1
|
Karami Y, Bignon E. Cysteine hyperoxidation rewires communication pathways in the nucleosome and destabilizes the dyad. Comput Struct Biotechnol J 2024; 23:1387-1396. [PMID: 38596314 PMCID: PMC11001638 DOI: 10.1016/j.csbj.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Gene activity is tightly controlled by reversible chemical modifications called epigenetic marks, which are of various types and modulate gene accessibility without affecting the DNA sequence. Despite an increasing body of evidence demonstrating the role of oxidative-type modifications of histones in gene expression regulation, there remains a complete absence of structural data at the atomistic level to understand the molecular mechanisms behind their regulatory action. Owing to μs time-scale MD simulations and protein communication networks analysis, we describe the impact of histone H3 hyperoxidation (i.e., S-sulfonylation) on the nucleosome core particle dynamics. Our results reveal the atomic-scale details of the intrinsic structural networks within the canonical histone core and their perturbation by hyperoxidation of the histone H3 C110. We show that this modification involves local rearrangements of the communication networks and destabilizes the dyad, and that one modification is enough to induce a maximal structural signature. Our results suggest that cysteine hyperoxidation in the nucleosome core particle might favor its disassembly.
Collapse
Affiliation(s)
- Yasaman Karami
- Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
| | | |
Collapse
|
2
|
Prabhakara KS, Ganapathy K, Islam KN, Thyagarajan HM, Tiwari KK, Parimi RL, Rashid MB. Uncovering Novel Protein Partners of Inducible Nitric Oxide Synthase in Human Testis. Biomolecules 2024; 14:388. [PMID: 38672406 PMCID: PMC11048102 DOI: 10.3390/biom14040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Peroxidative damage to human spermatozoa has been shown to be the primary cause of male infertility. The possible role of nitric oxide (NO) in affecting sperm motility, capacitation, and acrosome reaction has been reported, too. The overproduction of NO by the enzyme inducible nitric oxide synthase (iNOS) could be responsible as it has been implicated in the pathogenesis of many diseases. There have been many studies on regulating iNOS function in various tissues, especially by protein-protein interaction; however, no study has looked for iNOS-interacting proteins in the human testis. Here, we have reported the identification of two proteins that interact with iNOS. We initially undertook a popular yeast two-hybrid assay to screen a human testis cDNA library in yeast using an iNOS-peptide fragment (amino acids 181-335) as bait. We verified our data using the mammalian chemiluminescent co-IP method; first, employing the same peptide and, then, a full-length protein co-expressed in HEK293 cells in addition to the candidate protein. In both cases, these two protein partners of iNOS were revealed: (a) sperm acrosome-associated 7 protein and (b) retinoblastoma tumor-suppressor binding protein.
Collapse
Affiliation(s)
- Karthik S. Prabhakara
- Department of Biology and Biotechnology, College of Science and Engineering, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX 77058-1098, USA
| | - Kavya Ganapathy
- Department of Biology and Biotechnology, College of Science and Engineering, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX 77058-1098, USA
| | - Kazi N. Islam
- Department of Agricultural Research and Development Program, Central State University, 1400 Brush Row Road, Wilberforce, OH 45384, USA
| | - Hiran M. Thyagarajan
- Department of Biology and Biotechnology, College of Science and Engineering, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX 77058-1098, USA
| | - Kirti K. Tiwari
- Department of Biology and Biotechnology, College of Science and Engineering, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX 77058-1098, USA
| | - Ramya L. Parimi
- Department of Biology and Biotechnology, College of Science and Engineering, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX 77058-1098, USA
| | - Mohammad B. Rashid
- Department of Biology and Biotechnology, College of Science and Engineering, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX 77058-1098, USA
| |
Collapse
|
3
|
Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review. Cell Mol Biol Lett 2023; 28:76. [PMID: 37777764 PMCID: PMC10541721 DOI: 10.1186/s11658-023-00489-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.
Collapse
Affiliation(s)
- Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
4
|
Taylor S, Murray A, Francis M, Abramova E, Guo C, Laskin DL, Gow AJ. Regulation of macrophage activation by S-Nitrosothiols following ozone-induced lung injury. Toxicol Appl Pharmacol 2022; 457:116281. [PMID: 36244437 PMCID: PMC10250783 DOI: 10.1016/j.taap.2022.116281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Acute exposure to ozone causes oxidative stress, characterized by increases in nitric oxide (NO) and other reactive nitrogen species in the lung. NO has been shown to modify thiols generating S-nitrosothiols (SNOs); this results in altered protein function. In macrophages this can lead to changes in inflammatory activity which impact the resolution of inflammation. As SNO formation is dependent on the redox state of both the NO donor and the recipient thiol, the local microenvironment plays a key role in its regulation. This dictates not only the chemical feasibility of SNO formation but also mechanisms by which they may form. In these studies, we compared the ability of the SNO donors, ethyl nitrite (ENO), which targets both hydrophobic and hydrophilic thiols, SNO-propanamide (SNOPPM) which targets hydrophobic thiols, and S-nitroso-N-acetylcysteine. (SNAC) which targets hydrophilic thiols. to modify macrophage activation following ozone exposure. Mice were treated with air or ozone (0.8 ppm, 3 h) followed 1 h later by intranasal administration of ENO, SNOPPM or SNAC (1-500 μM) or appropriate controls. Mice were euthanized 48 h later. Each of the SNO donors reduced ozone-induced inflammation and modified the phenotype of macrophages both within the lung lining fluid and the tissue. ENO and SNOPPM were more effective than SNAC. These findings suggest that the hydrophobic SNO thiol pool targeted by SNOPPM and ENO plays a major role in regulating macrophage phenotype following ozone induced injury.
Collapse
Affiliation(s)
- Sheryse Taylor
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America
| | - Alexa Murray
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America
| | - Mary Francis
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America
| | - Elena Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America
| | - Changjiang Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America.
| |
Collapse
|
5
|
Kim H, Lee JY, Park SJ, Kwag E, Kim J, Shin JH. S-nitrosylated PARIS Leads to the Sequestration of PGC-1α into Insoluble Deposits in Parkinson's Disease Model. Cells 2022; 11:cells11223682. [PMID: 36429110 PMCID: PMC9688248 DOI: 10.3390/cells11223682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Neuronal accumulation of parkin-interacting substrate (PARIS), a transcriptional repressor of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), has been observed in Parkinson's disease (PD). Herein, we showed that PARIS can be S-nitrosylated at cysteine 265 (C265), and S-nitrosylated PARIS (SNO-PARIS) translocates to the insoluble fraction, leading to the sequestration of PGC-1α into insoluble deposits. The mislocalization of PGC-1α in the insoluble fraction was observed in S-nitrosocysteine-treated PARIS knockout (KO) cells overexpressing PARIS WT but not S-nitrosylation deficient C265S mutant, indicating that insolubility of PGC-1α is SNO-PARIS-dependent. In the sporadic PD model, α-synuclein preformed fibrils (α-syn PFFs)-injected mice, we found an increase in PARIS, SNO-PARIS, and insoluble sequestration of PGC-1α in substantia nigra (SN), resulting in the reduction of mitochondrial DNA copy number and ATP concentration that were restored by N(ω)-nitro-L-arginine methyl ester, a nitric oxide synthase (NOS) inhibitor. To assess the dopaminergic (DA) neuronal toxicity by SNO-PARIS, lentiviral PARIS WT, C265S, and S-nitrosylation mimic C265W was injected into the SN of either PBS- or α-syn PFFs-injected mice. PARIS WT and C265S caused DA neuronal death to a comparable extent, whereas C265W caused more severe DA neuronal loss in PBS-injected mice. Interestingly, there was synergistic DA loss in both lenti-PARIS WT and α-syn PFFs-injected mice, indicating that SNO-PARIS by α-syn PFFs contributes to the DA toxicity in vivo. Moreover, α-syn PFFs-mediated increment of PARIS, SNO-PARIS, DA toxicity, and behavioral deficits were completely nullified in neuronal NOS KO mice, suggesting that modulation of NO can be a therapeutic for α-syn PFFs-mediated neurodegeneration.
Collapse
Affiliation(s)
- Hanna Kim
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Ji-Yeong Lee
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Soo Jeong Park
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Eunsang Kwag
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Jihye Kim
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Joo-Ho Shin
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Correspondence:
| |
Collapse
|
6
|
A comparative study of S-nitrosylated myofibrillar proteins between red, firm and non-exudative (RFN) and pale, soft and exudative (PSE) pork by iodoTMT-based proteomics assay. Food Chem 2022; 395:133577. [DOI: 10.1016/j.foodchem.2022.133577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022]
|
7
|
Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. The Role of Reactive Species on Innate Immunity. Vaccines (Basel) 2022; 10:vaccines10101735. [PMID: 36298601 PMCID: PMC9609844 DOI: 10.3390/vaccines10101735] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
This review examines the role of reactive species RS (of oxygen ROS, nitrogen RNS and halogen RHS) on innate immunity. The importance of these species in innate immunity was first recognized in phagocytes that underwent a “respiratory burst” after activation. The anion superoxide •O2− and hydrogen peroxide H2O2 are detrimental to the microbial population. NADPH oxidase NOx, as an •O2− producer is essential for microbial destruction, and patients lacking this functional oxidase are more susceptible to microbial infections. Reactive nitrogen species RNS (the most important are nitric oxide radical -•NO, peroxynitrite ONOO— and its derivatives), are also harmful to microorganisms, including bacteria, viruses, and parasites. Hypochlorous acid HOCl and hypothiocyanous acid HOSCN synthesized through the enzyme myeloperoxidase MPO, which catalyzes the reaction between H2O2 and Cl− or SCN−, are important inorganic bactericidal molecules, effective against a wide range of microbes. This review also discusses the role of antimicrobial peptides AMPs and their induction of ROS. In summary, reactive species RS are the heart of the innate immune system, and they are necessary for microbial lysis in infections that can affect mammals throughout their lives.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez 3, 38206 La Laguna, Spain
- Correspondence:
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén 7, 47011 Valladolid, Spain
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
8
|
Borges Araujo AJ, Cerruti GV, Zuccarelli R, Rodriguez Ruiz M, Freschi L, Singh R, Moerschbacher BM, Floh EIS, Wendt dos Santos AL. Proteomic Analysis of S-Nitrosation Sites During Somatic Embryogenesis in Brazilian Pine, Araucaria angustifolia (Bertol.) Kuntze. FRONTIERS IN PLANT SCIENCE 2022; 13:902068. [PMID: 35845673 PMCID: PMC9280032 DOI: 10.3389/fpls.2022.902068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Cysteine S-nitrosation is a redox-based post-translational modification that mediates nitric oxide (NO) regulation of various aspects of plant growth, development and stress responses. Despite its importance, studies exploring protein signaling pathways that are regulated by S-nitrosation during somatic embryogenesis have not been performed. In the present study, endogenous cysteine S-nitrosation site and S-nitrosated proteins were identified by iodo-TMT labeling during somatic embryogenesis in Brazilian pine, an endangered native conifer of South America. In addition, endogenous -S-nitrosothiol (SNO) levels and S-nitrosoglutathione reductase (GSNOR) activity were determined in cell lines with contrasting embryogenic potential. Overall, we identified an array of proteins associated with a large variety of biological processes and molecular functions with some of them already described as important for somatic embryogenesis (Class IV chitinase, pyruvate dehydrogenase E1 and dehydroascorbate reductase). In total, our S-nitrosoproteome analyses identified 18 endogenously S-nitrosated proteins and 50 in vitro S-nitrosated proteins (after GSNO treatment) during cell culture proliferation and embryo development. Furthermore, SNO levels and GSNOR activity were increased during embryo formation. These findings expand our understanding of the Brazilian pine proteome and shed novel insights into the potential use of pharmacological manipulation of NO levels by using NO inhibitors and donors during somatic embryogenesis.
