1
|
Dino P, Giuffrè MR, Buscetta M, Di Vincenzo S, La Mensa A, Cristaldi M, Bucchieri F, Lo Iacono G, Bertani A, Pace E, Cipollina C. Release of IL-1β and IL-18 in human primary bronchial epithelial cells exposed to cigarette smoke is independent of NLRP3. Eur J Immunol 2024; 54:e2451053. [PMID: 39072707 DOI: 10.1002/eji.202451053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Cigarette smoke (CS) is a major risk factor for chronic lung diseases and promotes activation of pattern recognition receptors in the bronchial epithelium. NOD-like receptor family, pyrin domain-containing 3 (NLRP3) is a pattern recognition receptor whose activation leads to caspase-1 cleavage, maturation/release of IL-1β and IL-18, and eventually pyroptosis. Whether the NLRP3 inflammasome participates in CS-induced inflammation in bronchial epithelial cells is still unclear. Herein, we evaluated the involvement of NLRP3 in CS-induced inflammatory responses in human primary bronchial epithelial cells. To this purpose, human primary bronchial epithelial cells were stimulated with CS extracts (CSE) and lytic cell death, caspase activation (-1, -8, -3/7), cytokine release (IL-1β, IL-18, and IL-8), NLRP3, pro-IL-1β/pro-IL-18 mRNA, and protein expression were measured. The impact of inhibitors of NLRP3 (MCC950), caspases, and the effect of the antioxidant N-acetyl cysteine were evaluated. We found that CSE increased pro-IL-1β expression and induced activation of caspase-1 and release of IL-1β and IL-18. These events were independent of NLRP3 and we found that NLRP3 was not expressed. N-acetyl cysteine reverted CSE-induced caspase-1 activation. Overall, our findings support that the bronchial epithelium may play a central role in the release of IL-1 family cytokines independently of NLRP3 in the lungs of smokers.
Collapse
Affiliation(s)
- Paola Dino
- Ri.MED Foundation, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
- Ospedale Civile di Venezia SS. Giovanni e Paolo, Venezia, Italy
| | | | | | | | - Agnese La Mensa
- Ri.MED Foundation, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | | | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | | | | | - Elisabetta Pace
- Istituto di Farmacologia Traslazionale (IFT)-CNR, Palermo, Italy
| | - Chiara Cipollina
- Ri.MED Foundation, Palermo, Italy
- Istituto di Farmacologia Traslazionale (IFT)-CNR, Palermo, Italy
| |
Collapse
|
2
|
Ferraro M, Di Vincenzo S, Lazzara V, Pinto P, Patella B, Inguanta R, Bruno A, Pace E. Formoterol Exerts Anti-Cancer Effects Modulating Oxidative Stress and Epithelial-Mesenchymal Transition Processes in Cigarette Smoke Extract Exposed Lung Adenocarcinoma Cells. Int J Mol Sci 2023; 24:16088. [PMID: 38003276 PMCID: PMC10671675 DOI: 10.3390/ijms242216088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Lung cancer frequently affects patients with Chronic Obstructive Pulmonary Disease (COPD). Cigarette smoke (CS) fosters cancer progression by increasing oxidative stress and by modulating epithelial-mesenchymal transition (EMT) processes in cancer cells. Formoterol (FO), a long-acting β2-agonist widely used for the treatment of COPD, exerts antioxidant activities. This study explored in a lung adenocarcinoma cell line (A549) whether FO counteracted the effects of cigarette smoke extract (CSE) relative to oxidative stress, inflammation, EMT processes, and cell migration and proliferation. A549 was stimulated with CSE and FO, ROS were evaluated by flow-cytometry and by nanostructured electrochemical sensor, EMT markers were evaluated by flow-cytometry and Real-Time PCR, IL-8 was evaluated by ELISA, cell migration was assessed by scratch and phalloidin test, and cell proliferation was assessed by clonogenic assay. CSE significantly increased the production of ROS, IL-8 release, cell migration and proliferation, and SNAIL1 expression but significantly decreased E-cadherin expression. FO reverted all these phenomena in CSE-stimulated A549 cells. The present study provides intriguing evidence that FO may exert anti-cancer effects by reverting oxidative stress, inflammation, and EMT markers induced by CS. These findings must be validated in future clinical studies to support FO as a valuable add-on treatment for lung cancer management.
Collapse
Affiliation(s)
- Maria Ferraro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy; (S.D.V.); (A.B.); (E.P.)
| | - Serena Di Vincenzo
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy; (S.D.V.); (A.B.); (E.P.)
| | - Valentina Lazzara
- Dipartimento di Scienze Economiche, Aziendali e Statistiche, Università degli Studi di Palermo, 90100 Palermo, Italy;
| | - Paola Pinto
- Dipartimento di Sanità Pubblica, Medicina Sperimentale e Forense, Università di Pavia, 27100 Pavia, Italy;
| | - Bernardo Patella
- Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria, Università di Palermo, 90128 Palermo, Italy; (B.P.); (R.I.)
| | - Rosalinda Inguanta
- Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria, Università di Palermo, 90128 Palermo, Italy; (B.P.); (R.I.)
| | - Andreina Bruno
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy; (S.D.V.); (A.B.); (E.P.)
| | - Elisabetta Pace
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy; (S.D.V.); (A.B.); (E.P.)
| |
Collapse
|
3
|
You M, Xie Z, Zhang N, Zhang Y, Xiao D, Liu S, Zhuang W, Li L, Tao Y. Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:196. [PMID: 37164974 PMCID: PMC10172373 DOI: 10.1038/s41392-023-01442-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
A wide spectrum of metabolites (mainly, the three major nutrients and their derivatives) can be sensed by specific sensors, then trigger a series of signal transduction pathways and affect the expression levels of genes in epigenetics, which is called metabolite sensing. Life body regulates metabolism, immunity, and inflammation by metabolite sensing, coordinating the pathophysiology of the host to achieve balance with the external environment. Metabolic reprogramming in cancers cause different phenotypic characteristics of cancer cell from normal cell, including cell proliferation, migration, invasion, angiogenesis, etc. Metabolic disorders in cancer cells further create a microenvironment including many kinds of oncometabolites that are conducive to the growth of cancer, thus forming a vicious circle. At the same time, exogenous metabolites can also affect the biological behavior of tumors. Here, we discuss the metabolite sensing mechanisms of the three major nutrients and their derivatives, as well as their abnormalities in the development of various cancers, and discuss the potential therapeutic targets based on metabolite-sensing signaling pathways to prevent the progression of cancer.
Collapse
Affiliation(s)
- Mengshu You
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Zhuolin Xie
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Nan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, People's Republic of China.
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
4
|
Kim SH, Lee SE, Kim SJ, Fang X, Hur J, Sozen E, Özer NK, Kim KP, Surh YJ. Protective effects of an electrophilic metabolite of docosahexaenoic acid on UVB-induced oxidative cell death, dermatitis, and carcinogenesis. Redox Biol 2023; 62:102666. [PMID: 36934646 PMCID: PMC10031545 DOI: 10.1016/j.redox.2023.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Docosahexaenoic acid (DHA), a representative omega-3 (ω-3) polyunsaturated fatty acids, undergoes metabolism to produce biologically active electrophilic species. 17-Oxo-DHA is one such reactive metabolite generated from DHA by cyclooxygenase-2 and dehydrogenase in activated macrophages. The present study was aimed to investigate the effects of 17-oxo-DHA on ultraviolet B (UVB)-induced oxidative stress, inflammation, and carcinogenesis in mouse skin. UVB-induced epidermal cell death was ameliorated by topically applied 17-oxo-DHA. Topical application of 17-oxo-DHA onto hairless mouse skin inhibited UVB-induced phosphorylation of the proinflammatory transcription factor, STAT3 on tyrosine 705 (Tyr705). The 17-oxo-DHA treatment also reduced the levels of oxidative stress markers, 4-hydroxynonenal-modified protein, malondialdehyde, and 8-oxo-2'-deoxyguanosine. The protective effects of 17-oxo-DHA against oxidative damage in UVB-irradiated mouse skin were associated with activation of Nrf2. 17-Oxo-DHA enhanced the engulfment of apoptotic JB6 cells by macrophages, which was related to the increased expression of the scavenger receptor CD36. The 17-oxo-DHA-mediated potentiation of efferocytic activity of macrophages was attenuated by the pharmacologic inhibition or knockout of Nrf2. The pretreatment with 17-oxo-DHA reduced the UVB-induced skin carcinogenesis and tumor angiogenesis. It was also confirmed that 17-oxo-DHA treatment significantly inhibited the phosphorylation of the Tyr705 residue of STAT3 and decreased the expression of its target proteins in cutaneous papilloma. In conclusion, 17-oxo-DHA protects against UVB-induced oxidative cell death, dermatitis, and carcinogenesis. These effects were associated with inhibition of STAT3-mediated proinflammatory signaling and also activation of Nrf2 with subsequent upregulation of antioxidant and anti-inflammatory gene expression.
