1
|
Kang MH, Kim YJ, Lee JH. Mitochondria in reproduction. Clin Exp Reprod Med 2023; 50:1-11. [PMID: 36935406 PMCID: PMC10030209 DOI: 10.5653/cerm.2022.05659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/06/2022] [Indexed: 02/11/2023] Open
Abstract
In reproduction, mitochondria produce bioenergy, help to synthesize biomolecules, and support the ovaries, oogenesis, and preimplantation embryos, thereby facilitating healthy live births. However, the regulatory mechanism of mitochondria in oocytes and embryos during oogenesis and embryo development has not been clearly elucidated. The functional activity of mitochondria is crucial for determining the quality of oocytes and embryos; therefore, the underlying mechanism must be better understood. In this review, we summarize the specific role of mitochondria in reproduction in oocytes and embryos. We also briefly discuss the recovery of mitochondrial function in gametes and zygotes. First, we introduce the general characteristics of mitochondria in cells, including their roles in adenosine triphosphate and reactive oxygen species production, calcium homeostasis, and programmed cell death. Second, we present the unique characteristics of mitochondria in female reproduction, covering the bottleneck theory, mitochondrial shape, and mitochondrial metabolic pathways during oogenesis and preimplantation embryo development. Mitochondrial dysfunction is associated with ovarian aging, a diminished ovarian reserve, a poor ovarian response, and several reproduction problems in gametes and zygotes, such as aneuploidy and genetic disorders. Finally, we briefly describe which factors are involved in mitochondrial dysfunction and how mitochondrial function can be recovered in reproduction. We hope to provide a new viewpoint regarding factors that can overcome mitochondrial dysfunction in the field of reproductive medicine.
Collapse
Affiliation(s)
- Min-Hee Kang
- CHA Fertility Center Seoul Station, Seoul, Republic of Korea
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| | - Yu Jin Kim
- CHA Fertility Center Seoul Station, Seoul, Republic of Korea
| | - Jae Ho Lee
- CHA Fertility Center Seoul Station, Seoul, Republic of Korea
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| |
Collapse
|
2
|
Gambini A, Briski O, Canel NG. State of the art of nuclear transfer technologies for assisting mammalian reproduction. Mol Reprod Dev 2022; 89:230-242. [PMID: 35642677 DOI: 10.1002/mrd.23615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/14/2022] [Accepted: 05/22/2022] [Indexed: 12/27/2022]
Abstract
The transfer of nuclear genomic DNA from a cell to a previously enucleated oocyte or zygote constitutes one of the main tools for studying epigenetic reprogramming, nucleus-cytoplasm compatibility, pluripotency state, and for genetic preservation or edition in animals. More than 50 years ago, the first experiences in nuclear transfer began to reveal that factors stored in the cytoplasm of oocytes could reprogram the nucleus of another cell and support the development of an embryo with new genetic information. Furthermore, when the nuclear donor cell is an oocyte, egg, or a zygote, the implementation of these technologies acquires clinical relevance for patients with repeated failures in ART associated with poor oocyte quality or mitochondrial dysfunctions. This review describes the current state, scope, and future perspectives of nuclear transfer techniques currently available for assisting mammal reproduction.