Collapse
Affiliation(s)
| | | | - Rafael Zuccarelli
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Marta Rodriguez Ruiz
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Ratna Singh
- Department of Plant Biology and Biotechnology, WWU Münster, Münster, Germany
| | | | - Eny Iochevet Segal Floh
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
9
|
The Breast Cancer Protooncogenes HER2, BRCA1 and BRCA2 and Their Regulation by the iNOS/NOS2 Axis. Antioxidants (Basel) 2022; 11:antiox11061195. [PMID: 35740092 PMCID: PMC9227079 DOI: 10.3390/antiox11061195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
The expression of inducible nitric oxide synthase (iNOS; NOS2) and derived NO in various cancers was reported to exert pro- and anti-tumorigenic effects depending on the levels of expression and the tumor types. In humans, the breast cancer level of iNOS was reported to be overexpressed, to exhibit pro-tumorigenic activities, and to be of prognostic significance. Likewise, the expression of the oncogenes HER2, BRCA1, and BRCA2 has been associated with malignancy. The interrelationship between the expression of these protooncogenes and oncogenes and the expression of iNOS is not clear. We have hypothesized that there exist cross-talk signaling pathways between the breast cancer protooncogenes, the iNOS axis, and iNOS-mediated NO mutations of these protooncogenes into oncogenes. We review the molecular regulation of the expression of the protooncogenes in breast cancer and their interrelationships with iNOS expression and activities. In addition, we discuss the roles of iNOS, HER2, BRCA1/2, and NO metabolism in the pathophysiology of cancer stem cells. Bioinformatic analyses have been performed and have found suggested molecular alterations responsible for breast cancer aggressiveness. These include the association of BRCA1/2 mutations and HER2 amplifications with the dysregulation of the NOS pathway. We propose that future studies should be undertaken to investigate the regulatory mechanisms underlying the expression of iNOS and various breast cancer oncogenes, with the aim of identifying new therapeutic targets for the treatment of breast cancers that are refractory to current treatments.
Collapse
|
10
|
Switzer CH, Cho HJ, Eykyn TR, Lavender P, Eaton P. NOS2 and S-nitrosothiol signaling induces DNA hypomethylation and LINE-1 retrotransposon expression. Proc Natl Acad Sci U S A 2022; 119:e2200022119. [PMID: 35584114 PMCID: PMC9173756 DOI: 10.1073/pnas.2200022119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/29/2022] [Indexed: 12/31/2022] Open
Abstract
Inducible nitric oxide synthase (NOS2) produces high local concentrations of nitric oxide (NO), and its expression is associated with inflammation, cellular stress signals, and cellular transformation. Additionally, NOS2 expression results in aggressive cancer cell phenotypes and is correlated with poor outcomes in patients with breast cancer. DNA hypomethylation, especially of noncoding repeat elements, is an early event in carcinogenesis and is a common feature of cancer cells. In addition to altered gene expression, DNA hypomethylation results in genomic instability via retrotransposon activation. Here, we show that NOS2 expression and associated NO signaling results in substantial DNA hypomethylation in human cell lines by inducing the degradation of DNA (cytosine-5)–methyltransferase 1 (DNMT1) protein. Similarly, NOS2 expression levels were correlated with decreased DNA methylation in human breast tumors. NOS2 expression and NO signaling also resulted in long interspersed noncoding element 1 (LINE-1) retrotransposon hypomethylation, expression, and DNA damage. DNMT1 degradation was mediated by an NO/p38-MAPK/lysine acetyltransferase 5–dependent mechanism. Furthermore, we show that this mechanism is required for NO-mediated epithelial transformation. Therefore, we conclude that NOS2 and NO signaling results in DNA damage and malignant cellular transformation via an epigenetic mechanism.
Collapse
Affiliation(s)
- Christopher H. Switzer
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Hyun-Ju Cho
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Thomas R. Eykyn
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, SE1 7EH, United Kingdom
| | - Paul Lavender
- AsthmaUK Centre in Allergic Mechanisms of Asthma, School of Immunology and Microbial Science, King’s College London, Guy’s Hospital, London, SE1 9RT, United Kingdom
| | - Philip Eaton
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| |
Collapse
|
11
|
Zhou M, Chen JY, Chao ML, Zhang C, Shi ZG, Zhou XC, Xie LP, Sun SX, Huang ZR, Luo SS, Ji Y. S-nitrosylation of c-Jun N-terminal kinase mediates pressure overload-induced cardiac dysfunction and fibrosis. Acta Pharmacol Sin 2022; 43:602-612. [PMID: 34011968 PMCID: PMC8888706 DOI: 10.1038/s41401-021-00674-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/31/2021] [Indexed: 02/04/2023] Open
Abstract
Cardiac fibrosis (CF) is an irreversible pathological process that occurs in almost all kinds of cardiovascular diseases. Phosphorylation-dependent activation of c-Jun N-terminal kinase (JNK) induces cardiac fibrosis. However, whether S-nitrosylation of JNK mediates cardiac fibrosis remains an open question. A biotin-switch assay confirmed that S-nitrosylation of JNK (SNO-JNK) increased significantly in the heart tissues of hypertrophic patients, transverse aortic constriction (TAC) mice, spontaneously hypertensive rats (SHRs), and neonatal rat cardiac fibroblasts (NRCFs) stimulated with angiotensin II (Ang II). Site to site substitution of alanine for cysteine in JNK was applied to determine the S-nitrosylated site. S-Nitrosylation occurred at both Cys116 and Cys163 and substitution of alanine for cysteine 116 and cysteine 163 (C116/163A) inhibited Ang II-induced myofibroblast transformation. We further confirmed that the source of S-nitrosylation was inducible nitric oxide synthase (iNOS). 1400 W, an inhibitor of iNOS, abrogated the profibrotic effects of Ang II in NRCFs. Mechanistically, SNO-JNK facilitated the nuclear translocation of JNK, increased the phosphorylation of c-Jun, and induced the transcriptional activity of AP-1 as determined by chromatin immunoprecipitation and EMSA. Finally, WT and iNOS-/- mice were subjected to TAC and iNOS knockout reduced SNO-JNK and alleviated cardiac fibrosis. Our findings demonstrate an alternative mechanism by which iNOS-induced SNO-JNK increases JNK pathway activity and accelerates cardiac fibrosis. Targeting SNO-JNK might be a novel therapeutic strategy against cardiac fibrosis.
Collapse
Affiliation(s)
- Miao Zhou
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Ji-yu Chen
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Meng-Lin Chao
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Chao Zhang
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Zhi-guang Shi
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Xue-chun Zhou
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Li-ping Xie
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China ,grid.89957.3a0000 0000 9255 8984Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Shi-xiu Sun
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Zheng-rong Huang
- grid.412625.6Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen, 361003 China
| | - Shan-shan Luo
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203, China. .,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 201203, China. .,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 201203, China.
| |
Collapse
|
12
|
Sengupta S, Nath R, Bhattacharjee A. Characterizing the effect of S-nitrosoglutathione on Saccharomyces cerevisiae: Upregulation of alcohol dehydrogenase and inactivation of aconitase. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Tellios V, Maksoud MJE, Lu WY. The expression and function of glutamate aspartate transporters in Bergmann glia are decreased in neuronal nitric oxide synthase-knockout mice during postnatal development. Glia 2022; 70:858-874. [PMID: 35006609 PMCID: PMC9304205 DOI: 10.1002/glia.24143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/02/2022]
Abstract
Bergmann glia (BG) predominantly use glutamate/aspartate transporters (GLAST) for glutamate uptake in the cerebellum. Recently, nitric oxide (NO) treatment has been shown to upregulate GLAST function and increase glutamate uptake in vitro. We previously discovered that neuronal nitric oxide synthase knockout (nNOS−/−) mice displayed structural and functional neuronal abnormalities in the cerebellum during development, in addition to previously reported motor deficits. Although these developmental deficits have been identified in the nNOS−/− cerebellum, it is unknown whether BG morphology and GLAST expression are also affected in the absence of nNOS in vivo. This study is the first to characterize BG morphology and GLAST expression during development in nNOS−/− mice using immunohistochemistry and western blotting across postnatal development. Results showed that BG in nNOS−/− mice exhibited abnormal morphology and decreased GLAST expression compared with wildtype (WT) mice across postnatal development. Treating ex vivo WT cerebellar slices with the NOS inhibitor L‐NAME decreased GLAST expression while treating nNOS−/− slices with the slow‐release NO‐donor NOC‐18 increased GLAST expression when compared with their respective controls. In addition, treating primary BG isolated from WT mice with the selective nNOS inhibitor 7N decreased the membrane expression of GLAST and influx of Ca2+/Na+, while treating nNOS−/− BG with SNAP increased the membrane expression of GLAST and Ca2+/Na+ influx. Moreover, the effects of SNAP on GLAST expression and Ca2+/Na+ influx in nNOS−/− BG were significantly reduced by a PKG inhibitor. Together, these results reveal a novel role for nNOS/NO signaling in BG development, regulated by a PKG‐mediated mechanism.
Collapse
Affiliation(s)
- Vasiliki Tellios
- Graduate Program of Neuroscience, The University of Western Ontario, London, ON, Canada.,Molecular Medicine Group, Robarts Research Institute, London, ON, Canada
| | - Matthew J E Maksoud
- Graduate Program of Neuroscience, The University of Western Ontario, London, ON, Canada.,Molecular Medicine Group, Robarts Research Institute, London, ON, Canada
| | - Wei-Yang Lu
- Graduate Program of Neuroscience, The University of Western Ontario, London, ON, Canada.,Molecular Medicine Group, Robarts Research Institute, London, ON, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
14
|
Caccavale F, Annona G, Subirana L, Escriva H, Bertrand S, D'Aniello S. Crosstalk between nitric oxide and retinoic acid pathways is essential for amphioxus pharynx development. eLife 2021; 10:e58295. [PMID: 34431784 PMCID: PMC8387019 DOI: 10.7554/elife.58295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
During animal ontogenesis, body axis patterning is finely regulated by complex interactions among several signaling pathways. Nitric oxide (NO) and retinoic acid (RA) are potent morphogens that play a pivotal role in vertebrate development. Their involvement in axial patterning of the head and pharynx shows conserved features in the chordate phylum. Indeed, in the cephalochordate amphioxus, NO and RA are crucial for the correct development of pharyngeal structures. Here, we demonstrate the functional cooperation between NO and RA that occurs during amphioxus embryogenesis. During neurulation, NO modulates RA production through the transcriptional regulation of Aldh1a.2 that irreversibly converts retinaldehyde into RA. On the other hand, RA directly or indirectly regulates the transcription of Nos genes. This reciprocal regulation of NO and RA pathways is essential for the normal pharyngeal development in amphioxus and it could be conserved in vertebrates.