Collapse
Affiliation(s)
- Seong Hoon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - So Eui Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Su-Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Xizhu Fang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jihyeon Hur
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, South Korea
| | - Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul, Turkey
| | - Nesrin Kartal Özer
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Altunizade, Istanbul, Turkey
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, South Korea; Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, South Korea.
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea; Cancer Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
5
|
Davinelli S, Medoro A, Intrieri M, Saso L, Scapagnini G, Kang JX. Targeting NRF2-KEAP1 axis by Omega-3 fatty acids and their derivatives: Emerging opportunities against aging and diseases. Free Radic Biol Med 2022; 193:736-750. [PMID: 36402440 DOI: 10.1016/j.freeradbiomed.2022.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
The transcription factor NRF2 and its endogenous inhibitor KEAP1 play a crucial role in the maintenance of cellular redox homeostasis by regulating the gene expression of diverse networks of antioxidant, anti-inflammatory, and detoxification enzymes. Therefore, activation of NRF2 provides cytoprotection against numerous pathologies, including age-related diseases. An age-associated loss of NRF2 function may be a key driving force behind the aging phenotype. Recently, numerous NRF2 inducers have been identified and some of them are promising candidates to restore NRF2 transcriptional activity during aging. Emerging evidence indicates that omega-3 (n-3) polyunsaturated fatty acids (PUFAs) and their electrophilic derivatives may trigger a protective response via NRF2 activation, rescuing or maintaining cellular redox homeostasis. In this review, we provide an overview of the NRF2-KEAP1 system and its dysregulation in aging cells. We also summarize current studies on the modulatory role of n-3 PUFAs as potential agents to prevent multiple chronic diseases and restore the age-related impairment of NRF2 function.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Patella B, Vincenzo SD, Zanca C, Bollaci L, Ferraro M, Giuffrè MR, Cipollina C, Bruno MG, Aiello G, Russo M, Inguanta R, Pace E. Electrochemical Quantification of H 2O 2 Released by Airway Cells Growing in Different Culture Media. MICROMACHINES 2022; 13:1762. [PMID: 36296115 PMCID: PMC9611932 DOI: 10.3390/mi13101762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 05/30/2023]
Abstract
Quantification of oxidative stress is a challenging task that can help in monitoring chronic inflammatory respiratory airway diseases. Different studies can be found in the literature regarding the development of electrochemical sensors for H2O2 in cell culture medium to quantify oxidative stress. However, there are very limited data regarding the impact of the cell culture medium on the electrochemical quantification of H2O2. In this work, we studied the effect of different media (RPMI, MEM, DMEM, Ham's F12 and BEGM/DMEM) on the electrochemical quantification of H2O2. The used electrode is based on reduced graphene oxide (rGO) and gold nanoparticles (AuNPs) and was obtained by co-electrodeposition. To reduce the electrode fouling by the medium, the effect of dilution was investigated using diluted (50% v/v in PBS) and undiluted media. With the same aim, two electrochemical techniques were employed, chronoamperometry (CH) and linear scan voltammetry (LSV). The influence of different interfering species and the effect of the operating temperature of 37 °C were also studied in order to simulate the operation of the sensor in the culture plate. The LSV technique made the sensor adaptable to undiluted media because the test time is short, compared with the CH technique, reducing the electrode fouling. The long-term stability of the sensors was also evaluated by testing different storage conditions. By storing the electrode at 4 °C, the sensor performance was not reduced for up to 21 days. The sensors were validated measuring H2O2 released by two different human bronchial epithelial cell lines (A549, 16HBE) and human primary bronchial epithelial cells (PBEC) grown in RPMI, MEM and BEGM/DMEM media. To confirm the results obtained with the sensor, the release of reactive oxygen species was also evaluated with a standard flow cytometry technique. The results obtained with the two techniques were very similar. Thus, the LSV technique permits using the proposed sensor for an effective oxidative stress quantification in different culture media and without dilution.
Collapse
Affiliation(s)
- Bernardo Patella
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Serena Di Vincenzo
- Institute of Traslational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
| | - Claudio Zanca
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Luciano Bollaci
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Maria Ferraro
- Institute of Traslational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
| | | | - Chiara Cipollina
- Institute of Traslational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
- Ri.MED Foundation, 90146 Palermo, Italy
| | | | - Giuseppe Aiello
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | | | | | - Elisabetta Pace
- Institute of Traslational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
| |
Collapse
|
7
|
Uwagboe I, Adcock IM, Lo Bello F, Caramori G, Mumby S. New drugs under development for COPD. Minerva Med 2022; 113:471-496. [PMID: 35142480 DOI: 10.23736/s0026-4806.22.08024-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The characteristic features of chronic obstructive pulmonary disease (COPD) include inflammation and remodelling of the lower airways and lung parenchyma together with activation of inflammatory and immune processes. Due to the increasing habit of cigarette smoking worldwide COPD prevalence is increasing globally. Current therapies are unable to prevent COPD progression in many patients or target many of its hallmark characteristics which may reflect the lack of adequate biomarkers to detect the heterogeneous clinical and molecular nature of COPD. In this chapter we review recent molecular data that may indicate novel pathways that underpin COPD subphenotypes and indicate potential improvements in the classes of drugs currently used to treat COPD. We also highlight the evidence for new drugs or approaches to treat COPD identified using molecular and other approaches including kinase inhibitors, cytokine- and chemokine-directed biologicals and small molecules, antioxidants and redox signalling pathway inhibitors, inhaled anti-infectious agents and senolytics. It is important to consider the phenotypes/molecular endotypes of COPD patients together with specific outcome measures to target new therapies to particular COPD subtypes. This will require greater understanding of COPD molecular pathologies and a focus on biomarkers of predicting disease subsets and responder/non-responder populations.
Collapse
Affiliation(s)
- Isabel Uwagboe
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK -
| | - Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
8
|
Cipollina C, Bruno A, Fasola S, Cristaldi M, Patella B, Inguanta R, Vilasi A, Aiello G, La Grutta S, Torino C, Pace E. Cellular and Molecular Signatures of Oxidative Stress in Bronchial Epithelial Cell Models Injured by Cigarette Smoke Extract. Int J Mol Sci 2022; 23:1770. [PMID: 35163691 PMCID: PMC8836577 DOI: 10.3390/ijms23031770] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Exposure of the airways epithelium to environmental insults, including cigarette smoke, results in increased oxidative stress due to unbalance between oxidants and antioxidants in favor of oxidants. Oxidative stress is a feature of inflammation and promotes the progression of chronic lung diseases, including Chronic Obstructive Pulmonary Disease (COPD). Increased oxidative stress leads to exhaustion of antioxidant defenses, alterations in autophagy/mitophagy and cell survival regulatory mechanisms, thus promoting cell senescence. All these events are amplified by the increase of inflammation driven by oxidative stress. Several models of bronchial epithelial cells are used to study the molecular mechanisms and the cellular functions altered by cigarette smoke extract (CSE) exposure, and to test the efficacy of molecules with antioxidant properties. This review offers a comprehensive synthesis of human in-vitro and ex-vivo studies published from 2011 to 2021 describing the molecular and cellular mechanisms evoked by CSE exposure in bronchial epithelial cells, the most used experimental models and the mechanisms of action of cellular antioxidants systems as well as natural and synthetic antioxidant compounds.
Collapse
Affiliation(s)
- Chiara Cipollina
- Ri.MED Foundation, 90133 Palermo, Italy; (C.C.); (M.C.)
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (A.B.); (S.F.); (S.L.G.); (E.P.)
| | - Andreina Bruno
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (A.B.); (S.F.); (S.L.G.); (E.P.)
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy
| | - Salvatore Fasola
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (A.B.); (S.F.); (S.L.G.); (E.P.)
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy
| | | | - Bernardo Patella
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (B.P.); (R.I.); (G.A.)
| | - Rosalinda Inguanta
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (B.P.); (R.I.); (G.A.)
| | - Antonio Vilasi
- Institute of Clinical Physiology, National Research Council, 89124 Reggio Calabria, Italy;
| | - Giuseppe Aiello
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (B.P.); (R.I.); (G.A.)
| | - Stefania La Grutta
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (A.B.); (S.F.); (S.L.G.); (E.P.)