Collapse
Affiliation(s)
- Andrés Gambini
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Olinda Briski
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Gabriela Canel
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,Hospital de Clínicas "José de San Martín," Instituto Universitario de Fertilidad y Reproducción Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Wu M, Lu Z, Zhu Q, Ma L, Xue L, Li Y, Zhou S, Yan W, Ye W, Zhang J, Luo A, Wang S. DDX4 + stem cells in the ovaries of postmenopausal women: existence and differentiation potential. Stem Cells 2022; 40:88-101. [PMID: 35511860 DOI: 10.1093/stmcls/sxab002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022]
Abstract
Abstract
Ovarian aging is a pacemaker with multiple organ dysfunction. Recently, stem cells with the ability to generate new oocytes have been identified, which provides the possibility of stem cell therapy for ovarian aging. Several studies have revealed the existence of stem cells in human postmenopausal ovary. In this study, we describe a new method using magnetic activated cell sorting combined with differential adhesion to isolate DDX4 + stem cells from ovaries of postmenopausal women and show that the cells exhibit similar gene expression profiles and growth characteristics with primitive germ cells. Furthermore, the DDX4 + stem cells could enter meiosis stage and differentiation into oocytes. The RNA-seq data of the differentiated oocytes shows that mitochondrial metabolism may play an important role in the oogenesis process of the DDX4 + stem cells. Through using human ovarian cortical fragments transplantation model, we indicated that the GFP-DDX4 + stem cells differentiated into some GFP positive oocyte-like structure in vivo. Our study provided a new method for the isolation of DDX4 + stem cells from the ovaries of postmenopausal women and confirmed the ability of these stem cells to differentiate into oocytes.
Collapse
Affiliation(s)
- Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyong Lu
- Hubei Key Laboratory of Embryonic Stem Cell Research, TaiHe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qingqing Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingwei Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenlei Ye
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Boguenet M, Bouet PE, Spiers A, Reynier P, May-Panloup P. Mitochondria: their role in spermatozoa and in male infertility. Hum Reprod Update 2021; 27:697-719. [PMID: 33555313 DOI: 10.1093/humupd/dmab001] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The best-known role of spermatozoa is to fertilize the oocyte and to transmit the paternal genome to offspring. These highly specialized cells have a unique structure consisting of all the elements absolutely necessary to each stage of fertilization and to embryonic development. Mature spermatozoa are made up of a head with the nucleus, a neck, and a flagellum that allows motility and that contains a midpiece with a mitochondrial helix. Mitochondria are central to cellular energy production but they also have various other functions. Although mitochondria are recognized as essential to spermatozoa, their exact pathophysiological role and their functioning are complex. Available literature relative to mitochondria in spermatozoa is dense and contradictory in some cases. Furthermore, mitochondria are only indirectly involved in cytoplasmic heredity as their DNA, the paternal mitochondrial DNA, is not transmitted to descendants. OBJECTIVE AND RATIONAL This review aims to summarize available literature on mitochondria in spermatozoa, and, in particular, that with respect to humans, with the perspective of better understanding the anomalies that could be implicated in male infertility. SEARCH METHODS PubMed was used to search the MEDLINE database for peer-reviewed original articles and reviews pertaining to human spermatozoa and mitochondria. Searches were performed using keywords belonging to three groups: 'mitochondria' or 'mitochondrial DNA', 'spermatozoa' or 'sperm' and 'reactive oxygen species' or 'calcium' or 'apoptosis' or signaling pathways'. These keywords were combined with other relevant search phrases. References from these articles were used to obtain additional articles. OUTCOMES Mitochondria are central to the metabolism of spermatozoa and they are implicated in energy production, redox equilibrium and calcium regulation, as well as apoptotic pathways, all of which are necessary for flagellar motility, capacitation, acrosome reaction and gametic fusion. In numerous cases, alterations in one of the aforementioned functions could be linked to a decline in sperm quality and/or infertility. The link between the mitochondrial genome and the quality of spermatozoa appears to be more complex. Although the quantity of mtDNA, and the existence of large-scale deletions therein, are inversely correlated to sperm quality, the effects of mutations seem to be heterogeneous and particularly related to their pathogenicity. WIDER IMPLICATIONS The importance of the role of mitochondria in reproduction, and particularly in gamete quality, has recently emerged following numerous publications. Better understanding of male infertility is of great interest in the current context where a significant decline in sperm quality has been observed.