Collapse
Affiliation(s)
- Filomena Caccavale
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn NapoliNapoliItaly
| | - Giovanni Annona
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn NapoliNapoliItaly
| | - Lucie Subirana
- Sorbonne Université CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire OcéanologiqueBanyuls-sur-MerFrance
| | - Hector Escriva
- Sorbonne Université CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire OcéanologiqueBanyuls-sur-MerFrance
| | - Stephanie Bertrand
- Sorbonne Université CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire OcéanologiqueBanyuls-sur-MerFrance
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn NapoliNapoliItaly
| |
Collapse
|
15
|
Wierońska JM, Cieślik P, Kalinowski L. Nitric Oxide-Dependent Pathways as Critical Factors in the Consequences and Recovery after Brain Ischemic Hypoxia. Biomolecules 2021; 11:biom11081097. [PMID: 34439764 PMCID: PMC8392725 DOI: 10.3390/biom11081097] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Brain ischemia is one of the leading causes of disability and mortality worldwide. Nitric oxide (NO•), a molecule that is involved in the regulation of proper blood flow, vasodilation, neuronal and glial activity constitutes the crucial factor that contributes to the development of pathological changes after stroke. One of the early consequences of a sudden interruption in the cerebral blood flow is the massive production of reactive oxygen and nitrogen species (ROS/RNS) in neurons due to NO• synthase uncoupling, which leads to neurotoxicity. Progression of apoptotic or necrotic neuronal damage activates reactive astrocytes and attracts microglia or lymphocytes to migrate to place of inflammation. Those inflammatory cells start to produce large amounts of inflammatory proteins, including pathological, inducible form of NOS (iNOS), which generates nitrosative stress that further contributes to brain tissue damage, forming vicious circle of detrimental processes in the late stage of ischemia. S-nitrosylation, hypoxia-inducible factor 1α (HIF-1α) and HIF-1α-dependent genes activated in reactive astrocytes play essential roles in this process. The review summarizes the roles of NO•-dependent pathways in the early and late aftermath of stroke and treatments based on the stimulation or inhibition of particular NO• synthases and the stabilization of HIF-1α activity.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Biobank Fahrenheit BBMRI.pl, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Debinki Street 7, 80-211 Gdansk, Poland
- BioTechMed Center/Department of Mechanics of Materials and Structures, Gdansk University of Technology, Narutowicza 11/12, 80-223 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-349-1182
| |
Collapse
|
16
|
Ciesielska S, Slezak-Prochazka I, Bil P, Rzeszowska-Wolny J. Micro RNAs in Regulation of Cellular Redox Homeostasis. Int J Mol Sci 2021; 22:6022. [PMID: 34199590 PMCID: PMC8199685 DOI: 10.3390/ijms22116022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 02/08/2023] Open
Abstract
In living cells Reactive Oxygen Species (ROS) participate in intra- and inter-cellular signaling and all cells contain specific systems that guard redox homeostasis. These systems contain both enzymes which may produce ROS such as NADPH-dependent and other oxidases or nitric oxide synthases, and ROS-neutralizing enzymes such as catalase, peroxiredoxins, thioredoxins, thioredoxin reductases, glutathione reductases, and many others. Most of the genes coding for these enzymes contain sequences targeted by micro RNAs (miRNAs), which are components of RNA-induced silencing complexes and play important roles in inhibiting translation of their targeted messenger RNAs (mRNAs). In this review we describe miRNAs that directly target and can influence enzymes responsible for scavenging of ROS and their possible role in cellular redox homeostasis. Regulation of antioxidant enzymes aims to adjust cells to survive in unstable oxidative environments; however, sometimes seemingly paradoxical phenomena appear where oxidative stress induces an increase in the levels of miRNAs which target genes which are supposed to neutralize ROS and therefore would be expected to decrease antioxidant levels. Here we show examples of such cellular behaviors and discuss the possible roles of miRNAs in redox regulatory circuits and further cell responses to stress.
Collapse
Affiliation(s)
- Sylwia Ciesielska
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (J.R.-W.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| | | | - Patryk Bil
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (J.R.-W.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Joanna Rzeszowska-Wolny
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (J.R.-W.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
17
|
Helmer RA, Martinez-Zaguilan R, Kaur G, Smith LA, Dufour JM, Chilton BS. Helicase-like transcription factor-deletion from the tumor microenvironment in a cell line-derived xenograft model of colorectal cancer reprogrammed the human transcriptome-S-nitroso-proteome to promote inflammation and redirect metastasis. PLoS One 2021; 16:e0251132. [PMID: 34010296 PMCID: PMC8133447 DOI: 10.1371/journal.pone.0251132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Methylation of the HLTF gene in colorectal cancer (CRC) cells occurs more frequently in men than women. Progressive epigenetic silencing of HLTF in tumor cells is accompanied by negligible expression in the tumor microenvironment (TME). Cell line-derived xenografts (CDX) were established in control (Hltf+/+) and Hltf-deleted male Rag2-/-IL2rg-/- mice by direct orthotopic cell microinjection (OCMI) of HLTF+/+HCT116 Red-FLuc cells into the submucosa of the cecum. Combinatorial induction of IL6 and S100A8/A9 in the Hltf-deleted TME with ICAM-1 and IL8 in the primary tumor activated a positive feedback loop. The proinflammatory niche produced a major shift in CDX metastasis to peritoneal dissemination compared to controls. Inducible nitric oxide (iNOS) gene expression and transactivation of the iNOS-S100A8/A9 signaling complex in Hltf-deleted TME reprogrammed the human S-nitroso-proteome. POTEE, TRIM52 and UN45B were S-nitrosylated on the conserved I/L-X-C-X2-D/E motif indicative of iNOS-S100A8/A9-mediated S-nitrosylation. 2D-DIGE and protein identification by MALDI-TOF/TOF mass spectrometry authenticated S-nitrosylation of 53 individual cysteines in half-site motifs (I/L-X-C or C-X-X-D/E) in CDX tumors. POTEE in CDX tumors is both a general S-nitrosylation target and an iNOS-S100A8/A9 site-specific (Cys638) target in the Hltf-deleted TME. REL is an example of convergence of transcriptomic-S-nitroso-proteomic signaling. The gene is transcriptionally activated in CDX tumors with an Hltf-deleted TME, and REL-SNO (Cys143) was found in primary CDX tumors and all metastatic sites. Primary CDX tumors from Hltf-deleted TME shared 60% of their S-nitroso-proteome with all metastatic sites. Forty percent of SNO-proteins from primary CDX tumors were variably expressed at metastatic sites. Global S-nitrosylation of proteins in pathways related to cytoskeleton and motility was strongly implicated in the metastatic dissemination of CDX tumors. Hltf-deletion from the TME played a major role in the pathogenesis of inflammation and linked protein S-nitrosylation in primary CDX tumors with spatiotemporal continuity in metastatic progression when the tumor cells expressed HLTF.
Collapse
Affiliation(s)
- Rebecca A. Helmer
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Raul Martinez-Zaguilan
- Department of Cell Physiology & Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Gurvinder Kaur
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Lisa A. Smith
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Jannette M. Dufour
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Beverly S. Chilton
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| |
Collapse
|
18
|
Hydrogen Sulfide Attenuates Aortic Remodeling in Aortic Dissection Associating with Moderated Inflammation and Oxidative Stress through a NO-Dependent Pathway. Antioxidants (Basel) 2021; 10:antiox10050682. [PMID: 33925479 PMCID: PMC8145450 DOI: 10.3390/antiox10050682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 01/16/2023] Open
Abstract
Aortic dissection (AD) is a highly lethal vascular disease characterized by separation of the constituent layers of the aortic wall. An increasing body of research indicates that inflammatory response and oxidative stress are implicated in vascular remodeling, which plays a key role in the development of AD. Hydrogen sulfide (H2S) has been found to protect against various types of cardiovascular disease, including myocardial infarction, arthrosclerosis, and hypertension. However, research on the effect of H2S on AD is insufficient. This study therefore elucidated the effect of H2S on the development and progression of AD, and the potential mechanism involved. Using β-aminopropionitrile fumarate (BAPN) and angiotensin II (Ang-II)-induced AD animal models, the administration of NaHS (as H2S donor, 56 μmol/kg body weight/day) was found to retard the development of AD. Murine VSMCs (Movas) exposed to interleukin-6 (IL-6) (20 ng/mL) to induce phenotypic switch. Histological analyses indicated that H2S administration inhibited the accumulation of inflammatory cells in the aortic wall and the related expression of inflammatory genes. Additionally, H2S treatment elevated aortic superoxide dismutase (SOD) activity and ablated malonaldehyde (MDA) and nitric oxide (NO) levels. In mechanistic terms, H2S attenuated IL-6 induced a pathological VSMC phenotypical switch through NO modulation by N(G)-monomethyl-L-arginine acetate salt (L-NMMA) stimulation. H2S inhibits AD formation by decreasing the inflammatory response, and oxidative stress, and by positively participating in vascular remodeling. These findings suggest a role for H2S as a novel and promising therapeutic strategy to prevent AD development.
Collapse
|
19
|
Exploiting S-nitrosylation for cancer therapy: facts and perspectives. Biochem J 2021; 477:3649-3672. [PMID: 33017470 DOI: 10.1042/bcj20200064] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
S-nitrosylation, the post-translational modification of cysteines by nitric oxide, has been implicated in several cellular processes and tissue homeostasis. As a result, alterations in the mechanisms controlling the levels of S-nitrosylated proteins have been found in pathological states. In the last few years, a role in cancer has been proposed, supported by the evidence that various oncoproteins undergo gain- or loss-of-function modifications upon S-nitrosylation. Here, we aim at providing insight into the current knowledge about the role of S-nitrosylation in different aspects of cancer biology and report the main anticancer strategies based on: (i) reducing S-nitrosylation-mediated oncogenic effects, (ii) boosting S-nitrosylation to stimulate cell death, (iii) exploiting S-nitrosylation through synthetic lethality.