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy
| | - Claudia Torino
- Institute of Clinical Physiology, National Research Council, 89124 Reggio Calabria, Italy;
| | - Elisabetta Pace
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (A.B.); (S.F.); (S.L.G.); (E.P.)
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy
| |
Collapse
|
9
|
Yijin-Tang Attenuates Cigarette Smoke and Lipopolysaccharide-Induced Chronic Obstructive Pulmonary Disease in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7902920. [PMID: 35035511 PMCID: PMC8754600 DOI: 10.1155/2022/7902920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) refers to a lung disorder associated with symptoms of dyspnea, cough, and sputum production. Traditionally, Yijin-tang (YJT), a mixture of Pinellia ternate, Poria cocos, ginger, Chinese liquorice, and tangerine peel, has been prescribed for the treatment of respiratory system diseases caused by dampness phlegm. This experiment investigated the therapeutic effect of YJT in a mouse model of cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced COPD. METHODS COPD was induced by exposing mice to CS for 1 hour per day for 8 weeks, with intranasal delivery of LPS on weeks 1, 3, 5, and 7. YJT was administered at doses of 100 and 200 mg/kg 1 hour before CS exposure for the last 4 weeks. RESULTS YJT significantly suppressed CS- and LPS-induced increases in inflammatory cell counts and reduced interleukin-1 beta (IL-1β), IL-6, tumor necrosis factor-alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) levels in bronchoalveolar lavage fluid (BALF) and lung tissue. In addition, YJT not only decreased airway wall thickness, average alveolar intercept, and lung fibrosis, but it also suppressed the expression of matrix metallopeptidase (MMP)-7, MMP-9, and transforming growth factor-B (TGF-β) and collagen deposition. Moreover, YJT suppressed phosphorylation of nuclear factor-kappa B (NF-κB) as well as expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). CONCLUSION Collectively, our findings show that YJT attenuates respiratory inflammation and airway remodeling caused by CS and LPS exposure; therefore, therapeutic applications in COPD can be considered.
Collapse
|
10
|
Frömel T, Naeem Z, Pirzeh L, Fleming I. Cytochrome P450-derived fatty acid epoxides and diols in angiogenesis and stem cell biology. Pharmacol Ther 2021; 234:108049. [PMID: 34848204 DOI: 10.1016/j.pharmthera.2021.108049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Cytochrome P450 (CYP) enzymes are frequently referred to as the third pathway for the metabolism of arachidonic acid. While it is true that these enzymes generate arachidonic acid epoxides i.e. the epoxyeicosatrienoic acids (EETs), they are able to accept a wealth of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) to generate a large range of regio- and stereo-isomers with distinct biochemical properties and physiological actions. Probably the best studied are the EETs which have well documented effects on vascular reactivity and angiogenesis. CYP enzymes can also participate in crosstalk with other PUFA pathways and metabolize prostaglandin G2 and H2, which are the precursors of effector prostaglandins, to affect macrophage function and lymphangiogenesis. The activity of the PUFA epoxides is thought to be kept in check by the activity of epoxide hydrolases. However, rather than being inactive, the diols generated have been shown to regulate neutrophil activation, stem and progenitor cell proliferation and Notch signaling in addition to acting as exercise-induced lipokines. Excessive production of PUFA diols has also been implicated in pathologies such as severe respiratory distress syndromes, including COVID-19, and diabetic retinopathy. This review highlights some of the recent findings related to this pathway that affect angiogenesis and stem cell biology.
Collapse
Affiliation(s)
- Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Zumer Naeem
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Lale Pirzeh
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany; The Cardio-Pulmonary Institute, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Zhu X, Zhan Y, Gu Y, Huang Q, Wang T, Deng Z, Xie J. Cigarette Smoke Promotes Interleukin-8 Production in Alveolar Macrophages Through the Reactive Oxygen Species/Stromal Interaction Molecule 1/Ca 2+ Axis. Front Physiol 2021; 12:733650. [PMID: 34690806 PMCID: PMC8531208 DOI: 10.3389/fphys.2021.733650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), primarily attributed to cigarette smoke (CS), is characterized by multiple pathophysiological changes, including oxidative stress and inflammation. Stromal interaction molecule 1 (STIM1) is a Ca2+ sensor that regulates Ca2+ entry in different types of cells. The present study aimed to explore the relationship between CS-induced oxidative stress and inflammation, as well as the functional role of STIM1 thereinto. Our results showed that the reactive oxygen species (ROS)/STIM1/Ca2+ axis played a critical role in CS-induced secretion of interleukin (IL)-8 in human alveolar macrophages. Specifically, smokers with COPD (SC) showed higher levels of ROS in the lung tissues compared with healthy non-smokers (HN). STIM1 was upregulated in the lung tissues of COPD patients. The expression of STIM1 was positively associated with ROS levels and negatively correlated with pulmonary function. The expression of STIM1 was also increased in the bronchoalveolar lavage fluid (BALF) macrophages of COPD patients and PMA-differentiated THP-1 macrophages stimulated by cigarette smoke extract (CSE). Additionally, CSE-induced upregulation of STIM1 in PMA-differentiated THP-1 macrophages was inhibited by pretreatment with N-acetylcysteine (NAC), a ROS scavenger. Transfection with small interfering RNA (siRNA) targeting STIM1 and pretreatment with NAC alleviated CSE-induced increase in intracellular Ca2+ levels and IL-8 expression. Furthermore, pretreatment with SKF-96365 and 2-APB, the inhibitors of Ca2+ influx, suppressed CSE-induced secretion of IL-8. In conclusion, our study demonstrates that CSE-induced ROS production may increase the expression of STIM1 in macrophages, which further promotes the release of IL-8 by regulating Ca2+ entry. These data suggest that STIM1 may play a crucial role in CSE-induced ROS production and inflammation, and participate in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Xianying Zhu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiya Gu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhesong Deng
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Cigarette smoke extract reduces FOXO3a promoting tumor progression and cell migration in lung cancer. Toxicology 2021; 454:152751. [PMID: 33737139 DOI: 10.1016/j.tox.2021.152751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide, and the carcinogens in tobacco smoke play a role in its progression and metastasis. The related molecular events are largely unknown. FOXO3a is a transcription factor considered a tumor suppressor. Its inhibition leads to cell transformation, tumor progression and metastasis. The aim of this study was to investigate, in different types of lung cancer cell lines (A549, COLO 699 N, SK-MES-1), the effects of cigarette smoke on mitochondrial status and cell metabolism and on key pathways involved in tumor progression and cell migration, looking at the role of FOXO3a in these mechanisms. The different lung cancer cells were exposed to cigarette smoke extract (CSE) and TGF-β1. Reactive oxygen species (ROS), mitochondrial superoxide, intracellular ATP, extracellular lactate, FOXO3a, p21, survivin, epithelial-to-mesenchymal transition (EMT) markers (E-cadherin, SNAIL1), MMP-9 and cellular migration were assessed by flow-cytometry, fluorimetry, western blot analysis, Real-Time PCR and scratch test. Our results showed that exposure to CSE: (i) increased ROS, mitochondrial superoxide, lactate release while reducing intracellular ATP; (ii) decreased FOXO3a and increased survivin and p21 in the cytoplasm; (iii) decreased E-cadherin, increased SNAIL1 and MMP-9 and promoted cell migration like TGF-β1 did. These effects could be partly explained by downregulation of FOXO3a, as demonstrated by silencing experiments. These data suggest that cigarette smoke induces oxidative stress and mitochondrial damage leading to metabolic reprogramming associated with increased glycolytic flux. This is accompanied with a downregulation of FOXO3a contributing to EMT processes and cell migration therefore promoting tumor progression.
Collapse
|
13
|
O’Brien J, Wendell SG. Electrophile Modulation of Inflammation: A Two-Hit Approach. Metabolites 2020; 10:metabo10110453. [PMID: 33182676 PMCID: PMC7696920 DOI: 10.3390/metabo10110453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Electrophilic small molecules have gained significant attention over the last decade in the field of covalent drug discovery. Long recognized as mediators of the inflammatory process, recent evidence suggests that electrophiles may modulate the immune response through the regulation of metabolic networks. These molecules function as pleiotropic signaling mediators capable of reversibly reacting with nucleophilic biomolecules, most notably at reactive cysteines. More specifically, electrophiles target critical cysteines in redox regulatory proteins to activate protective pathways such as the nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 (Nrf2-Keap1) antioxidant signaling pathway while also inhibiting Nuclear Factor κB (NF-κB). During inflammatory states, reactive species broadly alter cell signaling through the oxidation of lipids, amino acids, and nucleic acids, effectively propagating the inflammatory sequence. Subsequent changes in metabolic signaling inform immune cell maturation and effector function. Therapeutic strategies targeting inflammatory pathologies leverage electrophilic drug compounds, in part, because of their documented effect on the redox balance of the cell. With mounting evidence demonstrating the link between redox signaling and metabolism, electrophiles represent ideal therapeutic candidates for the treatment of inflammatory conditions. Through their pleiotropic signaling activity, electrophiles may be used strategically to both directly and indirectly target immune cell metabolism.