Collapse
Affiliation(s)
- Magalie Boguenet
- MITOVASC Institute, CNRS 6015, INSERM U1083, Angers University, Angers 49000, France
| | - Pierre-Emmanuel Bouet
- Department of Reproductive Medicine, Angers University Hospital, Angers 49000, France
| | - Andrew Spiers
- Department of Reproductive Medicine, Angers University Hospital, Angers 49000, France
| | - Pascal Reynier
- MITOVASC Institute, CNRS 6015, INSERM U1083, Angers University, Angers 49000, France.,Department of Biochemistry and Genetics, Angers University Hospital, Angers 49000, France
| | - Pascale May-Panloup
- MITOVASC Institute, CNRS 6015, INSERM U1083, Angers University, Angers 49000, France.,Reproductive Biology Unit, Angers University Hospital, Angers 49000, France
| |
Collapse
|
5
|
Ogawa T, Fukasawa H, Hirata S. Improvement of early developmental competence of postovulatory-aged oocytes using metaphase II spindle injection in mice. Reprod Med Biol 2020; 19:357-364. [PMID: 33071637 PMCID: PMC7542019 DOI: 10.1002/rmb2.12335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose Assisted reproductive technology (ART) is a widely applied fertility treatment. However, the developmental competence of aged oocytes from women of a late reproductive age is seriously reduced and the aged oocytes often fail in fertilization even when ART is used. To resolve this problem, we examined usefulness of a new method “the metaphase II spindle transfer (MESI)” as ART using mouse oocytes. Methods This work was composed of two experiments. First, 24 hours after collection, embryos from oocytes (1‐day‐old oocytes, called postovulatory‐aged oocytes), were observed, after intracytoplasmic sperm injection (ICSI), and it was found that they were not able to reach the blastocyst stage. Next, the metaphase II chromosome‐spindle complexes from 1‐day‐old oocytes were injected into cytoplasts from oocytes just collected, using piezo pulses to generate reconstructed oocytes. This procedure was named metaphase II spindle injection (MESI). Results After ICSI, embryos from the reconstructed oocytes (32/105), which contained the genes of 1‐day‐old oocytes, were able to develop into the blastocyst stage. The fragmentation rate after ICSI was 28.6%. Thus, the developmental competence of 1‐day‐old oocytes was improved by MESI. Conclusions The MESI method has the potential to improve the success rate of infertility treatments for women of a late reproductive age.
Collapse
Affiliation(s)
- Tatsuyuki Ogawa
- Department of Obstetrics and Gynecology Faculty of Medicine University of Yamanashi Chuo Japan
| | - Hiroko Fukasawa
- Department of Obstetrics and Gynecology Faculty of Medicine University of Yamanashi Chuo Japan
| | - Shuji Hirata
- Department of Obstetrics and Gynecology Faculty of Medicine University of Yamanashi Chuo Japan
| |
Collapse
|
6
|
Farnezi HCM, Goulart ACX, Santos AD, Ramos MG, Penna MLF. Three-parent babies: Mitochondrial replacement therapies. JBRA Assist Reprod 2020; 24:189-196. [PMID: 32073245 PMCID: PMC7169912 DOI: 10.5935/1518-0557.20190086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mitochondria are intracellular organelles, and just like the cell nucleus they have their own genome. They are extremely important for normal body functioning and are responsible for ATP production - the main energy source for the cell. Mitochondrial diseases are associated with mutations in mitochondrial DNA and are inherited exclusively from the mother. They can affect organs that depend on energy metabolism, such as skeletal muscles, the cardiac system, the central nervous system, the endocrine system, the retina and liver, causing various incurable diseases. Mitochondrial replacement techniques provide women with mitochondrial defects a chance to have normal biological children. The goal of such treatment is to reconstruct functional oocytes and zygotes, in order to avoid the inheritance of mutated genes; for this the nuclear genome is withdrawn from an oocyte or zygotes, which carries mitochondrial mutations, and is implanted in a normal anucleated cell donor. Currently, the options of a couple to prevent the transmission of mitochondrial diseases are limited, and mitochondrial donation techniques provide women with mitochondrial defects a chance to have normal children. The nuclear genome can be transferred from oocytes or zygotes using techniques such as pronuclear transfer, spindle transfer, polar body transfer and germinal vesicle transfer. This study presents a review of developed mitochondrial substitution techniques, and its ability to prevent hereditary diseases.