Collapse
|
20
|
Lubega J, Umbreen S, Loake GJ. Recent advances in the regulation of plant immunity by S-nitrosylation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:864-872. [PMID: 33005916 DOI: 10.1093/jxb/eraa454] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 05/16/2023]
Abstract
S-nitrosylation, the addition of a nitric oxide (NO) moiety to a reactive protein cysteine (Cys) thiol, to form a protein S-nitrosothiol (SNO), is emerging as a key regulatory post-translational modification (PTM) to control the plant immune response. NO also S-nitrosylates the antioxidant tripeptide, glutathione, to form S-nitrosoglutathione (GSNO), both a storage reservoir of NO bioactivity and a natural NO donor. GSNO and, by extension, S-nitrosylation, are controlled by GSNO reductase1 (GSNOR1). The emerging data suggest that GSNOR1 itself is a target of NO-mediated S-nitrosylation, which subsequently controls its selective autophagy, regulating cellular protein SNO levels. Recent findings also suggest that S-nitrosylation may be deployed by pathogen-challenged host cells to counteract the effect of delivered microbial effector proteins that promote pathogenesis and by the pathogens themselves to augment virulence. Significantly, it also appears that S-nitrosylation may regulate plant immune functions by controlling SUMOylation, a peptide-based PTM. In this context, global SUMOylation is regulated by S-nitrosylation of SUMO conjugating enzyme 1 (SCE1) at Cys139. This redox-based PTM has also been shown to control the function of a key zinc finger transcriptional regulator during the establishment of plant immunity. Here, we provide an update of these recent advances.
Collapse
Affiliation(s)
- Jibril Lubega
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Saima Umbreen
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
21
|
Falak N, Imran QM, Hussain A, Yun BW. Transcription Factors as the "Blitzkrieg" of Plant Defense: A Pragmatic View of Nitric Oxide's Role in Gene Regulation. Int J Mol Sci 2021; 22:E522. [PMID: 33430258 PMCID: PMC7825681 DOI: 10.3390/ijms22020522] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Plants are in continuous conflict with the environmental constraints and their sessile nature demands a fine-tuned, well-designed defense mechanism that can cope with a multitude of biotic and abiotic assaults. Therefore, plants have developed innate immunity, R-gene-mediated resistance, and systemic acquired resistance to ensure their survival. Transcription factors (TFs) are among the most important genetic components for the regulation of gene expression and several other biological processes. They bind to specific sequences in the DNA called transcription factor binding sites (TFBSs) that are present in the regulatory regions of genes. Depending on the environmental conditions, TFs can either enhance or suppress transcriptional processes. In the last couple of decades, nitric oxide (NO) emerged as a crucial molecule for signaling and regulating biological processes. Here, we have overviewed the plant defense system, the role of TFs in mediating the defense response, and that how NO can manipulate transcriptional changes including direct post-translational modifications of TFs. We also propose that NO might regulate gene expression by regulating the recruitment of RNA polymerase during transcription.
Collapse
Affiliation(s)
- Noreen Falak
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea; (N.F.); (Q.M.I.)
| | - Qari Muhammad Imran
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea; (N.F.); (Q.M.I.)
- Department of Medical Biochemistry and Biophysics, Umea University, 90187 Umea, Sweden
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa 23200, Pakistan;
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea; (N.F.); (Q.M.I.)
| |
Collapse
|
22
|
Andersen PAK, Petrenko V, Rose PH, Koomen M, Fischer N, Ghiasi SM, Dahlby T, Dibner C, Mandrup-Poulsen T. Proinflammatory Cytokines Perturb Mouse and Human Pancreatic Islet Circadian Rhythmicity and Induce Uncoordinated β-Cell Clock Gene Expression via Nitric Oxide, Lysine Deacetylases, and Immunoproteasomal Activity. Int J Mol Sci 2020; 22:E83. [PMID: 33374803 PMCID: PMC7795908 DOI: 10.3390/ijms22010083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic β-cell-specific clock knockout mice develop β-cell oxidative-stress and failure, as well as glucose-intolerance. How inflammatory stress affects the cellular clock is under-investigated. Real-time recording of Per2:luciferase reporter activity in murine and human pancreatic islets demonstrated that the proinflammatory cytokine interleukin-1β (IL-1β) lengthened the circadian period. qPCR-profiling of core clock gene expression in insulin-producing cells suggested that the combination of the proinflammatory cytokines IL-1β and interferon-γ (IFN-γ) caused pronounced but uncoordinated increases in mRNA levels of multiple core clock genes, in particular of reverse-erythroblastosis virus α (Rev-erbα), in a dose- and time-dependent manner. The REV-ERBα/β agonist SR9009, used to mimic cytokine-mediated Rev-erbα induction, reduced constitutive and cytokine-induced brain and muscle arnt-like 1 (Bmal1) mRNA levels in INS-1 cells as expected. SR9009 induced reactive oxygen species (ROS), reduced insulin-1/2 (Ins-1/2) mRNA and accumulated- and glucose-stimulated insulin secretion, reduced cell viability, and increased apoptosis levels, reminiscent of cytokine toxicity. In contrast, low (<5,0 μM) concentrations of SR9009 increased Ins-1 mRNA and accumulated insulin-secretion without affecting INS-1 cell viability, mirroring low-concentration IL-1β mediated β-cell stimulation. Inhibiting nitric oxide (NO) synthesis, the lysine deacetylase HDAC3 and the immunoproteasome reduced cytokine-mediated increases in clock gene expression. In conclusion, the cytokine-combination perturbed the intrinsic clocks operative in mouse and human pancreatic islets and induced uncoordinated clock gene expression in INS-1 cells, the latter effect associated with NO, HDAC3, and immunoproteasome activity.
Collapse
Affiliation(s)
- Phillip Alexander Keller Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Volodymyr Petrenko
- Division of Endocrinology, Diabetes, Nutrition and Patient Education, Department of Cell Physiology and Metabolism, Diabetes Center, Faculty of Medicine, University of Geneva, D05.2147c Rue Michel-Servet, 1 CH-1211 Geneva 4, Switzerland; (V.P.); (C.D.)
| | - Peter Horskjær Rose
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Melissa Koomen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Nico Fischer
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Seyed Mojtaba Ghiasi
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Tina Dahlby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Charna Dibner
- Division of Endocrinology, Diabetes, Nutrition and Patient Education, Department of Cell Physiology and Metabolism, Diabetes Center, Faculty of Medicine, University of Geneva, D05.2147c Rue Michel-Servet, 1 CH-1211 Geneva 4, Switzerland; (V.P.); (C.D.)
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| |
Collapse
|
23
|
Khan FH, Dervan E, Bhattacharyya DD, McAuliffe JD, Miranda KM, Glynn SA. The Role of Nitric Oxide in Cancer: Master Regulator or NOt? Int J Mol Sci 2020; 21:ijms21249393. [PMID: 33321789 PMCID: PMC7763974 DOI: 10.3390/ijms21249393] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO) is a key player in both the development and suppression of tumourigenesis depending on the source and concentration of NO. In this review, we discuss the mechanisms by which NO induces DNA damage, influences the DNA damage repair response, and subsequently modulates cell cycle arrest. In some circumstances, NO induces cell cycle arrest and apoptosis protecting against tumourigenesis. NO in other scenarios can cause a delay in cell cycle progression, allowing for aberrant DNA repair that promotes the accumulation of mutations and tumour heterogeneity. Within the tumour microenvironment, low to moderate levels of NO derived from tumour and endothelial cells can activate angiogenesis and epithelial-to-mesenchymal transition, promoting an aggressive phenotype. In contrast, high levels of NO derived from inducible nitric oxide synthase (iNOS) expressing M1 and Th1 polarised macrophages and lymphocytes may exert an anti-tumour effect protecting against cancer. It is important to note that the existing evidence on immunomodulation is mainly based on murine iNOS studies which produce higher fluxes of NO than human iNOS. Finally, we discuss different strategies to target NO related pathways therapeutically. Collectively, we present a picture of NO as a master regulator of cancer development and progression.
Collapse
Affiliation(s)
- Faizan H. Khan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
| | - Eoin Dervan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
| | - Dibyangana D. Bhattacharyya
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
| | - Jake D. McAuliffe
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
| | - Katrina M. Miranda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA;
| | - Sharon A. Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
- Correspondence:
| |
Collapse
|
24
|
Aguilar G, Koning T, Ehrenfeld P, Sánchez FA. Role of NO and S-nitrosylation in the Expression of Endothelial Adhesion Proteins That Regulate Leukocyte and Tumor Cell Adhesion. Front Physiol 2020; 11:595526. [PMID: 33281627 PMCID: PMC7691576 DOI: 10.3389/fphys.2020.595526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Leukocyte recruitment is one of the most important cellular responses to tissue damage. Leukocyte extravasation is exquisitely regulated by mechanisms of selective leukocyte-endothelium recognition through adhesion proteins in the endothelial cell surface that recognize specific integrins in the activated leukocytes. A similar mechanism is used by tumor cells during metastasis to extravasate and form a secondary tumor. Nitric oxide (NO) has been classically described as an anti-inflammatory molecule that inhibits leukocyte adhesion. However, the evidence available shows also a positive role of NO in leukocyte adhesion. These apparent discrepancies might be explained by the different NO concentrations reached during the inflammatory response, which are highly modulated by the expression of different nitric oxide synthases, along the inflammatory response and by changes in their subcellular locations.
Collapse
Affiliation(s)
- Gaynor Aguilar
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Tania Koning
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Centro Interdisciplinario de Estudios del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Fabiola A Sánchez
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Centro Interdisciplinario de Estudios del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
25
|
Morgan ET, Skubic C, Lee CM, Cokan KB, Rozman D. Regulation of cytochrome P450 enzyme activity and expression by nitric oxide in the context of inflammatory disease. Drug Metab Rev 2020; 52:455-471. [PMID: 32898444 DOI: 10.1080/03602532.2020.1817061] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many hepatic cytochrome P450 enzymes and their associated drug metabolizing activities are down-regulated in disease states, and much of this has been associated with inflammatory cytokines and their signaling pathways. One such pathway is the induction of inducible nitric oxide synthase (NOS2) and generation of nitric oxide (NO) in many tissues and cells including the liver and hepatocytes. Experiments in the 1990s demonstrated that NO could bind to and inhibit P450 enzymes, and suggested that inhibition of NOS could attenuate, and NO generation could mimic, the down-regulation by inflammatory stimuli of not only P450 catalytic activities but also of mRNA expression and protein levels of certain P450 enzymes. This review will summarize and examine the evidence that NO functionally inhibits and down-regulates P450 enzymes in vivo and in vitro, with a particular focus on the mechanisms by which these effects are achieved.