Collapse
|
14
|
Lo Bello F, Hansbro PM, Donovan C, Coppolino I, Mumby S, Adcock IM, Caramori G. New drugs under development for COPD. Expert Opin Emerg Drugs 2020; 25:419-431. [DOI: 10.1080/14728214.2020.1819982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e Delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, Australia
- Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, Australia
| | - Chantal Donovan
- Centre for Inflammation, Centenary Institute, Sydney, Australia
- Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, Australia
| | - Irene Coppolino
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e Delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Ian M. Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e Delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| |
Collapse
|
15
|
Jamil MU, Kim J, Yum HW, Kim SH, Kim SJ, Kim DH, Cho NC, Na HK, Surh YJ. 17-Oxo-docosahexaenoic acid induces Nrf2-mediated expression of heme oxygenase-1 in mouse skin in vivo and in cultured murine epidermal cells. Arch Biochem Biophys 2019; 679:108156. [PMID: 31629711 DOI: 10.1016/j.abb.2019.108156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022]
Abstract
Recently, growing attention has been given to new classes of bioactive lipid mediators derived from ω-3 polyunsaturated fatty acids, such as docosahexaenoic acid (DHA), especially in the context of their role as endogenous signal modulators. One such molecule is 17-oxo-DHA, generated from DHA by the action of COX2 and a dehydrogenase. The redox-sensitive transcription factor, Nrf2 plays a key role in cellular stress responses. In the present study, the effects of 17-oxo-DHA on Nrf2-mediated expression of cytoprotective enzymes were examined in mouse skin in vivo and cultured murine epidermal JB6 cells. Topical application of 17-oxo-DHA markedly elevated the nuclear localization of Nrf2 and expression of heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase-1 in hairless mouse skin. In contrast to 17-oxo-DHA, the non-electrophilic metabolic precursor 17-hydroxy-DHA was a much weaker inducer of Nrf2 activation and its target protein expression. Likewise, 17-oxo-DHA significantly enhanced nuclear translocation and transcriptional activity of Nrf2 with concomitant upregulation of HO-1 expression in cultured JB6 cells. 17-Oxo-DHA was a much stronger inducer of Nrf2-mediated antioxidant response than its parent molecule, DHA. HO-1 expression was abolished in Nrf2 knockdown JB6 cells or embryo fibroblasts from Nrf2 knock out mice. 17-Oxo-DHA also markedly reduced the level of Keap1 protein by inducing ubiquitination. Mutation of Cys151 and Cys273 in Keap1 abrogated 17-oxo-DHA-induced ubiquitination and proteasome-mediated degradation of Keap1 as well as HO-1 expression, suggesting that these cysteine residues are putative sites for 17-oxo-DHA binding. Further, Keap1 degradation stimulated by 17-oxo-DHA coincided with accumulation of the autophagy substrate, p62/SQSTM1.
Collapse
Affiliation(s)
- Muhammad Usman Jamil
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Jimin Kim
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Hye-Won Yum
- Tumor Microenvironment Global Core Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Seong Hoon Kim
- Tumor Microenvironment Global Core Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Su-Jung Kim
- Tumor Microenvironment Global Core Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Do-Hee Kim
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea; Tumor Microenvironment Global Core Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Nam-Chul Cho
- C&C Research Laboratories, DRC, Sungyunkwan University, Suwon, 16419, South Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-based Services Engineering, Sungshin Women's University, Seoul, 01133, South Korea
| | - Young-Joon Surh
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea; Tumor Microenvironment Global Core Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul, 03080, South Korea.
| |
Collapse
|
16
|
Fleming I. New Lipid Mediators in Retinal Angiogenesis and Retinopathy. Front Pharmacol 2019; 10:739. [PMID: 31333461 PMCID: PMC6624440 DOI: 10.3389/fphar.2019.00739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022] Open
Abstract
Retinal diseases associated with vascular destabilization and the inappropriate proliferation of retinal endothelial cells have major consequences on the retinal vascular network. In extreme cases, the development of hypoxia, the upregulation of growth factors, and the hyper-proliferation of unstable capillaries can result in bleeding and vision loss. While anti-vascular endothelial growth factor therapy and laser retinal photocoagulation can be used to treat the symptoms of late stage disease, there is currently no treatment available that can prevent disease progression. Cytochrome P450 enzymes metabolize endogenous substrates (polyunsaturated fatty acids) to bioactive fatty acid epoxides that demonstrate biological activity with generally protective/anti-inflammatory and insulin-sensitizing effects. These epoxides are further metabolized by the soluble epoxide hydrolase (sEH) to fatty acid diols, high concentrations of which have vascular destabilizing effects. Recent studies have identified increased sEH expression and activity and the subsequent generation of the docosahexaenoic acid-derived diol; 19,20-dihydroxydocosapentaenoic acid, as playing a major role in the development of diabetic retinopathy. This review summarizes current understanding of the roles of cytochrome P450 enzyme and sEH–derived PUFA mediators in retinal disease.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Frankfurt, Germany.,German Centre for Cardiovascular Research (DZHK) partner site RheinMain, Frankfurt, Germany
| |
Collapse
|
17
|
Pazderka CW, Oliver B, Murray M, Rawling T. Omega-3 Polyunsaturated Fatty Acid Derived Lipid Mediators and their Application in Drug Discovery. Curr Med Chem 2018; 27:1670-1689. [PMID: 30259807 DOI: 10.2174/0929867325666180927100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022]
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play crucial and often opposing regulatory roles in health and in pathological conditions. n-3 and n-6 PUFA undergo biotransformation to parallel series of lipid mediators that are potent modulators of many cellular processes. A wide range of biological actions have been attributed to lipid mediators derived from n-6 PUFA, and these mediators have served as lead compounds in the development of numerous clinically approved drugs, including latanoprost (Xalatan: Pfizer), which is listed on the WHO Model List of Essential Medicines. n-3 PUFA-derived mediators have received less attention, in part because early studies suggested that n-3 PUFA act simply as competitive substrates for biotransformation enzymes and decrease the formation of n-6 PUFA-derived lipid mediators. However, more recent studies suggest that n-3 PUFA-derived mediators are biologically important in their own right. It is now emerging that many n-3 PUFA-derived lipid mediators have potent and diverse activities that are distinct from their n-6 counterparts. These findings provide new opportunities for drug discovery. Herein, we review the biosynthesis of n-3 PUFA-derived lipid mediators and highlight their biological actions that may be exploited for drug development. Lastly, we provide examples of medicinal chemistry research that has utilized n-3 PUFA-derived lipid mediators as novel lead compounds in drug design.
Collapse
Affiliation(s)
- Curtis W Pazderka
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Brian Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Michael Murray
- Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| |
Collapse
|
18
|
Sadeghi-Ardekani K, Haghighi M, Zarrin R. Effects of omega-3 fatty acid supplementation on cigarette craving and oxidative stress index in heavy-smoker males: A double-blind, randomized, placebo-controlled clinical trial. J Psychopharmacol 2018; 32:995-1002. [PMID: 30136619 DOI: 10.1177/0269881118788806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Smoking-induced oxidative stress is thought to contribute to lower levels of omega-3 fatty acids in plasma and brain tissue. This lower level leads to impaired function in a dopaminergic system related to dependence and craving. AIMS The aim of this study was to evaluate the effects of omega-3 fatty acid supplementation on cigarette craving and oxidative stress index in heavy-smoker males. METHODS In this double-blind, randomized clinical trial, 54 heavy-smoker males (smoke ⩾20 cigarettes per day) were randomly selected to receive either five capsules of fish-oil-derived omega-3 fatty acid supplements ( n = 27, each 1 g capsule containing 180 mg of eicosapentaenoic acid and 120 mg of docosahexanoic acid) or a placebo ( n = 27) for 3 months. The psychometric evaluations (nicotine dependence and cigarette craving), biochemical markers (urinary cotinine, serum total antioxidant capacity and total oxidant status) and self-reported smoking status were used to assess the cigarette craving and oxidative stress index (oxidative stress index = total oxidant status/total antioxidant capacity). RESULTS There was a greater reduction in levels of nicotine dependence, cigarette craving and cigarettes smoked per day in the omega-3 fatty acid group compared to the placebo group, and the difference between the two groups increased from baseline to 3-month follow up. The model estimated that these differences were statistically significant ( p < 0.001, p < 0.001 and p < 0.001, respectively). Also, a significant decrease was observed in levels of total oxidant status ( p = 0.008) and oxidative stress index ( p = 0.011) in the omega-3 fatty acid group after intervention. CONCLUSIONS This study showed that high-dose omega-3 fatty acid supplementation appears to be useful in reducing cigarette craving and oxidative stress index in heavy-smoker males.