Collapse
Affiliation(s)
| | | | - Adriana Dos Santos
- Faculdade de Ciências Humanas, Universidade FUMEC, Belo Horizonte, MG, Brazil
| | | | | |
Collapse
|
7
|
Takeda K. Functional consequences of mitochondrial mismatch in reconstituted embryos and offspring. J Reprod Dev 2019; 65:485-489. [PMID: 31462597 PMCID: PMC6923153 DOI: 10.1262/jrd.2019-089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Animal cloning technology has been developed to produce progenies genetically identical to a given donor cell. However, in nuclear transfer protocols, the recipient oocytes contribute a heritable mitochondrial genomic (mtDNA) background to the progeny. Additionally, a small amount of donor cell-derived mitochondria accompanies the transferred nucleus in the process; hence, the mtDNAs of two origins are mixed in the cytoplasm (heteroplasmy) of the reconstituted oocyte. Herein, I would like to introduce some of our previous results concerning five key considerations associated with animal cloning, including: mtDNA heteroplasmy in somatic cell nuclear transferred (SCNT) animals, the variation in the transmission of mtDNA heteroplasmy to subsequent generations SCNT cows and pigs, the influence of mtDNA sequence differences on mitochondrial proteins in SCNT cows and pigs, the effects of the introduction of mitochondria derived from somatic cells into recipient oocytes on embryonic development, and alterations of mtDNA heteroplasmy in inter/intraspecies nuclear transfer embryos.
Collapse
Affiliation(s)
- Kumiko Takeda
- Institute of Livestock and Grassland Science, NARO, Tsukuba 305-0901, Japan
| |
Collapse
|
8
|
Ibrahim I, Dominguez-Valentin M, Segal B, Zeitouni A, da Silva SD. Mitochondrial mutations associated with hearing and balance disorders. Mutat Res 2018; 810:39-44. [PMID: 29615272 DOI: 10.1016/j.mrfmmm.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/20/2017] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Hearing and balance disorders are related to the inner ear and are among the major cause of falls in older adults. Hearing loss that commonly occurs with aging (aka presbyacusis) can result from noise exposure, smoking, ototoxic drugs and genetic factors such as mutations in nuclear and mitochondrial genes. Mutations in mitochondrial DNA (mtDNA) have been reported to play an important role in cell function by providing energy, as well as, cell death (apoptosis). This study aims to systematically review mitochondrial mutations associated with presbyacusis and suggests preventive measurements to improve the quality of life in older adults.
Collapse
Affiliation(s)
- Iman Ibrahim
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Canada.
| | - Mev Dominguez-Valentin
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| | - Bernard Segal
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Canada.
| | - Anthony Zeitouni
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Canada.