Collapse
Affiliation(s)
- Edward T Morgan
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Cene Skubic
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Choon-Myung Lee
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Kaja Blagotinšek Cokan
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
26
|
Vong LB, Nagasaki Y. Nitric Oxide Nano-Delivery Systems for Cancer Therapeutics: Advances and Challenges. Antioxidants (Basel) 2020; 9:E791. [PMID: 32858970 PMCID: PMC7555477 DOI: 10.3390/antiox9090791] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) plays important roles in various physiological and pathological functions and processes in the human body. Therapeutic application of NO molecules has been investigated in various diseases, including cardiovascular disease, cancer, and infections. However, the extremely short half-life of NO, which limits its clinical use considerably, along with non-specific distribution, has resulted in a low therapeutic index and undesired adverse effects. To overcome the drawbacks of using this gaseous signaling molecule, researchers in the last several decades have focused on innovative medical technologies, specifically nanoparticle-based drug delivery systems (DDSs), because these systems alter the biodistribution of the therapeutic agent through controlled release at the target tissues, resulting in a significant therapeutic drug effect. Thus, the application of nano-systems for NO delivery in the field of biomedicine, particularly in the development of new drugs for cancer treatment, has been increasing worldwide. In this review, we discuss NO delivery nanoparticle systems, with the aim of improving drug delivery development for conventional chemotherapies and controlling multidrug resistance in cancer treatments.
Collapse
Affiliation(s)
- Long Binh Vong
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Master’s School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
27
|
Role of nitric oxide in the response to photooxidative stress in prostate cancer cells. Biochem Pharmacol 2020; 182:114205. [PMID: 32828802 DOI: 10.1016/j.bcp.2020.114205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
A continuous state of oxidative stress during inflammation contributes to the development of 25% of human cancers. Epithelial and inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) that can damage DNA. ROS/RNS have biological implications in both chemoresistance and tumor recurrence. As several clinically employed anticancer drugs can generate ROS/RNS, we have addressed herein how inducible nitric oxide synthase and nitric oxide (iNOS/•NO) affect the molecular pathways implicated in the tumor response to oxidative stress. To mimic the oxidative stress associated with chemotherapy, we used a photosensitizer (pheophorbide a) that can generate ROS/RNS in a controlled manner. We investigated how iNOS/•NO modulates the tumor response to oxidative stress by involving the NF-κB and Nrf2 molecular pathways. We found that low levels of iNOS induce the development of a more aggressive tumor population, leading to survival, recurrence and resistance. By contrast, high levels of iNOS/•NO sensitize tumor cells to oxidative treatment, causing cell growth arrest. Our analysis showed that NF-κB and Nrf2, which are activated in response to oxidative stress, communicate with each other through RKIP. For this critical role, RKIP could be an interesting target for anticancer drugs. Our study provides insight into the complex signaling response of cancer cells to oxidative treatments as well as new possibilities for the rational design of new therapeutic strategies.
Collapse
|
28
|
Sanhueza C, Bennett JC, Valenzuela-Valderrama M, Contreras P, Lobos-González L, Campos A, Wehinger S, Lladser Á, Kiessling R, Leyton L, Quest AF. Caveolin-1-Mediated Tumor Suppression Is Linked to Reduced HIF1α S-Nitrosylation and Transcriptional Activity in Hypoxia. Cancers (Basel) 2020; 12:cancers12092349. [PMID: 32825247 PMCID: PMC7565942 DOI: 10.3390/cancers12092349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023] Open
Abstract
Caveolin-1 (CAV1) is a well-established nitric oxide synthase inhibitor, whose function as a tumor suppressor is favored by, but not entirely dependent on, the presence of E-cadherin. Tumors are frequently hypoxic and the activation of the hypoxia-inducible factor-1α (HIF1α) promotes tumor growth. HIF1α is regulated by several post-translational modifications, including S-nitrosylation. Here, we evaluate the mechanisms underlying tumor suppression by CAV1 in cancer cells lacking E-cadherin in hypoxia. Our main findings are that CAV1 reduced HIF activity and Vascular Endothelial Growth Factor expression in vitro and in vivo. This effect was neither due to reduced HIF1α protein stability or reduced nuclear translocation. Instead, HIF1α S-nitrosylation observed in hypoxia was diminished by the presence of CAV1, and nitric oxide synthase (NOS) inhibition by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) reduced HIF1α transcriptional activity in cells to the same extent as observed upon CAV1 expression. Additionally, arginase inhibition by (S)-(2-Boronoethyl)-L-cysteine (BEC) partially rescued cells from the CAV1-mediated suppression of HIF1α transcriptional activity. In vivo, CAV1-mediated tumor suppression was dependent on NOS activity. In summary, CAV1-dependent tumor suppression in the absence of E-cadherin is linked to reduced HIF1α transcriptional activity via diminished NOS-mediated HIF1α S-nitrosylation.
Collapse
Affiliation(s)
- Carlos Sanhueza
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.S.); (J.C.B.); (P.C.); (A.C.); (S.W.); (L.L.)
- Instituto Oncológico Fundación Arturo López Pérez, Santiago 7500921, Chile
| | - Jimena Castillo Bennett
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.S.); (J.C.B.); (P.C.); (A.C.); (S.W.); (L.L.)
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380000, Chile; (M.V.-V.); (L.L.-G.)
| | - Manuel Valenzuela-Valderrama
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380000, Chile; (M.V.-V.); (L.L.-G.)
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8320000, Chile
| | - Pamela Contreras
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.S.); (J.C.B.); (P.C.); (A.C.); (S.W.); (L.L.)
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380000, Chile; (M.V.-V.); (L.L.-G.)
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380000, Chile; (M.V.-V.); (L.L.-G.)
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana Universidad Del Desarrollo, Santiago 7710162, Chile
| | - América Campos
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.S.); (J.C.B.); (P.C.); (A.C.); (S.W.); (L.L.)
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380000, Chile; (M.V.-V.); (L.L.-G.)
| | - Sergio Wehinger
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.S.); (J.C.B.); (P.C.); (A.C.); (S.W.); (L.L.)
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile
| | - Álvaro Lladser
- Laboratory of Immunoncology, Fundación Ciencia & Vida; Facultad de Medicina y Ciencia, Universidad San Sebastián; Santiago 7780272, Chile;
| | - Rolf Kiessling
- Immune and Gene Therapy Laboratory, Department of Oncology and Pathology, Karolinska Institutet, 17164 Stockholm, Sweden;
| | - Lisette Leyton
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.S.); (J.C.B.); (P.C.); (A.C.); (S.W.); (L.L.)
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380000, Chile; (M.V.-V.); (L.L.-G.)
| | - Andrew F.G. Quest
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.S.); (J.C.B.); (P.C.); (A.C.); (S.W.); (L.L.)
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380000, Chile; (M.V.-V.); (L.L.-G.)
- Correspondence: ; Tel.: +56-2-29786832
| |
Collapse
|
29
|
Du Q, Luo J, Yang MQ, Liu Q, Heres C, Yan YH, Stolz D, Geller DA. iNOS/NO is required for IRF1 activation in response to liver ischemia-reperfusion in mice. Mol Med 2020; 26:56. [PMID: 32517688 PMCID: PMC7285570 DOI: 10.1186/s10020-020-00182-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Background Ischemia and reperfusion (I/R) induces cytokines, and up-regulates inducible nitric oxide synthase (iNOS), interferon regulatory factor-1(IRF1) and p53 up-regulated modulator of apoptosis (PUMA), which contribute to cell death and tissue injury. However, the mechanisms that I/R induces IRF1-PUMA through iNOS/NO is still unknown. Methods Ischemia was induced by occluding structures in the portal triad (hepatic artery, portal vein, and bile duct) to the left and median liver lobes for 60 min, and reperfusion was initiated by removal of the clamp. Induction of iNOS, IRF1 and PUMA in response to I/R were analyzed. I/R induced IRF1 and PUMA expression were compared between iNOS wild-type and iNOS knockout (KO) mice. Human iNOS gene transfected-cells were used to determine iNOS/NO signals targeting IRF1. To test whether HDAC2 was involved in the mediation of iNOS/NO-induced IRF1 transcriptional activities and its target gene (PUMA and p21) expression, NO donors were used in vitro and in vivo. Results IRF1 nuclear translocation and PUMA transcription elevation were markedly induced following I/R in the liver of iNOS wild-type mice compared with that in knock-out mice. Furthermore, I/R induced hepatic HDAC2 expression and activation, and decreased H3AcK9 expression in iNOS wild-type mice, but not in the knock-out mice. Mechanistically, over-expression of human iNOS gene increased IRF1 transcriptional activity and PUMA expression, while iNOS inhibitor L-NIL reversed these effects. Cytokine-induced PUMA through IRF1 was p53 dependent. IRF1 and p53 synergistically up-regulated PUMA expression. iNOS/NO-induced HDAC2 mediated histone H3 deacetylation and promoted IRF1 transcriptional activity. Moreover, treating the cells with romidepsin, an HDAC1/2 inhibitor decreased NO-induced IRF1 and PUMA expression. Conclusions This study demonstrates a novel mechanism that iNOS/NO is required for IRF1/PUMA signaling through a positive-feedback loop between iNOS and IRF1, in which HDAC2-mediated histone modification is involved to up-regulate IRF1 in response to I/R in mice.
Collapse
Affiliation(s)
- Qiang Du
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA
| | - Jing Luo
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA.,Department of Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, Hunan, People's Republic of China, 410011
| | - Mu-Qing Yang
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA.,Department of Surgery, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Quan Liu
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA.,Southern University of Science and Technology, School of Medicine, 1088 Xueyuan Blvd. , Nanshan District, Shenzhen, Guangdong, People's Republic of China, 518055
| | - Caroline Heres
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA
| | - Yi-He Yan
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA
| | - Donna Stolz
- Department of Cellular Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - David A Geller
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
30
|
Anavi S, Tirosh O. iNOS as a metabolic enzyme under stress conditions. Free Radic Biol Med 2020; 146:16-35. [PMID: 31672462 DOI: 10.1016/j.freeradbiomed.2019.10.411] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO) is a free radical acting as a cellular signaling molecule in many different biochemical processes. NO is synthesized from l-arginine through the action of the nitric oxide synthase (NOS) family of enzymes, which includes three isoforms: endothelial NOS (eNOS), neuronal NOS (nNOS) and inducible NOS (iNOS). iNOS-derived NO has been associated with the pathogenesis and progression of several diseases, including liver diseases, insulin resistance, obesity and diseases of the cardiovascular system. However, transient NO production can modulate metabolism to survive and cope with stress conditions. Accumulating evidence strongly imply that iNOS-derived NO plays a central role in the regulation of several biochemical pathways and energy metabolism including glucose and lipid metabolism during inflammatory conditions. This review summarizes current evidence for the regulation of glucose and lipid metabolism by iNOS during inflammation, and argues for the role of iNOS as a metabolic enzyme in immune and non-immune cells.