Collapse
Affiliation(s)
- Kiana Sadeghi-Ardekani
- 1 Nutrition Department, School of Medicine, The Urmia University of Medical Sciences, Iran
| | - Mahmonir Haghighi
- 2 Psychiatry Department, The Urmia University of Medical Sciences, Iran
| | - Rasoul Zarrin
- 1 Nutrition Department, School of Medicine, The Urmia University of Medical Sciences, Iran
| |
Collapse
|
19
|
Sun GY, Simonyi A, Fritsche KL, Chuang DY, Hannink M, Gu Z, Greenlief CM, Yao JK, Lee JC, Beversdorf DQ. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot Essent Fatty Acids 2018; 136:3-13. [PMID: 28314621 PMCID: PMC9087135 DOI: 10.1016/j.plefa.2017.03.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 01/01/2023]
Abstract
Docosahexaenoic acid (DHA), a polyunsaturated fatty acid (PUFA) enriched in phospholipids in the brain and retina, is known to play multi-functional roles in brain health and diseases. While arachidonic acid (AA) is released from membrane phospholipids by cytosolic phospholipase A2 (cPLA2), DHA is linked to action of the Ca2+-independent iPLA2. DHA undergoes enzymatic conversion by 15-lipoxygenase (Alox 15) to form oxylipins including resolvins and neuroprotectins, which are powerful lipid mediators. DHA can also undergo non-enzymatic conversion by reacting with oxygen free radicals (ROS), which cause the production of 4-hydoxyhexenal (4-HHE), an aldehyde derivative which can form adducts with DNA, proteins and lipids. In studies with both animal models and humans, there is evidence that inadequate intake of maternal n-3 PUFA may lead to aberrant development and function of the central nervous system (CNS). What is less certain is whether consumption of n-3 PUFA is important in maintaining brain health throughout one's life span. Evidence mostly from non-human studies suggests that DHA intake above normal nutritional requirements might modify the risk/course of a number of diseases of the brain. This concept has fueled much of the present interest in DHA research, in particular, in attempts to delineate mechanisms whereby DHA may serve as a nutraceutical and confer neuroprotective effects. Current studies have revealed ability for the oxylipins to regulation of cell redox homeostasis through the Nuclear factor (erythroid-derived 2)-like 2/Antioxidant response element (Nrf2/ARE) anti-oxidant pathway, and impact signaling pathways associated with neurotransmitters, and modulation of neuronal functions involving brain-derived neurotropic factor (BDNF). This review is aimed at describing recent studies elaborating these mechanisms with special regard to aging and Alzheimer's disease, autism spectrum disorder, schizophrenia, traumatic brain injury, and stroke.
Collapse
Affiliation(s)
- Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - Agnes Simonyi
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Dennis Y Chuang
- Department of Neurology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, United States
| | - Mark Hannink
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
| | | | - Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System, and Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - David Q Beversdorf
- Department of Radiology, Neurology, and Psychological Sciences, and the Thompson Center, William and Nancy Thompson Endowed Chair in Radiology, University of Missouri School of Medicine, Columbia, MO, United States
| |
Collapse
|
20
|
Xu X, Chen Y, Zhang M, Wang D, Wu J, Yao Z, Wu Q, Fang W. Huatanjiangqi Capsule Upregulating NRF2 and MRP1 Expression in Chronic Obstructive Pulmonary Disease in Rats. Pharm Chem J 2018. [DOI: 10.1007/s11094-018-1771-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Liu R, Wang P, Wu C, Chen J, Li C, Xie Y, Wang Q, Liu J, He H, Zhu J. Therapeutic effects of Hedyotis diffusa Willd in a COPD mouse model challenged with LPS and smoke. Exp Ther Med 2018; 15:3385-3391. [PMID: 29545859 PMCID: PMC5840915 DOI: 10.3892/etm.2018.5851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/10/2018] [Indexed: 01/25/2023] Open
Abstract
Hedyotis diffusa Willd (HDW) is a constituent of several Chinese medicines used clinically to treat inflammatory diseases, including airway inflammation. The aim of the present study was to investigate whether HDW serves a protective role in suppressing chronic airway inflammation and its underlying mechanisms. A mouse model of chronic smoking was induced via exposure to cigarette smoke (CS) for 30 days, increasing the exposure time for up to 5 min per day and the administration of lipopolysaccharide (LPS). Mice were gavaged with HDW (50 or 100 mg/kg body weight), dexamethasone (1 mg/kg body weight) or normal saline (NS, 0.9%) 1 h prior to CS challenge. Compared with CS and LPS (SL)-induced mice, the levels of interleukin (IL)-1β, tumor necrosis factor-α and transforming growth factor-β in bronchoalveolar lavage fluid from HDW+SL mice were significantly decreased and IL-10 was markedly reduced. Histological examination of the lung tissues revealed that HDW treatment alleviates airway inflammation. In addition, the administration of HDW to human bronchial epithelial BEAS-2B cells suppressed the activity of the nuclear factor (NF)-κB signaling pathway. The results of the present study demonstrate that HDW has a therapeutic effect in COPD and the underlying mechanism may be attributed to inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Renping Liu
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Peihong Wang
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Caiqing Wu
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Juan Chen
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Chengxin Li
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Yongtao Xie
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Qi Wang
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Jianming Liu
- Department of Pharmacology, Jiangxi Medical College, Shangrao, Jiangxi 334000, P.R. China
| | - Huan He
- Department of Pharmacology, Fuzhou Medical College of Nanchang University, Fuzhou, Fujian 344000, P.R. China
| | - Jing Zhu
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| |
Collapse
|
22
|
Lee DI, Kang SA, Md A, Jeong UC, Jin F, Kang SJ, Lee JY, Yu HS. Sea Cucumber Lipid-Soluble Extra Fraction Prevents Ovalbumin-Induced Allergic Airway Inflammation. J Med Food 2017; 21:21-29. [PMID: 29161525 DOI: 10.1089/jmf.2017.3994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In a previous study, our research group demonstrated that sea cucumber (Apostichopus japonicus) extracts ameliorated allergic airway inflammation through CD4+CD25+Foxp3+ T (regulatory T; Treg) cell activation and recruitment to the lung. In this study, we aimed to determine which components of sea cucumber contribute to the amelioration of airway inflammation. We used n-hexane fractionation to separate sea cucumber into three phases (n-hexane, alcohol, and solid) and evaluated the ability of each phase to elevate Il10 expression in splenocytes and ameliorate symptoms in mice with ovalbumin (OVA)/alum-induced asthma. Splenocytes treated with the n-hexane phase showed a significant increase in Il10 expression. In the n-hexane phase, 47 fatty acids were identified. Individual fatty acids that comprised at least 5% of the total fatty acids were 16:0, 16:1n-7, 18:0, 18:1n-7, 20:4n-6, and 20:5n-3 (eicosapentaenoic acid). After administering the n-hexane phase to mice with OVA/alum-induced asthma, their asthma symptoms were ameliorated. Several immunomodulatory effects were observed in the n-hexane phase-pretreated group, compared with a vehicle control group. First, eosinophil infiltration and goblet cell hyperplasia were significantly reduced around the airways. Second, the concentrations of Th2-related cytokines (IL-4, IL-5, and IL-13) and Th17-related cytokines (IL-17) were significantly decreased in the spleen and bronchoalveolar lavage fluid (BALF). Finally, the concentrations of TGF-β and IL-10, which are associated with Treg cells, were significantly increased in the BALF and splenocyte culture medium. In conclusion, a fatty acid-rich fraction (n-hexane phase) of sea cucumber extract ameliorated allergic airway inflammation in a mouse model.