| | | |
Collapse
|
9
|
Craven L, Tang MX, Gorman GS, De Sutter P, Heindryckx B. Novel reproductive technologies to prevent mitochondrial disease. Hum Reprod Update 2018. [PMID: 28651360 DOI: 10.1093/humupd/dmx018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The use of nuclear transfer (NT) has been proposed as a novel reproductive treatment to overcome the transmission of maternally-inherited mitochondrial DNA (mtDNA) mutations. Pathogenic mutations in mtDNA can cause a wide-spectrum of life-limiting disorders, collectively known as mtDNA disease, for which there are currently few effective treatments and no known cures. The many unique features of mtDNA make genetic counselling challenging for women harbouring pathogenic mtDNA mutations but reproductive options that involve medical intervention are available that will minimize the risk of mtDNA disease in their offspring. This includes PGD, which is currently offered as a clinical treatment but will not be suitable for all. The potential for NT to reduce transmission of mtDNA mutations has been demonstrated in both animal and human models, and has recently been clinically applied not only to prevent mtDNA disease but also for some infertility cases. In this review, we will interrogate the different NT techniques, including a discussion on the available safety and efficacy data of these technologies for mtDNA disease prevention. In addition, we appraise the evidence for the translational use of NT technologies in infertility. OBJECTIVE AND RATIONALE We propose to review the current scientific evidence regarding the clinical use of NT to prevent mitochondrial disease. SEARCH METHODS The scientific literature was investigated by searching PubMed database until Jan 2017. Relevant documents from Human Fertilisation and Embryology Authority as well as reports from both the scientific and popular media were also implemented. The above searches were based on the following key words: 'mitochondria', 'mitochondrial DNA'; 'mitochondrial DNA disease', 'fertility'; 'preimplantation genetic diagnosis', 'nuclear transfer', 'mitochondrial replacement' and 'mitochondrial donation'. OUTCOMES While NT techniques have been shown to effectively reduce the transmission of heteroplasmic mtDNA variants in animal models, and increasing evidence supports their use to prevent the transmission of human mtDNA disease, the need for robust, long-term evaluation is still warranted. Moreover, prenatal screening would still be strongly advocated in combination with the use of these IVF-based technologies. Scientific evidence to support the use of NT and other novel reproductive techniques for infertility is currently lacking. WIDER IMPLICATIONS It is mandatory that any new ART treatments are first adequately assessed in both animal and human models before the cautious implementation of these new therapeutic approaches is clinically undertaken. There is growing evidence to suggest that the translation of these innovative technologies into clinical practice should be cautiously adopted only in highly selected patients. Indeed, given the limited safety and efficacy data, close monitoring of any offspring remains paramount.
Collapse
Affiliation(s)
- Lyndsey Craven
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Mao-Xing Tang
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Petra De Sutter
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
10
|
Rasool S, Shah D. The futile case of the aging ovary: is it mission impossible? A focused review. Climacteric 2017; 21:22-28. [DOI: 10.1080/13697137.2017.1410784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- S. Rasool
- Department of Reproductive Medicine, Gynaecworld, Mumbai, India
| | - D. Shah
- Department of Reproductive Medicine, Gynaecworld, Mumbai, India
| |
Collapse
|
11
|
Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod Biomed Online 2017; 34:361-368. [PMID: 28385334 DOI: 10.1016/j.rbmo.2017.01.013] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/23/2017] [Accepted: 01/31/2017] [Indexed: 12/31/2022]
Abstract
Mutations in mitochondrial DNA (mtDNA) are maternally inherited and can cause fatal or debilitating mitochondrial disorders. The severity of clinical symptoms is often associated with the level of mtDNA mutation load or degree of heteroplasmy. Current clinical options to prevent transmission of mtDNA mutations to offspring are limited. Experimental spindle transfer in metaphase II oocytes, also called mitochondrial replacement therapy, is a novel technology for preventing mtDNA transmission from oocytes to pre-implantation embryos. Here, we report a female carrier of Leigh syndrome (mtDNA mutation 8993T > G), with a long history of multiple undiagnosed pregnancy losses and deaths of offspring as a result of this disease, who underwent IVF after reconstitution of her oocytes by spindle transfer into the cytoplasm of enucleated donor oocytes. A male euploid blastocyst wasobtained from the reconstituted oocytes, which had only a 5.7% mtDNA mutation load. Transfer of the embryo resulted in a pregnancy with delivery of a boy with neonatal mtDNA mutation load of 2.36-9.23% in his tested tissues. The boy is currently healthy at 7 months of age, although long-term follow-up of the child's longitudinal development remains crucial.