Collapse
Affiliation(s)
- Sarit Anavi
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel; Peres Academic Center, Rehovot, Israel
| | - Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
31
|
Koch B, Barugahare AA, Lo TL, Huang C, Schittenhelm RB, Powell DR, Beilharz TH, Traven A. A Metabolic Checkpoint for the Yeast-to-Hyphae Developmental Switch Regulated by Endogenous Nitric Oxide Signaling. Cell Rep 2019; 25:2244-2258.e7. [PMID: 30463019 DOI: 10.1016/j.celrep.2018.10.080] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/31/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
The yeast Candida albicans colonizes several sites in the human body and responds to metabolic signals in commensal and pathogenic states. The yeast-to-hyphae transition correlates with virulence, but how metabolic status is integrated with this transition is incompletely understood. We used the putative mitochondrial fission inhibitor mdivi-1 to probe the crosstalk between hyphal signaling and metabolism. Mdivi-1 repressed C. albicans hyphal morphogenesis, but the mechanism was independent of its presumed target, the mitochondrial fission GTPase Dnm1. Instead, mdivi-1 triggered extensive metabolic reprogramming, consistent with metabolic stress, and reduced endogenous nitric oxide (NO) levels. Limiting endogenous NO stabilized the transcriptional repressor Nrg1 and inhibited the yeast-to-hyphae transition. We establish a role for endogenous NO signaling in C. albicans hyphal morphogenesis and suggest that NO regulates a metabolic checkpoint for hyphal growth. Furthermore, identifying NO signaling as an mdivi-1 target could inform its therapeutic applications in human diseases.
Collapse
Affiliation(s)
- Barbara Koch
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Adele A Barugahare
- Bioinformatics Platform, Monash University, Clayton, VIC 3800, Australia
| | - Tricia L Lo
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Cheng Huang
- Biomedical Proteomics Facility and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ralf B Schittenhelm
- Biomedical Proteomics Facility and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - David R Powell
- Bioinformatics Platform, Monash University, Clayton, VIC 3800, Australia
| | - Traude H Beilharz
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ana Traven
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
32
|
Pan L, Lin Z, Tang X, Tian J, Zheng Q, Jing J, Xie L, Chen H, Lu Q, Wang H, Li Q, Han Y, Ji Y. S-Nitrosylation of Plastin-3 Exacerbates Thoracic Aortic Dissection Formation via Endothelial Barrier Dysfunction. Arterioscler Thromb Vasc Biol 2019; 40:175-188. [PMID: 31694393 DOI: 10.1161/atvbaha.119.313440] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Thoracic aortic dissection (TAD) is a fatal disease that leads to aortic rupture and sudden death. However, little is known about the effect and molecular mechanism of S-nitrosylation (SNO) modifications in TAD formation. Approach and Results: SNO levels were higher in aortic tissues from TAD patients than in those from healthy controls, and PLS3 (plastin-3) SNO was identified by liquid chromatography-tandem mass spectrometry analysis. Furthermore, tail vein administration of endothelial-specific adeno-associated viruses of mutant PLS3-C566A (denitrosylated form) suppressed the development of TAD in mice, but the wild-type PLS3 (S-nitrosylated form) virus did not. Mechanistically, Ang II (angiotensin II)-induced PLS3 SNO enhanced the association of PLS3 with both plectin and cofilin via an iNOS (inducible nitric oxide synthase)-dependent pathway in endothelial cells. The formation of PLS3/plectin/cofilin complex promoted cell migration and tube formation but weakened adherens junction formation in Ang II-treated endothelial cells. Interestingly, denitrosylated form of PLS3 partially mitigated Ang II-induced PLS3/plectin/cofilin complex formation and cell junction disruption. Additionally, the inhibition of iNOS attenuated PLS3 SNO and the association of PLS3 with plectin and cofilin, thereby modulating endothelial barrier function. CONCLUSIONS Our data indicate that protein SNO modification in endothelial cells modulates the progression of aortic aneurysm and dissection. The iNOS-mediated SNO of PLS3 at the Cys566 site promoted its interaction with cofilin and plectin, thus contributing to endothelial barrier disruption and pathological angiogenesis in TAD.
Collapse
Affiliation(s)
- Lihong Pan
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| | - Zhe Lin
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| | - Xin Tang
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| | - Jiaxin Tian
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| | - Qiao Zheng
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| | - Jin Jing
- Department of Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, China (J.J., Q.L.)
| | - Liping Xie
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| | - Hongshan Chen
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| | - Qiulun Lu
- Department of Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, China (J.J., Q.L.)
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (H.W.)
| | - Qingguo Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, China (Q.L.)
| | - Yi Han
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, China (Y.H.)
| | - Yong Ji
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| |
Collapse
|
33
|
Emerging role of innate B1 cells in the pathophysiology of autoimmune and neuroimmune diseases: Association with inflammation, oxidative and nitrosative stress and autoimmune responses. Pharmacol Res 2019; 148:104408. [DOI: 10.1016/j.phrs.2019.104408] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022]
|
34
|
S-nitrosoglutathione prevents cognitive impairment through epigenetic reprogramming in ovariectomised mice. Biochem Pharmacol 2019; 168:352-365. [DOI: 10.1016/j.bcp.2019.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/23/2019] [Indexed: 12/22/2022]
|
35
|
Ren X, Sengupta R, Lu J, Lundberg JO, Holmgren A. Characterization of mammalian glutaredoxin isoforms as S‐denitrosylases. FEBS Lett 2019; 593:1799-1806. [DOI: 10.1002/1873-3468.13454] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoyuan Ren
- Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
| | - Rajib Sengupta
- Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
- Amity Institute of Biotechnology Amity University Kolkata India
| | - Jun Lu
- Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
- School of Pharmaceutical Sciences Southwest University Chongqing China
| | - Jon O. Lundberg
- Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
| |
Collapse
|
36
|
Anticancer and Differentiation Properties of the Nitric Oxide Derivative of Lopinavir in Human Glioblastoma Cells. Molecules 2018; 23:molecules23102463. [PMID: 30261624 PMCID: PMC6222694 DOI: 10.3390/molecules23102463] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/17/2018] [Accepted: 09/23/2018] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma (GBM) is the most frequent and deadly form of primary malignant brain tumor among adults. A promising emerging approach for GBM treatment may be offered from HIV protease inhibitors (HIV-PIs). In fact, in addition to their primary pharmacological activity in the treatment of HIV infection, they possess important anti-neoplastic effects. According to previous studies, the addition of a nitric oxide (NO) donating group to parental compounds can reduce their toxicity and enhance the anticancer action of various compounds, including HIV-PIs. In this study we compared the effects of the HIV-PI Lopinavir (Lopi) and of its NO-derivative Lopinavir-NO (Lopi-NO) on the in vitro growth of LN-229 and U-251 human GBM cell lines. Lopi-NO reduced the viability of LN-229 and U-251 cells at significantly lower concentrations than the parental drug. In particular, Lopi-NO inhibited tumor cell proliferation and induced the differentiation of U-251 cells toward an astrocyte-like phenotype without triggering significant cell death in both cell types. The anticancer effect of Lopi-NO was persistent even upon drug removal. Furthermore, Lopi-NO induced strong autophagy that did not appear to be related to its chemotherapeutic action. Overall, our results suggest that Lopi-NO could be a potential effective anticancer drug for GBM treatment.
Collapse
|
37
|
Kluska K, Adamczyk J, Krężel A. Metal binding properties, stability and reactivity of zinc fingers. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Romero JM, Carrizo ME, Curtino JA. Characterization of human triosephosphate isomerase S-nitrosylation. Nitric Oxide 2018; 77:26-34. [PMID: 29678765 DOI: 10.1016/j.niox.2018.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 12/23/2022]
Abstract
Triosephosphate isomerase (TPI), the glycolytic enzyme that catalyzes the isomerization of dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-phosphate (G3P), has been frequently identified as a target of S-nitrosylation by proteomic studies. However, the effect of S-nitrosylation on its activity has only been explored in plants and algae. Here, we describe the in vitro S-nitrosylation of human TPI (hTPI), and the effect of the modification on its enzymatic parameters. NO-incorporation into the enzyme cysteine residues occurred by a time-dependent S-transnitrosylation from both, S-nitrosocysteine (CySNO) and S-nitrosoglutathione (GSNO), with CySNO being the more efficient NO-donor. Both X-ray crystal structure and mass spectrometry analyses showed that only Cys217 was S-nitrosylated. hTPI S-nitrosylation produced a 30% inhibition of the Vmax of the DHAP conversion to G3P, without affecting the Km for DHAP. This is the first study describing features of human TPI S-nitrosylation.
Collapse
Affiliation(s)
- Jorge Miguel Romero
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, Universidad Nacional de Córdoba - Consejo Nacional de Investigaciones Científicas y Técnicas (UNC-CONICET)), Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.
| | - María Elena Carrizo
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, Universidad Nacional de Córdoba - Consejo Nacional de Investigaciones Científicas y Técnicas (UNC-CONICET)), Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Juan Agustín Curtino
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, Universidad Nacional de Córdoba - Consejo Nacional de Investigaciones Científicas y Técnicas (UNC-CONICET)), Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| |
Collapse
|
39
|
Relation of nNOS isoforms to mitochondrial density and PGC-1alpha expression in striated muscles of mice. Nitric Oxide 2018; 77:35-43. [PMID: 29678764 DOI: 10.1016/j.niox.2018.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 01/16/2023]
Abstract
The expression of neuronal NO synthase (nNOS) alpha- and beta-isoforms in skeletal muscle is well documented but only little information is available about their regulation/functions. Using different mouse models, we now assessed whether the expression of nNOS-isoforms in muscle fibers is related to mitochondria content/activity and regulated by peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha). Catalytic histochemistry revealed highest nNOS-concentrations to be present in type-2 oxidative muscle fibers. Differences in mitochondrial density between nNOS-KO-mice and WT-littermates established by morphometry after transmission electron microscopy were significant in the oxidative portion of the tibialis anterior muscle (TA) but not in rectus femoris muscle (RF) indicating an nNOS-dependent mitochondrial pool in TA. Quantitative immunoblotting displayed the nNOS alpha-isoform to preponderate in those striated muscles of C57BL/6-mice that comprise of many type-2 oxidative fibers, e.g. TA, while roughly even levels of the two nNOS-isoforms were expressed in those muscles that mainly consist of type-2 glycolytic fibers, e.g. RF. Differences in citrate synthase-activity in muscle homogenates between nNOS-KO-mice and WT-littermates were positively related to nNOS alpha-isoform levels. In transgenic-mice over-expressing muscular PGC-1alpha compared to WT-littermates, immunoblotting revealed a significant shift in nNOS-expression in favor of the alpha-isoform in six out of eight striated muscles (exceptions: soleus muscle and tongue) without consistent relationship to changes in the expression of mitochondrial markers. In summary, our study demonstrated the nNOS alpha-isoform expression to be related to mitochondrial content/activity and to be up-regulated by up-stream PGC-1alpha in striated muscles, particularly in those enriched with type-2 oxidative fibers implying a functional convergence of the two signaling systems in these fibers.