Collapse
Affiliation(s)
- Da-In Lee
- 1 Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University , Yangsan-si, Republic of Korea.,2 Immunoregulatory Therapeutics Group in Brain Busan 21 Project , Yangsan-si, Republic of Korea
| | - Shin Ae Kang
- 1 Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University , Yangsan-si, Republic of Korea.,2 Immunoregulatory Therapeutics Group in Brain Busan 21 Project , Yangsan-si, Republic of Korea
| | - Anisuzzaman Md
- 3 Department of Marine Biology and Aquaculture, Gyeonsang National University , Tongyeong, Republic of Korea
| | - U-Cheol Jeong
- 3 Department of Marine Biology and Aquaculture, Gyeonsang National University , Tongyeong, Republic of Korea
| | - Feng Jin
- 3 Department of Marine Biology and Aquaculture, Gyeonsang National University , Tongyeong, Republic of Korea
| | - Seok-Joong Kang
- 3 Department of Marine Biology and Aquaculture, Gyeonsang National University , Tongyeong, Republic of Korea
| | | | - Hak Sun Yu
- 1 Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University , Yangsan-si, Republic of Korea.,2 Immunoregulatory Therapeutics Group in Brain Busan 21 Project , Yangsan-si, Republic of Korea
| |
Collapse
|
23
|
Bruno A, Cipollina C, Di Vincenzo S, Siena L, Dino P, Di Gaudio F, Gjomarkaj M, Pace E. Ceftaroline modulates the innate immune and host defense responses of immunocompetent cells exposed to cigarette smoke. Toxicol Lett 2017; 279:9-15. [PMID: 28720485 DOI: 10.1016/j.toxlet.2017.07.878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/03/2017] [Accepted: 07/09/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cigarette smoke, the principal risk factor for chronic obstructive pulmonary disease (COPD), negatively influences the effectiveness of the immune system's response to a pathogen. The antibiotic ceftaroline exerts immune-modulatory effects in bronchial epithelial cells exposed to cigarette smoke. AIMS AND METHODS The present study aims to assess the effects of ceftaroline on TLR2 and TLR4 expression, LPS binding and TNF-α and human beta defensin (HBD2) release in an undifferentiated and PMA-differentiated human monocyte cell line (THP-1) exposed or not to cigarette smoke extracts (CSE). TLR2, TLR4, and LPS binding were assessed by flow cytometry, TNF-α and HBD2 release were evaluated by ELISA. RESULTS The constitutive expression of TLR2 and TLR4 and LPS binding were higher in differentiated compared to undifferentiated THP-1 cells. In undifferentiated THP-1 cells, CSE increased TLR2 and TLR4 protein levels, LPS binding and TNF-α release and reduced HBD2 release and ceftaroline counteracted all these effects. In differentiated THP-1, CSE did not significantly affect TLR2 and TLR4 expression and LPS binding but reduced HBD2 release and increased TNF-α release. Ceftaroline counteracted the effects of CSE on HBD2 release in differentiated THP-1. CONCLUSION Ceftaroline counteracts the effect of CSE in immune cells by increasing the effectiveness of the innate immune system. This effect may also assist in reducing pathogen activity and recurrent exacerbations in COPD patients.
Collapse
Affiliation(s)
- A Bruno
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - C Cipollina
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy; Fondazione Ri.MED, Palermo, Italy
| | - S Di Vincenzo
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - L Siena
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - P Dino
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - F Di Gaudio
- DiBiMeF (Biopatologia e Biotecnologie Mediche e Forensi), Università degli Studi di Palermo, Italy
| | - M Gjomarkaj
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - E Pace
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy.
| |
Collapse
|
24
|
Hu J, Geyer A, Dziumbla S, Awwad K, Zeldin DC, Schunck WH, Popp R, Frömel T, Fleming I. Role of Müller cell cytochrome P450 2c44 in murine retinal angiogenesis. Prostaglandins Other Lipid Mediat 2017; 133:93-102. [PMID: 28442442 DOI: 10.1016/j.prostaglandins.2017.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 12/11/2022]
Abstract
Polyunsaturated fatty acids (PUFA) and their cytochrome P450 (CYP450) metabolites have been linked to angiogenesis and vessel homeostasis. However, the role of individual CYP isoforms and their endogenous metabolites in those processes are not clear. Here, we focused on the role of Cyp2c44 in postnatal retinal angiogenesis and report that Cyp2c44 is highly expressed in Müller glial cells in the retina. The constitutive as well as inducible postnatal genetic deletion of Cyp2c44 resulted in an increased vessel network density without affecting vessel radial expansion during the first postnatal week. This phenotype was associated with an increased endothelial cell proliferation and attenuated Notch signaling. LC-MS/MS analyses revealed that levels of hydroxydocosahexaenoic acids (HDHA), i.e., 10-, 17- and 20-HDHA were significantly elevated in retinas from 5day old Cyp2c44-/- mice compared to their wild-type littermates. Enzymatic activity assays revealed that HDHAs were potential substrates for Cyp2c44 which could account for the increased levels of HDHAs in retinas from Cyp2c44-/- mice. These data indicate that Cyp2c44 is expressed in the murine retina and, like the soluble epoxide hydrolase, is expressed in Müller glia cells. The enhanced endothelial cell proliferation and Notch inhibition seen in retinas from Cyp2c44-deficient mice indicate a role for Cyp2c44-derived lipid mediators in physiological angiogenesis.
Collapse
Affiliation(s)
- Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, D-60596, Germany; German Center of Cardiovascular Research (DZHK) Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Alexandra Geyer
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, D-60596, Germany
| | - Sarah Dziumbla
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, D-60596, Germany; German Center of Cardiovascular Research (DZHK) Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Khader Awwad
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, D-60596, Germany
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Wolf-Hagen Schunck
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Str 10, 13092 Berlin, Germany
| | - Rüdiger Popp
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, D-60596, Germany
| | - Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, D-60596, Germany; German Center of Cardiovascular Research (DZHK) Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, D-60596, Germany; German Center of Cardiovascular Research (DZHK) Partner site Rhein-Main, Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Barros AS, Crispim RYG, Cavalcanti JU, Souza RB, Lemos JC, Cristino Filho G, Bezerra MM, Pinheiro TFM, de Vasconcelos SMM, Macêdo DS, de Barros Viana GS, Aguiar LMV. Impact of the Chronic Omega-3 Fatty Acids Supplementation in Hemiparkinsonism Model Induced by 6-Hydroxydopamine in Rats. Basic Clin Pharmacol Toxicol 2017; 120:523-531. [DOI: 10.1111/bcpt.12713] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/07/2016] [Indexed: 12/25/2022]
Affiliation(s)
| | | | | | - Ricardo Basto Souza
- Department of Biochemistry and Molecular Biology; Federal University of Ceará; Fortaleza Ceará Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shin NR, Ryu HW, Ko JW, Park JW, Kwon OK, Oh SR, Kim JC, Shin IS, Ahn KS. A standardized bark extract of Pinus pinaster Aiton (Pycnogenol ®) attenuated chronic obstructive pulmonary disease via Erk-sp1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:412-420. [PMID: 27725237 DOI: 10.1016/j.jep.2016.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 09/26/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A standardized bark extract of Pinus pinaster Aiton (Pycnogenol®; PYC) used as an herbal medicine to treat various diseases in Europe and North America. AIM OF THE STUDY This study evaluates the ability of PYC to inhibit chronic obstructive pulmonary disease (COPD) in the cigarette smoke extract (CSE)-stimulated human airway epithelial cell line NCI-H292 and in a cigarette smoke (CS) and lipopolysaccharide (LPS)-induced mouse model. METHODS To induce COPD, the mice intranasally received LPS on day 4 and were exposed to CS for 1h per day (total eight cigarettes per day) from days 1-7. The mice were administered PYC at a dose of 15mg/kg and 30mg/kg 1h before CS exposure. RESULTS In the CSE-stimulated NCI-H292 cells, PYC significantly inhibited Erk phosphorylation, sp1 expression, MUC5AC, and pro-inflammatory cytokines in a concentration-dependent manner, as evidenced by a reduction in their mRNA levels. Co-treatment with PYC and Erk inhibitors markedly reduced the levels inflammatory mediators compared to only PYC-treatment. In the COPD mice model, PYC decreased the inflammatory cell count and the levels of pro-inflammatory cytokines in the broncho-alveolar lavage fluid compared with COPD mice. PYC attenuated the recruitment of inflammatory cells in the airways and decreased the expression levels of Erk phosphorylation and sp1. PYC also inhibited the expression of myeloperoxidase and matrix metalloproteinases-9 in lung tissue. CONCLUSION Our results indicate that PYC inhibited the reduction in the inflammatory response in CSE-stimulated NCI-H292 cells and the COPD mouse model via the Erk-sp1 pathway. Therefore, we suggest that PYC has the potential to treat COPD.