Collapse
|
12
|
Gómez-Tatay L, Hernández-Andreu JM, Aznar J. Mitochondrial Modification Techniques and Ethical Issues. J Clin Med 2017; 6:E25. [PMID: 28245555 PMCID: PMC5372994 DOI: 10.3390/jcm6030025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/07/2017] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Current strategies for preventing the transmission of mitochondrial disease to offspring include techniques known as mitochondrial replacement and mitochondrial gene editing. This technology has already been applied in humans on several occasions, and the first baby with donor mitochondria has already been born. However, these techniques raise several ethical concerns, among which is the fact that they entail genetic modification of the germline, as well as presenting safety problems in relation to a possible mismatch between the nuclear and mitochondrial DNA, maternal mitochondrial DNA carryover, and the "reversion" phenomenon. In this essay, we discuss these questions, highlighting the advantages of some techniques over others from an ethical point of view, and we conclude that none of these are ready to be safely applied in humans.
Collapse
Affiliation(s)
- Lucía Gómez-Tatay
- Escuela de Doctorado Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain.
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, Departamento de Ciencias Médicas Básicas, Grupo de Medicina Molecular y Mitocondrial, Valencia 46001, Spain.
- Institute of Life Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain.
| | - José M Hernández-Andreu
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, Departamento de Ciencias Médicas Básicas, Grupo de Medicina Molecular y Mitocondrial, Valencia 46001, Spain.
- Institute of Life Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain.
| | - Justo Aznar
- Institute of Life Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain.
| |
Collapse
|
13
|
Lee WJ, Lee JH, Jeon RH, Jang SJ, Lee SC, Park JS, Lee SL, King WA, Rho GJ. Supplement of autologous ooplasm into porcine somatic cell nuclear transfer embryos does not alter embryo development. Reprod Domest Anim 2017; 52:437-445. [PMID: 28191700 DOI: 10.1111/rda.12929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/24/2016] [Indexed: 11/29/2022]
Abstract
Somatic cell nuclear transfer (SCNT) is considered as the technique in which a somatic cell is introduced into an enucleated oocyte to make a cloned animal. However, it is unavoidable to lose a small amount of the ooplasm during enucleation step during SCNT procedure. The present study was aimed to uncover whether the supplement of autologous ooplasm could ameliorate the oocyte competence so as to improve low efficiency of embryo development in porcine SCNT. Autologous ooplasm-transferred (AOT) embryos were generated by the supplementation with autologous ooplasm into SCNT embryos. They were comparatively evaluated with respect to embryo developmental potential, the number of apoptotic body formation and gene expression including embryonic lineage differentiation, apoptosis, epigenetics and mitochondrial activity in comparison with parthenogenetic, in vitro-fertilized (IVF) and SCNT embryos. Although AOT embryos showed perfect fusion of autologous donor ooplasm with recipient SCNT embryos, the supplement of autologous ooplasm could not ameliorate embryo developmental potential in regard to the rate of blastocyst formation, total cell number and the number of apoptotic body. Furthermore, overall gene expression of AOT embryos was presented with no significant alterations in comparison with that of SCNT embryos. Taken together, the results of AOT demonstrated inability to make relevant values improved from the level of SCNT embryos to their IVF counterparts.
