonathan M Berman
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas
| | - Michelle L Gumz
- North Florida/South Georgia Veterans Health Service, Gainesville, Florida; and.,Department of Medicine, University of Florida, Gainesville, Florida
| | - James D Stockand
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas
| | - Charles S Wingo
- North Florida/South Georgia Veterans Health Service, Gainesville, Florida; and .,Department of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
6
|
Abstract
The H(+) concentration in human blood is kept within very narrow limits, ~40 nmol/L, despite the fact that dietary metabolism generates acid and base loads that are added to the systemic circulation throughout the life of mammals. One of the primary functions of the kidney is to maintain the constancy of systemic acid-base chemistry. The kidney has evolved the capacity to regulate blood acidity by performing three key functions: (i) reabsorb HCO3(-) that is filtered through the glomeruli to prevent its excretion in the urine; (ii) generate a sufficient quantity of new HCO3(-) to compensate for the loss of HCO3(-) resulting from dietary metabolic H(+) loads and loss of HCO3(-) in the urea cycle; and (iii) excrete HCO3(-) (or metabolizable organic anions) following a systemic base load. The ability of the kidney to perform these functions requires that various cell types throughout the nephron respond to changes in acid-base chemistry by modulating specific ion transport and/or metabolic processes in a coordinated fashion such that the urine and renal vein chemistry is altered appropriately. The purpose of the article is to provide the interested reader with a broad review of a field that began historically ~60 years ago with whole animal studies, and has evolved to where we are currently addressing questions related to kidney acid-base regulation at the single protein structure/function level.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA; Brain Research Institute, UCLA, Los Angeles, CA
| |
Collapse
|
7
|
Abstract
H-K-ATPase type 2 (HKA2), also known as the "nongastric" or "colonic" H-K-ATPase, is broadly expressed, and its presence in the kidney has puzzled experts in the field of renal ion transport systems for many years. One of the most important and robust characteristics of this transporter is that it is strongly stimulated after dietary K(+) restriction. This result prompted many investigators to propose that it should play a role in allowing the kidney to efficiently retain K(+) under K(+) depletion. However, the apparent absence of a clear renal phenotype in HKA2-null mice has led to the idea that this transporter is an epiphenomenon. This review summarizes past and recent findings regarding the functional, structural and physiological characteristics of H-K-ATPase type 2. The findings discussed in this review suggest that, as in the famous story, the ugly duckling of the X-K-ATPase family is actually a swan.
Collapse
Affiliation(s)
- Gilles Crambert
- INSERM/UPMC Paris 6/CNRS, Centre de Recherche des Cordeliers Génomique, Physiologie et Physiopathologie Rénales, Equipe 3 U1138, ERL 8228, 15 rue de l'Ecole de Médecine, 75270 Paris Cedex, France.
| |
Collapse
|
8
|
Lameris ALL, Hess MW, van Kruijsbergen I, Hoenderop JGJ, Bindels RJM. Omeprazole enhances the colonic expression of the Mg(2+) transporter TRPM6. Pflugers Arch 2013; 465:1613-20. [PMID: 23756852 DOI: 10.1007/s00424-013-1306-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/13/2013] [Accepted: 05/29/2013] [Indexed: 02/06/2023]
Abstract
Proton pump inhibitors (PPIs) are potent blockers of gastric acid secretion, used by millions of patients suffering from gastric acid-related complaints. Although PPIs have an excellent safety profile, an increasing number of case reports describe patients with severe hypomagnesemia due to long-term PPI use. As there is no evidence of a renal Mg²⁺ leak, PPI-induced hypomagnesemia is hypothesized to result from intestinal malabsorption of Mg²⁺. The aim of this study was to investigate the effect of PPIs on Mg ²⁺homeostasis in an in vivo mouse model. To this end, C57BL/6J mice were treated with omeprazole, under normal and low dietary Mg²⁺ availability. Omeprazole did not induce changes in serum Mg²⁺ levels (1.48 ± 0.05 and 1.54 ± 0.05 mmol/L in omeprazole-treated and control mice, respectively), urinary Mg²⁺ excretion (35 ± 3 μmol/24 h and 30 ± 4 μmol/24 h in omeprazole-treated and control mice, respectively), or fecal Mg²⁺ excretion (84 ± 4 μmol/24 h and 76 ± 4 μmol/24 h in omeprazole-treated and control mice, respectively) under any of the tested experimental conditions. However, omeprazole treatment did increase the mRNA expression level of the transient receptor potential melastatin 6 (TRPM6), the predominant intestinal Mg²⁺ channel, in the colon (167 ± 15 and 100 ± 7 % in omeprazole-treated and control mice, respectively, P < 0.05). In addition, the expression of the colonic H⁺,K⁺-ATPase (cHK-α), a homolog of the gastric H⁺,K⁺-ATPase that is the primary target of omeprazole, was also significantly increased (354 ± 43 and 100 ± 24 % in omeprazole-treated and control mice, respectively, P < 0.05). The expression levels of other magnesiotropic genes remained unchanged. Based on these findings, we hypothesize that omeprazole inhibits cHK-α activity, resulting in reduced extrusion of protons into the large intestine. Since TRPM6-mediated Mg²⁺absorption is stimulated by extracellular protons, this would diminish the rate of intestinal Mg²⁺ absorption. The increase of TRPM6 expression in the colon may compensate for the reduced TRPM6 currents, thereby normalizing intestinal Mg²⁺ absorption during omeprazole treatment in C57BL/6J mice, explaining unchanged serum, urine, and fecal Mg²⁺ levels.
Collapse
Affiliation(s)
- A L L Lameris
- Department of Physiology, Nijmegen Centre for Molecular Life Science, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
A link between fertility and K+ homeostasis: role of the renal H,K-ATPase type 2. Pflugers Arch 2013; 465:1149-58. [DOI: 10.1007/s00424-013-1252-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 11/25/2022]
|