1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Jia H, Flommersfeld J, Heymann M, Vogel SK, Franquelim HG, Brückner DB, Eto H, Broedersz CP, Schwille P. 3D printed protein-based robotic structures actuated by molecular motor assemblies. NATURE MATERIALS 2022; 21:703-709. [PMID: 35618822 PMCID: PMC9156402 DOI: 10.1038/s41563-022-01258-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/13/2022] [Indexed: 06/10/2023]
Abstract
Upscaling motor protein activity to perform work in man-made devices has long been an ambitious goal in bionanotechnology. The use of hierarchical motor assemblies, as realized in sarcomeres, has so far been complicated by the challenges of arranging sufficiently high numbers of motor proteins with nanoscopic precision. Here, we describe an alternative approach based on actomyosin cortex-like force production, allowing low complexity motor arrangements in a contractile meshwork that can be coated onto soft objects and locally activated by ATP. The design is reminiscent of a motorized exoskeleton actuating protein-based robotic structures from the outside. It readily supports the connection and assembly of micro-three-dimensional printed modules into larger structures, thereby scaling up mechanical work. We provide an analytical model of force production in these systems and demonstrate the design flexibility by three-dimensional printed units performing complex mechanical tasks, such as microhands and microarms that can grasp and wave following light activation.
Collapse
Affiliation(s)
- Haiyang Jia
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Johannes Flommersfeld
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michael Heymann
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Sven K Vogel
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - David B Brückner
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hiromune Eto
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Chase P Broedersz
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany.
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
3
|
Pertici I, Bianchi G, Bongini L, Lombardi V, Bianco P. A Myosin II-Based Nanomachine Devised for the Study of Ca 2+-Dependent Mechanisms of Muscle Regulation. Int J Mol Sci 2020; 21:E7372. [PMID: 33036217 PMCID: PMC7583892 DOI: 10.3390/ijms21197372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/03/2023] Open
Abstract
The emergent properties of the array arrangement of the molecular motor myosin II in the sarcomere of the striated muscle, the generation of steady force and shortening, can be studied in vitro with a synthetic nanomachine made of an ensemble of eight heavy-meromyosin (HMM) fragments of myosin from rabbit psoas muscle, carried on a piezoelectric nanopositioner and brought to interact with a properly oriented actin filament attached via gelsolin (a Ca2+-regulated actin binding protein) to a bead trapped by dual laser optical tweezers. However, the application of the original version of the nanomachine to investigate the Ca2+-dependent regulation mechanisms of the other sarcomeric (regulatory or cytoskeleton) proteins, adding them one at a time, was prevented by the impossibility to preserve [Ca2+] as a free parameter. Here, the nanomachine is implemented by assembling the bead-attached actin filament with the Ca2+-insensitive gelsolin fragment TL40. The performance of the nanomachine is determined both in the absence and in the presence of Ca2+ (0.1 mM, the concentration required for actin attachment to the bead with gelsolin). The nanomachine exhibits a maximum power output of 5.4 aW, independently of [Ca2+], opening the possibility for future studies of the Ca2+-dependent function/dysfunction of regulatory and cytoskeletal proteins.
Collapse
Affiliation(s)
| | | | | | - Vincenzo Lombardi
- PhysioLab, University of Florence, 50019 Sesto Fiorentino (FI), Italy; (I.P.); (G.B.); (L.B.); (P.B.)