Collapse
Affiliation(s)
- W-J Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea.,College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - J-H Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - R-H Jeon
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - S-J Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - S-C Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - J-S Park
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - S-L Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - W-A King
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - G-J Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea.,Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
14
|
May-Panloup P, Boucret L, Chao de la Barca JM, Desquiret-Dumas V, Ferré-L'Hotellier V, Morinière C, Descamps P, Procaccio V, Reynier P. Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update 2016; 22:725-743. [PMID: 27562289 DOI: 10.1093/humupd/dmw028] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/15/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND There is a great inter-individual variability of ovarian ageing, and almost 20% of patients consulting for infertility show signs of premature ovarian ageing. This feature, taken together with delayed childbearing in modern society, leads to the emergence of age-related ovarian dysfunction concomitantly with the desire for pregnancy. Assisted reproductive technology is frequently inefficacious in cases of ovarian ageing, thus raising the economic, medical and societal costs of the procedures. OBJECTIVE AND RATIONAL Ovarian ageing is characterized by quantitative and qualitative alteration of the ovarian oocyte reserve. Mitochondria play a central role in follicular atresia and could be the main target of the ooplasmic factors determining oocyte quality adversely affected by ageing. Indeed, the oocyte is the richest cell of the body in mitochondria and depends largely on these organelles to acquire competence for fertilization and early embryonic development. Moreover, the oocyte ensures the uniparental transmission and stability of the mitochondrial genome across the generations. This review focuses on the role played by mitochondria in ovarian ageing and on the possible consequences over the generations. SEARCH METHODS PubMed was used to search the MEDLINE database for peer-reviewed original articles and reviews concerning mitochondria and ovarian ageing, in animal and human species. Searches were performed using keywords belonging to three groups: 'mitochondria' or 'mitochondrial DNA'; 'ovarian reserve', 'oocyte', 'ovary' or 'cumulus cells'; and 'ageing' or 'ovarian ageing'. These keywords were combined with other search phrases relevant to the topic. References from these articles were used to obtain additional articles. OUTCOMES There is a close relationship, in mammalian models and humans, between mitochondria and the decline of oocyte quality with ageing. Qualitatively, ageing-related mitochondrial (mt) DNA instability, which leads to the accumulation of mtDNA mutations in the oocyte, plays a key role in the deterioration of oocyte quality in terms of competence and of the risk of transmitting mitochondrial abnormalities to the offspring. In contrast, some mtDNA haplogroups are protective against the decline of ovarian reserve. Quantitatively, mitochondrial biogenesis is crucial during oogenesis for constituting a mitochondrial pool sufficiently large to allow normal early embryonic development and to avoid the untimely activation of mitochondrial biogenesis. Ovarian ageing also seriously affects the dynamic nature of mitochondrial biogenesis in the surrounding granulosa cells that may provide interesting alternative biomarkers of oocyte quality. WIDER IMPLICATIONS A fuller understanding of the involvement of mitochondria in cases of infertility linked to ovarian ageing would contribute to a better management of the disorder in the future.
Collapse
Affiliation(s)
- Pascale May-Panloup
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France .,PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Lisa Boucret
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France.,PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Juan-Manuel Chao de la Barca
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Valérie Desquiret-Dumas
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Véronique Ferré-L'Hotellier
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Catherine Morinière
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Philippe Descamps
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Vincent Procaccio
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Pascal Reynier
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| |
Collapse
|
15
|
Abstract
Several objections against the morality of researching or employing mitochondrial replacement techniques have been advanced recently. In this paper, I examine three of these objections and show that they are found wanting. First I examine whether mitochondrial replacement techniques, research and clinical practice, should not be carried out because of possible harms to egg donors. Next I assess whether mitochondrial replacement techniques should be banned because they could affect the study of genealogical ancestry. Finally, I examine the claim that mitochondrial replacement techniques are not transferring mitochondrial DNA but nuclear DNA, and that this should be prohibited on ethical grounds.
Collapse
Affiliation(s)
- César Palacios-González
- Centre of Medical Law and Ethics, The Dickson Poon School of Law, King's College London, Strand, London, WC2R 2LS, UK.