Collapse
Affiliation(s)
- Na-Rae Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea.
| | - Hyung-Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883, Republic of Korea.
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea.
| | - Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883, Republic of Korea.
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883, Republic of Korea.
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883, Republic of Korea.
| | - Jong-Choon Kim
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea.
| | - In-Sik Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea.
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883, Republic of Korea.
| |
Collapse
|
27
|
17-oxo-DHA displays additive anti-inflammatory effects with fluticasone propionate and inhibits the NLRP3 inflammasome. Sci Rep 2016; 6:37625. [PMID: 27883019 PMCID: PMC5121625 DOI: 10.1038/srep37625] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/27/2016] [Indexed: 12/27/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by reduced lung function associated with increased local and systemic inflammatory markers, such as TNFα and IL-1β. Glucocorticoids are used to treat this chronic disease, however their efficacy is low and new drugs are very much required. 17-oxo-DHA is a cyclooxygenase-2-dependent, electrophilic, α,β-unsaturated keto-derivative of docosahexaenoic acid with anti-inflammatory properties. We evaluated the action of 17-oxo-DHA alone or in combination with the steroid fluticasone propionate (FP) in peripheral blood mononuclear cells (PBMCs) from COPD patients and healthy individuals exposed to lipopolysaccharide. We show that PBMCs from COPD patients released higher levels of TNFα and IL-1β compared to controls. 17-oxo-DHA displayed strong anti-inflammatory effects. The addition of 17-oxo-DHA in combination with FP showed enhanced anti-inflammatory effects through the modulation of transcriptional and post-transcriptional mechanisms. 17-oxo-DHA, but not FP, was able to suppress the release of mature IL-1β through inhibition of the NLRP3 inflammasome. Furthermore, 17-oxo-DHA inhibited inflammasome-dependent degradation of the glucocorticoid receptor (GR). Our findings suggest that 17-oxo-DHA in combination with FP or other steroids might achieve higher therapeutic efficacy than steroids alone. Combined treatment might be particularly relevant in those conditions where increased inflammasome activation may lead to GR degradation and steroid-unresponsive inflammation.
Collapse
|
28
|
Lee DI, Park MK, Kang SA, Choi JH, Kang SJ, Lee JY, Yu HS. Preventive Intra Oral Treatment of Sea Cucumber Ameliorate OVA-Induced Allergic Airway Inflammation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1663-1674. [PMID: 27852121 DOI: 10.1142/s0192415x16500932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sea cucumber extracts have potent biological effects, including anti-viral, anti-cancer, antibacterial, anti-oxidant, and anti-inflammation effects. To understand their anti-asthma effects, we induced allergic airway inflammation in mice after 7 oral administrations of the extract. The hyper-responsiveness value in mice with ovalbumin (OVA)-alum-induced asthma after oral injection of sea cucumber extracts was significantly lower than that in the OVA-alum-induced asthma group. In addition, the number of eosinophils in the lungs of asthma-induced mice pre-treated with sea cucumber extract was significantly decreased compared to that of PBS pre-treated mice. Additionally, CD4[Formula: see text]CD25[Formula: see text]Foxp3[Formula: see text]T (regulatory T; Treg) cells significantly increased in mesenteric lymph nodes after 7 administrations of the extract. These results suggest that sea cucumber extract can ameliorate allergic airway inflammation via Treg cell activation and recruitment to the lung.
Collapse
Affiliation(s)
- Da-In Lee
- * Department of Parasitology, School of Medicine, Pusan National University, Yangsan-si, Gyeongsangnam-do 626-870, Republic of Korea.,† Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Gyeonsang National University, Tongyeong 650-160, Republic of Korea
| | - Mi-Kyung Park
- * Department of Parasitology, School of Medicine, Pusan National University, Yangsan-si, Gyeongsangnam-do 626-870, Republic of Korea.,† Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Gyeonsang National University, Tongyeong 650-160, Republic of Korea
| | - Shin Ae Kang
- * Department of Parasitology, School of Medicine, Pusan National University, Yangsan-si, Gyeongsangnam-do 626-870, Republic of Korea.,† Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Gyeonsang National University, Tongyeong 650-160, Republic of Korea
| | - Jun-Ho Choi
- * Department of Parasitology, School of Medicine, Pusan National University, Yangsan-si, Gyeongsangnam-do 626-870, Republic of Korea.,† Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Gyeonsang National University, Tongyeong 650-160, Republic of Korea
| | - Seok-Jung Kang
- ‡ Department of Marine Biology and Aquaculture, Gyeonsang National University, Tongyeong 650-160, Republic of Korea
| | | | - Hak Sun Yu
- * Department of Parasitology, School of Medicine, Pusan National University, Yangsan-si, Gyeongsangnam-do 626-870, Republic of Korea
| |
Collapse
|
29
|
Matched-Comparative Modeling of Normal and Diseased Human Airway Responses Using a Microengineered Breathing Lung Chip. Cell Syst 2016; 3:456-466.e4. [DOI: 10.1016/j.cels.2016.10.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/15/2016] [Accepted: 10/05/2016] [Indexed: 12/21/2022]
|
30
|
Yum HW, Na HK, Surh YJ. Anti-inflammatory effects of docosahexaenoic acid: Implications for its cancer chemopreventive potential. Semin Cancer Biol 2016; 40-41:141-159. [PMID: 27546289 DOI: 10.1016/j.semcancer.2016.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 08/07/2016] [Accepted: 08/16/2016] [Indexed: 12/11/2022]
Abstract
The implication of inflammatory tissue damage in pathophysiology of human cancer as well as some metabolic disorders has been under intense investigation. Numerous studies have identified a series of critical signaling molecules involved in cellular responses to inflammatory stimuli. These include nuclear factor κB, peroxisome proliferator-activated receptor γ, nuclear factor erythroid 2 p45-related factor 2 and sterol regulatory element-binding protein 1. The proper regulation of these transcription factors mediating pro- and anti-inflammatory signaling hence provides an important strategy for the chemoprevention of inflammation-associated cancer. There is compelling evidence supporting that dietary supplementation with fish oil-derived ω-3 polyunsaturated fatty acids including docosahexaenoic acid (DHA) ameliorates symptomatic inflammation associated with cancer as well as other divergent human disorders. Acute or physiologic inflammation is an essential body's first line of defence to microbial infection and tissue injuries, but it must be properly completed by a process termed 'resolution'. Failure of resolution mechanisms can result in persistence of inflammation, leading to chronic inflammatory conditions and related malignancies. The phagocytic engulfment of apoptotic neutrophils and clearance of their potentially histotoxic contents by macrophages, called efferocytosis is an essential component in resolving inflammation. Of note, DHA is a precursor of endogenous proresolving lipid mediators which regulate the leukocyte trafficking and recruitment and thereby facilitate efferocytosis. Therefore, DHA and its metabolites may have a preventive potential in the management of human cancer which arises as a consequence of impaired resolution of inflammation as well as chronic inflammation.
Collapse
Affiliation(s)
- Hye-Won Yum
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Hye-Kyung Na
- Department of Food and Nutrition, College of Human Ecology, Sungshin Women's University, Seoul, 01133, South Korea.
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul, 110-744, South Korea.
| |
Collapse
|
31
|
Duttaroy AK. Docosahexaenoic acid supports feto-placental growth and protects cardiovascular and cognitive function: A mini review. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201500496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Asim K. Duttaroy
- Faculty of Medicine, Department of Nutrition; Institute of Basic Medical Sciences; University of Oslo; Norway
| |
Collapse
|
32
|
Serini S, Ottes Vasconcelos R, Fasano E, Calviello G. Epigenetic regulation of gene expression and M2 macrophage polarization as new potential omega-3 polyunsaturated fatty acid targets in colon inflammation and cancer. Expert Opin Ther Targets 2016; 20:843-58. [PMID: 26781478 DOI: 10.1517/14728222.2016.1139085] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION It has become increasingly clear that dietary habits may affect the risk/progression of chronic diseases with a pathogenic inflammatory component, such as colorectal cancer. Considerable attention has been directed toward the ability of nutritional agents to target key molecular pathways involved in these inflammatory-related diseases. AREAS COVERED ω-3 Polyunsaturated fatty acids (PUFA) and their oxidative metabolites have attracted considerable interest as possible anti-inflammatory and anti-cancer agents, especially in areas such as the large bowel, where the influence of orally introduced substances is high and tumors show deranged PUFA patterns. On this basis, we have analyzed pre-clinical findings that have recently revealed new insight into the molecular pathways targeted by ω-3 PUFA. EXPERT OPINION The findings analyzed herein demonstrate that ω-3 PUFA may exert beneficial effects by targeting the epigenetic regulation of gene expression and altering M2 macrophage polarization during the inflammatory response. These mechanisms need to be better explored in the large bowel, and further studies could better clarify their role and the potential of dietary interventions with ω-3 PUFA in the large bowel. The epigenomic mechanism is discussed in view of the potential of ω-3 PUFA to enhance the efficacy of other agents used in the therapy of colorectal cancer.