Collapse
|
40
|
eNOS S-nitrosylation mediated OxLDL-induced endothelial dysfunction via increasing the interaction of eNOS with β‑catenin. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1793-1801. [PMID: 29471036 DOI: 10.1016/j.bbadis.2018.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/19/2018] [Accepted: 02/13/2018] [Indexed: 01/03/2023]
Abstract
Protein S-nitrosylation plays an important role in the progression of cardiovascular diseases. eNOS can be S-nitrosylated in endothelial cells, and this modification reversibly attenuates enzyme activity. Under physiological conditions, eNOS directly interacts with β‑catenin. However, whether and how eNOS S-nitrosylation regulates the β‑catenin signal pathway and participates in endothelial dysfunction remains unknown. Here, we show that OxLDL induces the S-nitrosylation of eNOS, which enhances the interaction between eNOS and β‑catenin, transcriptional activity of β‑catenin, cell migration and adhesion molecule expression in endothelial cells. In addition, these effects are partially abolished after eNOS is mutated at Cys94 and Cys99, but not Cys441, in endothelial cells. Furthermore, OxLDL increases iNOS expression. The specific iNOS inhibitor 1400 W decreases eNOS S-nitrosylation and the association of eNOS and β‑catenin, thereby blocking the β‑catenin signal pathway to alleviate OxLDL-induced endothelial dysfunction. Taken together, OxLDL induces eNOS S-nitrosylation at Cys94 and Cys99 via an iNOS-dependent manner, which may increase β‑catenin activation and trigger endothelial injury. This study describes a novel mechanism of endothelial dysfunction.
Collapse
|
41
|
Liao XH, Xiang Y, Li H, Zheng DL, Xu Y, Xi Yu C, Li JP, Zhang XY, Xing WB, Cao DS, Bao LY, Zhang TC. VEGF-A Stimulates STAT3 Activity via Nitrosylation of Myocardin to Regulate the Expression of Vascular Smooth Muscle Cell Differentiation Markers. Sci Rep 2017; 7:2660. [PMID: 28572685 PMCID: PMC5453982 DOI: 10.1038/s41598-017-02907-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/20/2017] [Indexed: 01/21/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) is a pivotal player in angiogenesis. It is capable of influencing such cellular processes as tubulogenesis and vascular smooth muscle cell (VSMC) proliferation, yet very little is known about the actual signaling events that mediate VEGF-A induced VSMC phenotypic switch. In this report, we describe the identification of an intricate VEGF-A-induced signaling cascade that involves VEGFR2, STAT3, and Myocardin. We demonstrate that VEGF-A promotes VSMC proliferation via VEGFR2/STAT3-mediated upregulating the proliferation of markers like Cyclin D1 and PCNA. Specifically, VEGF-A leads to nitrosylation of Myocardin, weakens its effect on promoting the expression of contractile markers and is unable to inhibit the activation of STAT3. These observations reinforce the importance of nitric oxide and S-nitrosylation in angiogenesis and provide a mechanistic pathway for VEGF-A-induced VSMC phenotypic switch. In addition, Myocardin, GSNOR and GSNO can create a negative feedback loop to regulate the VSMC phenotypic switch. Thus, the discovery of this interactive network of signaling pathways provides novel and unexpected therapeutic targets for angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Xing Hua Liao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China. .,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
| | - Yuan Xiang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Hui Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - De Liang Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yao Xu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Cheng Xi Yu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Jia Peng Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Xiao Yu Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Wei Bin Xing
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Dong Sun Cao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Le Yuan Bao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Tong Cun Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China. .,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
| |
Collapse
|
42
|
Wang Y, Cui L, Xu H, Liu S, Zhu F, Yan F, Shen S, Zhu M. TRPV1 agonism inhibits endothelial cell inflammation via activation of eNOS/NO pathway. Atherosclerosis 2017; 260:13-19. [DOI: 10.1016/j.atherosclerosis.2017.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/05/2017] [Accepted: 03/08/2017] [Indexed: 12/16/2022]
|
43
|
Endothelin-1 Induces Degeneration of Cultured Motor Neurons Through a Mechanism Mediated by Nitric Oxide and PI3K/Akt Pathway. Neurotox Res 2017; 32:58-70. [PMID: 28285347 DOI: 10.1007/s12640-017-9711-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 02/08/2017] [Accepted: 02/23/2017] [Indexed: 12/13/2022]
Abstract
Endothelin-1 (ET-1) is a vasoactive peptide produced by activated astrocytes and microglia and is implicated in initiating and sustaining reactive gliosis in neurodegenerative diseases. We have previously suggested that ET-1 can play a role in the pathophysiology of amyotrophic lateral sclerosis (ALS). Indeed, we reported that this peptide is abundantly expressed in reactive astrocytes in the spinal cord of SOD1-G93A mice and ALS patients and exerts a toxic effect on motor neurons (MNs) in an in vitro model of mixed spinal cord cultures enriched with reactive astrocytes. Here, we explored the possible mechanisms underlying the toxic effect of ET-1 on cultured MNs. We show that ET-1 toxicity is not directly caused by oxidative stress or activation of cyclooxygenase-2 but requires the synthesis of nitric oxide and is mediated by a reduced activation of the phosphoinositide 3-kinase pathway. Furthermore, we observed that ET-1 is also toxic for microglia, although its effect on MNs is independent of the presence of this type of glial cells. Our study confirms that ET-1 may contribute to MN death and corroborates the view that the modulation of ET-1 signaling might be a therapeutic strategy to slow down MN degeneration in ALS.
Collapse
|
44
|
Ueda N, Richards GS, Degnan BM, Kranz A, Adamska M, Croll RP, Degnan SM. An ancient role for nitric oxide in regulating the animal pelagobenthic life cycle: evidence from a marine sponge. Sci Rep 2016; 6:37546. [PMID: 27874071 PMCID: PMC5118744 DOI: 10.1038/srep37546] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 11/01/2016] [Indexed: 01/08/2023] Open
Abstract
In many marine invertebrates, larval metamorphosis is induced by environmental cues that activate sensory receptors and signalling pathways. Nitric oxide (NO) is a gaseous signalling molecule that regulates metamorphosis in diverse bilaterians. In most cases NO inhibits or represses this process, although it functions as an activator in some species. Here we demonstrate that NO positively regulates metamorphosis in the poriferan Amphimedon queenslandica. High rates of A. queenslandica metamorphosis normally induced by a coralline alga are inhibited by an inhibitor of nitric oxide synthase (NOS) and by a NO scavenger. Consistent with this, an artificial donor of NO induces metamorphosis even in the absence of the alga. Inhibition of the ERK signalling pathway prevents metamorphosis in concert with, or downstream of, NO signalling; a NO donor cannot override the ERK inhibitor. NOS gene expression is activated late in embryogenesis and in larvae, and is enriched in specific epithelial and subepithelial cell types, including a putative sensory cell, the globular cell; DAF-FM staining supports these cells being primary sources of NO. Together, these results are consistent with NO playing an activating role in induction of A. queenslandica metamorphosis, evidence of its highly conserved regulatory role in metamorphosis throughout the Metazoa.
Collapse
Affiliation(s)
- Nobuo Ueda
- School of Biological Sciences, University of Queensland, Brisbane QLD 4072, Australia
| | - Gemma S. Richards
- School of Biological Sciences, University of Queensland, Brisbane QLD 4072, Australia
| | - Bernard M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane QLD 4072, Australia
| | - Alexandrea Kranz
- School of Biological Sciences, University of Queensland, Brisbane QLD 4072, Australia
| | - Maja Adamska
- School of Biological Sciences, University of Queensland, Brisbane QLD 4072, Australia
| | - Roger P. Croll
- Department of Physiology & Biophysics, Dalhousie University, Halifax NS B3H 4R2, Canada
| | - Sandie M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
45
|
Hydrogen sulfide inhibits development of atherosclerosis through up-regulating protein S-nitrosylation. Biomed Pharmacother 2016; 83:466-476. [PMID: 27427853 DOI: 10.1016/j.biopha.2016.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/01/2016] [Accepted: 07/03/2016] [Indexed: 01/01/2023] Open
Abstract
Hydrogen sulfide (H2S) is an important gaseous signaling molecule that serves many important regulatory roles in physiological and pathophysiological conditions. H2S exerts an anti-atherosclerotic effect through mediating the biological functions of nitric oxide (NO). However, its mechanism of action is unclear. The purpose of this study is to explore the effect mechanism of H2S on the development of atherosclerosis with regard to protein S-nitrosylation. A total of 45 male apoE-/- mice were randomly divided into three groups. Atherosclerosis was induced by Western diet (21% fat and 0.15% cholesterol) with/without administration of a H2S donor (NaHS) or an endogenous cystathionine γ-lyase inhibitor (d, l-propargylglycine) for 12 weeks. After 12 weeks, plasma lipid and plasma NO levels were measured. Aortic gross lesion area and histopathological features of aortic lesion were determined. Additionally, the level of S-nitrosylated proteins in vascular smooth muscle cells (VSMCs) was detected using immunofluorescence in aorta. Rat VSMCs were performed in an in vitro experiment. Inducible nitric oxide synthase (iNOS) protein expression, NO generation, protein S-nitrosylation, and cell proliferation and migration were measured. We found that H2S significantly reduced the aortic atherosclerotic lesion area (P=0.006) and inhibited lipid and macrophage accumulation (P=0.004, P=0.002) and VSMC proliferation (P=0.019) in apoE-/- mice. H2S could up-regulate levels of plasma NO and protein S-nitrosylation in aorta VSMCs. However, d, l- propargylglycine had the opposite effect, increasing the lesion area and the content of lipids and macrophages in the lesions of apoE-/- mice and down-regulating plasma NO levels and protein S-nitrosylation in aorta VSMCs. In vitro experiments, H2S could significantly reverse the reduction of iNOS expression and NO generation induced by oxidized low-density lipoprotein in VSMCs. Moreover, H2S could increase the protein S-nitrosylation level of VSMCs in a dose-dependent manner, and the effect could be inhibited by iNOS inhibitors. In addition, proliferation and migration of VSMCs could be inhibited by H2S in a dose-dependent manner, which could be blocked by an iNOS inhibitor or protein S-nitrosylation removal agent. Our data suggest that H2S could inhibit the development of atherosclerosis by up-regulating plasma NO and protein S-nitrosylation, thereby inhibiting the proliferation and migration of VSMCs.