| |
Collapse
|
16
|
Balobaid A, Qari A, Al-Zaidan H. Genetic counselors' scope of practice and challenges in genetic counseling services in Saudi Arabia. Int J Pediatr Adolesc Med 2016; 3:1-6. [PMID: 30805460 PMCID: PMC6372413 DOI: 10.1016/j.ijpam.2015.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/18/2022]
Abstract
Genetic counseling is an evolving field in Saudi Arabia. In 2015, genetic counseling was recognized as a Master's program by the Saudi Commission for Health Specialties. Our genetic counselors combine their knowledge of genetics, counseling theory and interpersonal communication to serve Saudi and non-Saudi patients affected with a range of genetic conditions and/or birth defects. Most patients are referred to the clinic from different clinics at King Faisal Specialist Hospital and Research Centre (KFSHRC) and outside of KFSHRC for various indications. Carrier testing and preventative reproduction options rank highly on the reasons for referral to our clinics. The Saudi population has unique customs and beliefs, such as consanguinity and the evil eye. Challenges that are routinely encountered in our genetic counseling clinics include, but are not limited to, preventative reproductive options and termination of pregnancy, manifesting carriers, stigmatization of women and approaches to complex molecular findings. Working with families from different backgrounds and beliefs undoubtedly requires professionals with a distinctive set of skills and a structured clinical setting. This review article presents the scope of genetic counseling practice and tackles some of the challenges faced in providing genetic counseling in Saudi Arabia.
Collapse
Affiliation(s)
- Ameera Balobaid
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Alya Qari
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hamad Al-Zaidan
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Zhang J. Revisiting germinal vesicle transfer as a treatment for aneuploidy in infertile women with diminished ovarian reserve. J Assist Reprod Genet 2014; 32:313-7. [PMID: 25515532 DOI: 10.1007/s10815-014-0400-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022] Open
Abstract
The maturation and meiotic competence of human oocyte requires both healthy cytoplasmic and nuclear compartments. Germinal vesicle (GV) transfer techniques have represented useful tools for studying the interaction between the nucleus and the cytoplasm in oocyte maturation process in mammals. This report summarizes an update on the recent findings on GV transfer pertaining to improving meiotic resumption and ability of immature oocytes to mature. It also addresses mitochondrial DNA heteroplasmy as a challenge in GV transfer technology. Altogether, data to date indicate that GV transfer could improve the quality of human oocytes especially in women with advanced maternal age who usually have high rates of spindle abnormality and chromosomal misalignment. Although experimental, this technique represents a viable therapeutic option for women with diminished ovarian reserve who do not produce mature oocytes or good embryos during IVF treatment.
Collapse
Affiliation(s)
- John Zhang
- Reproductive Endocrinology and Infertility, New Hope Fertility Center, 4 Columbus Circle, New York, NY, USA,
| |
Collapse
|
18
|
Schatten H, Sun QY, Prather R. The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility. Reprod Biol Endocrinol 2014; 12:111. [PMID: 25421171 PMCID: PMC4297407 DOI: 10.1186/1477-7827-12-111] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/04/2014] [Indexed: 11/12/2022] Open
Abstract
Mitochondria play vital roles in oocyte functions and they are critical indicators of oocyte quality which is important for fertilization and development into viable offspring. Quality-compromised oocytes are correlated with infertility, developmental disorders, reduced blastocyst cell number and embryo loss in which mitochondrial dysfunctions play a significant role. Increasingly, women affected by metabolic disorders such as diabetes or obesity and oocyte aging are seeking treatment in IVF clinics to overcome the effects of adverse metabolic conditions on mitochondrial functions and new treatments have become available to restore oocyte quality. The past decade has seen enormous advances in potential therapies to restore oocyte quality and includes dietary components and transfer of mitochondria from cells with mitochondrial integrity into mitochondria-impaired oocytes. New technologies have opened up new possibilities for therapeutic advances which will increase the success rates for IVF of oocytes from women with compromised oocyte quality.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO USA
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100080 Beijing, China
| | - Randall Prather
- National Swine Resource and Research Center, University of Missouri, 65211 Columbia, USA
- Division of Animal Science, University of Missouri, 65211 Columbia, USA
| |
Collapse
|
19
|
Affiliation(s)
- Jin-Hong Shin
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Dae-Seong Kim
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|