| | | |
Collapse
|
4
|
Cheng YS, de Souza Leite F, Rassier DE. The load dependence and the force-velocity relation in intact myosin filaments from skeletal and smooth muscles. Am J Physiol Cell Physiol 2020; 318:C103-C110. [PMID: 31618078 PMCID: PMC6985831 DOI: 10.1152/ajpcell.00339.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 11/22/2022]
Abstract
In the present study we evaluated the load dependence of force produced by isolated muscle myosin filaments interacting with fluorescently labeled actin filaments, using for the first time whole native myosin filaments. We used a newly developed approach that allowed the use of physiological levels of ATP. Single filaments composed of either skeletal or smooth muscle myosin and single filaments of actin were attached between pairs of nano-fabricated cantilevers of known stiffness. The filaments were brought into contact to produce force, which caused sliding of the actin filaments over the myosin filaments. We applied load to the system by either pushing or pulling the filaments during interactions and observed that increasing the load increased the force produced by myosin and decreasing the load decreased the force. We also performed additional experiments in which we clamped the filaments at predetermined levels of force, which caused the filaments to slide to adjust the different loads, allowing us to measure the velocity of length changes to construct a force-velocity relation. Force values were in the range observed previously with myosin filaments and molecules. The force-velocity curves for skeletal and smooth muscle myosins resembled the relations observed for muscle fibers. The technique can be used to investigate many issues of interest and debate in the field of muscle biophysics.
Collapse
Affiliation(s)
- Yu-Shu Cheng
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Felipe de Souza Leite
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Matusovsky OS, Mansson A, Persson M, Cheng YS, Rassier DE. High-speed AFM reveals subsecond dynamics of cardiac thin filaments upon Ca 2+ activation and heavy meromyosin binding. Proc Natl Acad Sci U S A 2019; 116:16384-16393. [PMID: 31358631 PMCID: PMC6697793 DOI: 10.1073/pnas.1903228116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
High-speed atomic force microscopy (HS-AFM) can be used to study dynamic processes with real-time imaging of molecules within 1- to 5-nm spatial resolution. In the current study, we evaluated the 3-state model of activation of cardiac thin filaments (cTFs) isolated as a complex and deposited on a mica-supported lipid bilayer. We studied this complex for dynamic conformational changes 1) at low and high [Ca2+] (pCa 9.0 and 4.5), and 2) upon myosin binding to the cTF in the nucleotide-free state or in the presence of ATP. HS-AFM was used to directly visualize the tropomyosin-troponin complex and Ca2+-induced tropomyosin movements accompanied by structural transitions of actin monomers within cTFs. Our data show that cTFs at relaxing or activating conditions are not ultimately in a blocked or activated state, respectively, but rather the combination of states with a prevalence that is dependent on the [Ca2+] and the presence of weakly or strongly bound myosin. The weakly and strongly bound myosin induce similar changes in the structure of cTFs as confirmed by the local dynamical displacement of individual tropomyosin strands in the center of a regulatory unit of cTF at the relaxed and activation conditions. The displacement of tropomyosin at the relaxed conditions had never been visualized directly and explains the ability of myosin binding to TF at the relaxed conditions. Based on the ratios of nonactivated and activated segments within cTFs, we proposed a mechanism of tropomyosin switching from different states that includes both weakly and strongly bound myosin.
Collapse
Affiliation(s)
- Oleg S Matusovsky
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC H2W 1S4, Canada
| | - Alf Mansson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Malin Persson
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC H2W 1S4, Canada
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Yu-Shu Cheng
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC H2W 1S4, Canada
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC H2W 1S4, Canada;
| |
Collapse
|
6
|
Rassier DE, Kashina A. Protein arginylation of cytoskeletal proteins in the muscle: modifications modifying function. Am J Physiol Cell Physiol 2019; 316:C668-C677. [PMID: 30789755 PMCID: PMC6580163 DOI: 10.1152/ajpcell.00500.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/30/2022]
Abstract
The cytoskeleton drives many essential processes in normal physiology, and its impairments underlie many diseases, including skeletal myopathies, cancer, and heart failure, that broadly affect developed countries worldwide. Cytoskeleton regulation is a field of investigation of rapidly emerging global importance and a new venue for the development of potential therapies. This review overviews our present understanding of the posttranslational regulation of the muscle cytoskeleton through arginylation, a tRNA-dependent addition of arginine to proteins mediated by arginyltransferase 1. We focus largely on arginylation-dependent regulation of striated muscles, shown to play critical roles in facilitating muscle integrity, contractility, regulation, and strength.