Collapse
|
46
|
Netti VA, Iovane AN, Vatrella MC, Zotta E, Fellet AL, Balaszczuk AM. Effects of nitric oxide system and osmotic stress on Aquaporin-1 in the postnatal heart. Biomed Pharmacother 2016; 81:225-234. [DOI: 10.1016/j.biopha.2016.03.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 11/25/2022] Open
|
47
|
Akbar M, Essa MM, Daradkeh G, Abdelmegeed MA, Choi Y, Mahmood L, Song BJ. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res 2016; 1637:34-55. [PMID: 26883165 PMCID: PMC4821765 DOI: 10.1016/j.brainres.2016.02.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 12/12/2022]
Abstract
Mitochondria are important for providing cellular energy ATP through the oxidative phosphorylation pathway. They are also critical in regulating many cellular functions including the fatty acid oxidation, the metabolism of glutamate and urea, the anti-oxidant defense, and the apoptosis pathway. Mitochondria are an important source of reactive oxygen species leaked from the electron transport chain while they are susceptible to oxidative damage, leading to mitochondrial dysfunction and tissue injury. In fact, impaired mitochondrial function is commonly observed in many types of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, alcoholic dementia, brain ischemia-reperfusion related injury, and others, although many of these neurological disorders have unique etiological factors. Mitochondrial dysfunction under many pathological conditions is likely to be promoted by increased nitroxidative stress, which can stimulate post-translational modifications (PTMs) of mitochondrial proteins and/or oxidative damage to mitochondrial DNA and lipids. Furthermore, recent studies have demonstrated that various antioxidants, including naturally occurring flavonoids and polyphenols as well as synthetic compounds, can block the formation of reactive oxygen and/or nitrogen species, and thus ultimately prevent the PTMs of many proteins with improved disease conditions. Therefore, the present review is aimed to describe the recent research developments in the molecular mechanisms for mitochondrial dysfunction and tissue injury in neurodegenerative diseases and discuss translational research opportunities.
Collapse
Affiliation(s)
- Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Oman; Ageing and Dementia Research Group, Sultan Qaboos University, Oman
| | - Ghazi Daradkeh
- Department of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Oman
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Lubna Mahmood
- Department of Nutritional Sciences, Qatar University, Qatar
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Olivera GC, Ren X, Vodnala SK, Lu J, Coppo L, Leepiyasakulchai C, Holmgren A, Kristensson K, Rottenberg ME. Nitric Oxide Protects against Infection-Induced Neuroinflammation by Preserving the Stability of the Blood-Brain Barrier. PLoS Pathog 2016; 12:e1005442. [PMID: 26915097 PMCID: PMC4767601 DOI: 10.1371/journal.ppat.1005442] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 01/15/2016] [Indexed: 01/06/2023] Open
Abstract
Nitric oxide (NO) generated by inducible NO synthase (iNOS) is critical for defense against intracellular pathogens but may mediate inflammatory tissue damage. To elucidate the role of iNOS in neuroinflammation, infections with encephalitogenic Trypanosoma brucei parasites were compared in inos-/- and wild-type mice. Inos-/- mice showed enhanced brain invasion by parasites and T cells, and elevated protein permeability of cerebral vessels, but similar parasitemia levels. Trypanosome infection stimulated T cell- and TNF-mediated iNOS expression in perivascular macrophages. NO nitrosylated and inactivated pro-inflammatory molecules such as NF-κΒp65, and reduced TNF expression and signalling. iNOS-derived NO hampered both TNF- and T cell-mediated parasite brain invasion. In inos-/- mice, TNF stimulated MMP, including MMP9 activity that increased cerebral vessel permeability. Thus, iNOS-generated NO by perivascular macrophages, strategically located at sites of leukocyte brain penetration, can serve as a negative feed-back regulator that prevents unlimited influx of inflammatory cells by restoring the integrity of the blood-brain barrier. Inflammatory responses can lead to harmful effects on the brain during many chronic parasitic infections, including those with African trypanosomes. T. brucei, the causative agent of African trypanosomiasis, that traverse the blood-brain barrier (BBB) to invade the brain, where, together with inflammatory infiltrates, they likely contribute to the neurologic disturbances of the disease. High levels of nitric oxide (NO) released by the inducible NO synthase (iNOS) are critical for defense against parasites, but also mediate inflammatory tissue damage. Using a mouse model of African trypanosomiasis, we uncovered an unexpected role of NO, preserving the integrity of the BBB and limiting the neuroinvasion of leukocytes and parasites, rather than mediating brain damage or killing of trypanosomes. iNOS-derived NO, nitrosylates molecules such as pro-inflammatory transcription factors. iNOS hampered both TNF- and T cell-mediated parasite and leukocyte brain invasion and passage of serum proteins across the BBB. In inos-/- mice, exacerbated TNF secretion and signalling increased MMP9 activity that mediates cerebral vascular permeability. Thus, NO is crucial for maintenance of the integrity of the cerebral vessels and serves as a feed-back regulator by inhibiting leukocyte brain penetration during T. brucei infection. Consequently, therapies could target iNOS to reduce tissue damage during neuroinflammation.
Collapse
Affiliation(s)
- Gabriela C. Olivera
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoyuan Ren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Suman K. Vodnala
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jun Lu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lucia Coppo
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Martin E. Rottenberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
49
|
Cañas A, López-Sánchez LM, Peñarando J, Valverde A, Conde F, Hernández V, Fuentes E, López-Pedrera C, de la Haba-Rodríguez JR, Aranda E, Rodríguez-Ariza A. Altered S-nitrosothiol homeostasis provides a survival advantage to breast cancer cells in HER2 tumors and reduces their sensitivity to trastuzumab. Biochim Biophys Acta Mol Basis Dis 2016; 1862:601-610. [PMID: 26854735 DOI: 10.1016/j.bbadis.2016.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/21/2016] [Accepted: 02/04/2016] [Indexed: 01/23/2023]
Abstract
The monoclonal antibody trastuzumab against HER2/neu, which is overexpressed in 15-20% of breast cancers, has clinical efficacy but many patients do not respond to initial treatment or develop resistance during treatment. Nitric oxide (NO) regulates cell signaling by targeting specific cysteine residues in proteins, forming S-nitrosothiols (SNO) in a process known as S-nitrosylation. We previously reported that molecular characteristics in breast cancer may dictate the tumor response to impaired SNO homeostasis. In the present study, we explored the role of SNO homeostasis in HER2 breast tumors. The antiproliferative action of trastuzumab in HER2-overexpressing BT-474 and SKBR-3 cells was suppressed when S-nitrosoglutathione reductase (GSNOR/ADH5) activity, which plays a key role in SNO homeostasis, was specifically inhibited with the pyrrole derivative compound N6022. Moreover, GSNOR inhibition restored the activation of survival signaling pathways involved in the resistance to anti-HER2 therapies (AKT, Src and c-Abl kinases and TrkA/NRTK1, TrkB/NRTK2, EphA1 and EphA3 receptors) and reduced the apoptotic effect of trastuzumab. Accordingly, GSNOR inhibition augmented the S-nitrosylation of apoptosis-related proteins, including Apaf-1, pSer73/63 c-Jun, calcineurin subunit α and HSF1. In agreement with in vitro data, immunohistochemical analyses of 51 breast tumors showed that HER2 expression was associated with lower expression of GSNOR protein. Moreover, gene expression analysis confirmed that high ADH5/GSNOR gene expression was associated with high patient survival rates in HER2 tumors. In conclusion, our data provide evidence of molecular mechanisms contributing to the progression of HER2+ breast cancers and could facilitate the development of therapeutic options to counteract resistance to anti-HER2 therapies.
Collapse
Affiliation(s)
- Amanda Cañas
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Laura M López-Sánchez
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Jon Peñarando
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Araceli Valverde
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Francisco Conde
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Vanessa Hernández
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Elena Fuentes
- Pathology Department, IMIBIC, Reina Sofía Hospital, University of Córdoba, Spain.
| | - Chary López-Pedrera
- Research Unit, IMIBIC, Reina Sofía Hospital, University of Córdoba, Córdoba, Spain.
| | - Juan R de la Haba-Rodríguez
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Enrique Aranda
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Antonio Rodríguez-Ariza
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
50
|
Nicola JP, Peyret V, Nazar M, Romero JM, Lucero AM, Montesinos MDM, Bocco JL, Pellizas CG, Masini-Repiso AM. S-Nitrosylation of NF-κB p65 Inhibits TSH-Induced Na(+)/I(-) Symporter Expression. Endocrinology 2015; 156:4741-54. [PMID: 26587909 DOI: 10.1210/en.2015-1192] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) is a ubiquitous signaling molecule involved in a wide variety of cellular physiological processes. In thyroid cells, NO-synthase III-endogenously produced NO reduces TSH-stimulated thyroid-specific gene expression, suggesting a potential autocrine role of NO in modulating thyroid function. Further studies indicate that NO induces thyroid dedifferentiation, because NO donors repress TSH-stimulated iodide (I(-)) uptake. Here, we investigated the molecular mechanism underlying the NO-inhibited Na(+)/I(-) symporter (NIS)-mediated I(-) uptake in thyroid cells. We showed that NO donors reduce I(-) uptake in a concentration-dependent manner, which correlates with decreased NIS protein expression. NO-reduced I(-) uptake results from transcriptional repression of NIS gene rather than posttranslational modifications reducing functional NIS expression at the plasma membrane. We observed that NO donors repress TSH-induced NIS gene expression by reducing the transcriptional activity of the nuclear factor-κB subunit p65. NO-promoted p65 S-nitrosylation reduces p65-mediated transactivation of the NIS promoter in response to TSH stimulation. Overall, our data are consistent with the notion that NO plays a role as an inhibitory signal to counterbalance TSH-stimulated nuclear factor-κB activation, thus modulating thyroid hormone biosynthesis.
Collapse
Affiliation(s)
- Juan Pablo Nicola
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (J.P.N., V.P., M.N., A.M.L., M.d.M.M., J.L.B., C.G.P., A.M.M.-R.) and Centro de Investigaciones en Química Biológica (J.M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Victoria Peyret
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (J.P.N., V.P., M.N., A.M.L., M.d.M.M., J.L.B., C.G.P., A.M.M.-R.) and Centro de Investigaciones en Química Biológica (J.M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Magalí Nazar
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (J.P.N., V.P., M.N., A.M.L., M.d.M.M., J.L.B., C.G.P., A.M.M.-R.) and Centro de Investigaciones en Química Biológica (J.M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Jorge Miguel Romero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (J.P.N., V.P., M.N., A.M.L., M.d.M.M., J.L.B., C.G.P., A.M.M.-R.) and Centro de Investigaciones en Química Biológica (J.M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Ariel Maximiliano Lucero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (J.P.N., V.P., M.N., A.M.L., M.d.M.M., J.L.B., C.G.P., A.M.M.-R.) and Centro de Investigaciones en Química Biológica (J.M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - María del Mar Montesinos
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (J.P.N., V.P., M.N., A.M.L., M.d.M.M., J.L.B., C.G.P., A.M.M.-R.) and Centro de Investigaciones en Química Biológica (J.M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (J.P.N., V.P., M.N., A.M.L., M.d.M.M., J.L.B., C.G.P., A.M.M.-R.) and Centro de Investigaciones en Química Biológica (J.M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Claudia Gabriela Pellizas
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (J.P.N., V.P., M.N., A.M.L., M.d.M.M., J.L.B., C.G.P., A.M.M.-R.) and Centro de Investigaciones en Química Biológica (J.M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Ana María Masini-Repiso
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (J.P.N., V.P., M.N., A.M.L., M.d.M.M., J.L.B., C.G.P., A.M.M.-R.) and Centro de Investigaciones en Química Biológica (J.M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| |
Collapse
|