Collapse
Affiliation(s)
- Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University , Montreal, Quebec , Canada
| | - Anna Kashina
- Department of Biomedical Sciences, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Cheng YS, Matusovskiy OS, Rassier DE. Cleavage of loops 1 and 2 in skeletal muscle heavy meromyosin (HMM) leads to a decreased function. Arch Biochem Biophys 2018; 661:168-177. [PMID: 30465737 DOI: 10.1016/j.abb.2018.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND The mechanical work and the actin-activated ATP kinetics in skeletal muscles are closely associated with two surface loops that are present in the myosin molecule: loop 1 and loop 2. They are located close to the ATP-loop (loop 1), and the actin binding domain (loop 2). In this study we investigated the roles of loops 1 and 2 in the regulation of the load-dependent velocity of actin sliding and ATPase activity. METHODS Heavy meromyosin (HMM) from rabbit skeletal muscle was subjected to limited tryptic proteolysis to obtain fragments containing different amounts of loops 1 and 2. The amino-acid sequences of these fragments were confirmed with quantitative mass-spectrometry. The velocity of actin motility propelled by the HMM fragments was measured using in-vitro motility assays, with varying loads induced by the addition of different concentrations of α-actinin. RESULTS The load-dependent velocity of the myosin-propelled actin motility, and the fraction of actin filaments motility, were decreased in close association with the depletion of loop 1 in the HMM. The ATPase activity was decreased in close association with depletion of loops 1 and 2. CONCLUSIONS Loop 1 is responsible for regulating the load-dependent velocity of actin motility. GENERAL SIGNIFICANCE Myosin-actin interaction is closely regulated by two flexible loops in the structure of myosin. The results of this study are important for the understanding of the molecular mechanisms of contraction, and therefore the most basic functions of life, such as locomotion, heart beating, and breathing.
Collapse
Affiliation(s)
- Yu-Shu Cheng
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | - Oleg S Matusovskiy
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada.
| |
Collapse
|
8
|
Pertici I, Bongini L, Melli L, Bianchi G, Salvi L, Falorsi G, Squarci C, Bozó T, Cojoc D, Kellermayer MSZ, Lombardi V, Bianco P. A myosin II nanomachine mimicking the striated muscle. Nat Commun 2018; 9:3532. [PMID: 30166542 PMCID: PMC6117265 DOI: 10.1038/s41467-018-06073-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/02/2018] [Indexed: 11/08/2022] Open
Abstract
The contraction of striated muscle (skeletal and cardiac muscle) is generated by ATP-dependent interactions between the molecular motor myosin II and the actin filament. The myosin motors are mechanically coupled along the thick filament in a geometry not achievable by single-molecule experiments. Here we show that a synthetic one-dimensional nanomachine, comprising fewer than ten myosin II dimers purified from rabbit psoas, performs isometric and isotonic contractions at 2 mM ATP, delivering a maximum power of 5 aW. The results are explained with a kinetic model fitted to the performance of mammalian skeletal muscle, showing that the condition for the motor coordination that maximises the efficiency in striated muscle is a minimum of 32 myosin heads sharing a common mechanical ground. The nanomachine offers a powerful tool for investigating muscle contractile-protein physiology, pathology and pharmacology without the potentially disturbing effects of the cytoskeletal-and regulatory-protein environment.
Collapse
Affiliation(s)
- Irene Pertici
- PhysioLab, University of Florence, Florence, 50019, Italy
| | | | - Luca Melli
- PhysioLab, University of Florence, Florence, 50019, Italy
- F. Hoffmann-La Roche Ltd, Basel, 4053, Switzerland
| | - Giulio Bianchi
- PhysioLab, University of Florence, Florence, 50019, Italy
| | - Luca Salvi
- PhysioLab, University of Florence, Florence, 50019, Italy
- Department of Biochemistry, University of Munich, Munich, 81377, Germany
| | - Giulia Falorsi
- PhysioLab, University of Florence, Florence, 50019, Italy
| | | | - Tamás Bozó
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, H-1094, Hungary
| | | | - Miklós S Z Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, H-1094, Hungary
| | | | | |
Collapse
|
9
|
Månsson A. Actomyosin based contraction: one mechanokinetic model from single molecules to muscle? J Muscle Res Cell Motil 2016; 37:181-194. [PMID: 27864648 PMCID: PMC5383694 DOI: 10.1007/s10974-016-9458-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/09/2016] [Indexed: 12/26/2022]
Abstract
Bridging the gaps between experimental systems on different hierarchical scales is needed to overcome remaining challenges in the understanding of muscle contraction. Here, a mathematical model with well-characterized structural and biochemical actomyosin states is developed to that end. We hypothesize that this model accounts for generation of force and motion from single motor molecules to the large ensembles of muscle. In partial support of this idea, a wide range of contractile phenomena are reproduced without the need to invoke cooperative interactions or ad hoc states/transitions. However, remaining limitations exist, associated with ambiguities in available data for model definition e.g.: (1) the affinity of weakly bound cross-bridges, (2) the characteristics of the cross-bridge elasticity and (3) the exact mechanistic relationship between the force-generating transition and phosphate release in the actomyosin ATPase. Further, the simulated number of attached myosin heads in the in vitro motility assay differs several-fold from duty ratios, (fraction of strongly attached ATPase cycle times) derived in standard analysis. After addressing the mentioned issues the model should be useful in fundamental studies, for engineering of myosin motors as well as for studies of muscle disease and drug development.
Collapse
Affiliation(s)
- Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 39182, Kalmar, Sweden.
| |
Collapse
|
10
|
Cornachione AS, Leite FS, Wang J, Leu NA, Kalganov A, Volgin D, Han X, Xu T, Cheng YS, Yates JRR, Rassier DE, Kashina A. Arginylation of myosin heavy chain regulates skeletal muscle strength. Cell Rep 2014; 8:470-6. [PMID: 25017061 PMCID: PMC4126752 DOI: 10.1016/j.celrep.2014.06.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/02/2014] [Accepted: 06/13/2014] [Indexed: 11/16/2022] Open
Abstract
Protein arginylation is a posttranslational modification with an emerging global role in the regulation of actin cytoskeleton. To test the role of arginylation in the skeletal muscle, we generated a mouse model with Ate1 deletion driven by the skeletal muscle-specific creatine kinase (Ckmm) promoter. Ckmm-Ate1 mice were viable and outwardly normal; however, their skeletal muscle strength was significantly reduced in comparison to controls. Mass spectrometry of isolated skeletal myofibrils showed a limited set of proteins, including myosin heavy chain, arginylated on specific sites. Atomic force microscopy measurements of contractile strength in individual myofibrils and isolated myosin filaments from these mice showed a significant reduction of contractile forces, which, in the case of myosin filaments, could be fully rescued by rearginylation with purified Ate1. Our results demonstrate that arginylation regulates force production in muscle and exerts a direct effect on muscle strength through arginylation of myosin.
Collapse
Affiliation(s)
- Anabelle S Cornachione
- Department of Kinesiology and Physical Education, Physics and Physiology, McGill University, Montreal, QC H2W 1S4, Canada
| | - Felipe S Leite
- Department of Kinesiology and Physical Education, Physics and Physiology, McGill University, Montreal, QC H2W 1S4, Canada
| | - Junling Wang
- Department of Animal Biology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Nicolae A Leu
- Department of Animal Biology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Albert Kalganov
- Department of Kinesiology and Physical Education, Physics and Physiology, McGill University, Montreal, QC H2W 1S4, Canada
| | - Denys Volgin
- Department of Animal Biology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Xuemei Han
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tao Xu
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu-Shu Cheng
- Department of Kinesiology and Physical Education, Physics and Physiology, McGill University, Montreal, QC H2W 1S4, Canada
| | | | - Dilson E Rassier
- Department of Kinesiology and Physical Education, Physics and Physiology, McGill University, Montreal, QC H2W 1S4, Canada
| | - Anna Kashina
- Department of Animal Biology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|