Collapse
Affiliation(s)
- Simona Serini
- a Institute of General Pathology , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Renata Ottes Vasconcelos
- a Institute of General Pathology , Università Cattolica del Sacro Cuore , Rome , Italy.,b Institute of Biological Sciences , Federal University of Rio Grande - FURG , Rio Grande , Brazil
| | - Elena Fasano
- c Department of Internal Medicine, Unit of Medical Oncology , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Gabriella Calviello
- a Institute of General Pathology , Università Cattolica del Sacro Cuore , Rome , Italy
| |
Collapse
|
33
|
Gruber F, Ornelas CM, Karner S, Narzt MS, Nagelreiter IM, Gschwandtner M, Bochkov V, Tschachler E. Nrf2 deficiency causes lipid oxidation, inflammation, and matrix-protease expression in DHA-supplemented and UVA-irradiated skin fibroblasts. Free Radic Biol Med 2015; 88:439-451. [PMID: 25981373 DOI: 10.1016/j.freeradbiomed.2015.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 12/19/2022]
Abstract
Fish oil rich in docosahexaenoic acid (DHA) has beneficial effects on human health. Omega-3 polyunsaturated fatty acids are precursors of eicosanoids and docosanoids, signaling molecules that control inflammation and immunity, and their dietary uptake improves a range of disorders including cardiovascular diseases, ulcerative colitis, rheumatoid arthritis, and psoriasis. The unsaturated nature of these fatty acids, however, makes them prone to oxidation, especially when they are incorporated into (membrane) phospholipids. The skin is an organ strongly exposed to oxidative stress, mainly due to solar ultraviolet radiation. Thus, increased levels of PUFA in combination with oxidative stress could cause increased local generation of oxidized lipids, whose action spectrum reaches from signaling molecules to reactive carbonyl compounds that can crosslink biomolecules. Here, we investigated whether PUFA supplements to fibroblasts are incorporated into membrane phospholipids and whether an increase of PUFA within phospholipids affects the responses of the cells to UV exposure. The redox-sensitive transcription factor Nrf2 is the major regulator of the fibroblast stress response to ultraviolet radiation or exposure to oxidized lipids. Here we addressed how Nrf2 signaling would be affected in PUFA-supplemented human dermal fibroblasts and mouse dermal fibroblasts from Nrf2-deficient and wild type mice. We found, using HPLC-tandem MS, that DHA supplements to culture media of human and murine fibroblasts were readily incorporated into phospholipids and that subsequent irradiation of the supplemented cells with UVA resulted in an increase in 1-palmitoyl-2-(epoxyisoprostane-E2)-sn-glycero-3-phosphorylcholine and Oxo-DHA esterified to phospholipid, both of which are Nrf2 agonists. Also, induction of Nrf2 target genes was enhanced in the DHA-supplemented fibroblasts after UVA irradiation. In Nrf2-deficient murine fibroblasts, the expression of the target genes was, as expected, decreased, but surprisingly, expression of TNFα and MMP13 was strongly induced in DHA-supplemented, UVA-irradiated cells. Also, Nrf2-deficient cells had increased levels of oxidized phospholipids relative to the unoxidized precursors after UVA irradiation. Our data suggest that under ultraviolet stress a functioning Nrf2 system is required to prevent DHA-induced inflammation and matrix degradation in dermal fibroblasts.
Collapse
Affiliation(s)
- Florian Gruber
- Department of Dermatology, Medical University of Vienna, Anna Spiegel Gebäude E6 Lab5, 1090 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria.
| | - Cayo Mecking Ornelas
- Department of Dermatology, Medical University of Vienna, Anna Spiegel Gebäude E6 Lab5, 1090 Vienna, Austria
| | - Susanne Karner
- Department of Dermatology, Medical University of Vienna, Anna Spiegel Gebäude E6 Lab5, 1090 Vienna, Austria
| | - Marie-Sophie Narzt
- Department of Dermatology, Medical University of Vienna, Anna Spiegel Gebäude E6 Lab5, 1090 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | - Ionela Mariana Nagelreiter
- Department of Dermatology, Medical University of Vienna, Anna Spiegel Gebäude E6 Lab5, 1090 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | - Maria Gschwandtner
- Department of Dermatology, Medical University of Vienna, Anna Spiegel Gebäude E6 Lab5, 1090 Vienna, Austria
| | - Valery Bochkov
- Department of Vascular Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Anna Spiegel Gebäude E6 Lab5, 1090 Vienna, Austria
| |
Collapse
|
34
|
Croasdell A, Thatcher TH, Kottmann RM, Colas RA, Dalli J, Serhan CN, Sime PJ, Phipps RP. Resolvins attenuate inflammation and promote resolution in cigarette smoke-exposed human macrophages. Am J Physiol Lung Cell Mol Physiol 2015; 309:L888-901. [PMID: 26301452 DOI: 10.1152/ajplung.00125.2015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/18/2015] [Indexed: 01/08/2023] Open
Abstract
Inflammation is a protective response to injury, but it can become chronic, leading to tissue damage and disease. Cigarette smoke causes multiple inflammatory diseases, which account for thousands of deaths and cost billions of dollars annually. Cigarette smoke disrupts the function of immune cells, such as macrophages, by prolonging inflammatory signaling, promoting oxidative stress, and impairing phagocytosis, contributing to increased incidence of infections. Recently, new families of lipid-derived mediators, "specialized proresolving mediators" (SPMs), were identified. SPMs play a critical role in the active resolution of inflammation by counterregulating proinflammatory signaling and promoting resolution pathways. We have identified dysregulated concentrations of lipid mediators in exhaled breath condensate, bronchoalveolar lavage fluid, and serum from patients with chronic obstructive pulmonary disease (COPD). In human alveolar macrophages from COPD and non-COPD patients, D-series resolvins decreased inflammatory cytokines and enhanced phagocytosis. To further investigate the actions of resolvins on human cells, macrophages were differentiated from human blood monocytes and treated with D-series resolvins and then exposed to cigarette smoke extract. Resolvins significantly suppressed macrophage production of proinflammatory cytokines, enzymes, and lipid mediators. Resolvins also increased anti-inflammatory cytokines, promoted an M2 macrophage phenotype, and restored cigarette smoke-induced defects in phagocytosis, highlighting the proresolving functions of these molecules. These actions were receptor-dependent and involved modulation of canonical and noncanonical NF-κB expression, with the first evidence for SPM action on alternative NF-κB signaling. These data show that resolvins act on human macrophages to attenuate cigarette smoke-induced inflammatory effects through proresolving mechanisms and provide new evidence of the therapeutic potential of SPMs.
Collapse
Affiliation(s)
- Amanda Croasdell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Thomas H Thatcher
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - R Matthew Kottmann
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - Romain A Colas
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Patricia J Sime
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - Richard P Phipps
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| |
Collapse
|
35
|
Sadarani BN, Majumdar AS. Resveratrol potentiates the effect of dexamethasone in rat model of acute lung inflammation. Int Immunopharmacol 2015; 28:773-9. [PMID: 26283591 DOI: 10.1016/j.intimp.2015.07.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/14/2015] [Accepted: 07/28/2015] [Indexed: 11/26/2022]
Abstract
Cigarette smoking is considered to be the main etiological factor in Chronic Obstructive Pulmonary Disease (COPD). In this study, we explored the potential of resveratrol, to reinstate the effectiveness of dexamethasone when administered as an adjunct in acute lung inflammation induced by cigarette smoke (CS) and lipopolysaccharide (LPS). CS and LPS instillation produced acute inflammatory response exhibited by increased leukocyte count, particularly neutrophils, total protein, MMP-9 activity, cytokines like TNF-α, IL-8 in bronchoalveolar lavage fluid (BALF) as well as elevated myeloperoxidase activity, and lipid peroxidation in lung. These alterations were not abated by dexamethasone (2.5mg/kg & 10mg/kg) and resveratrol (50mg/kg) alone. Combination of resveratrol (50mg/kg) and dexamethasone (2.5mg/kg) significantly reduced all inflammatory parameters. The protective effect of the combination was abolished when co-administered with sirtinol, a SIRT1 inhibitor. The results indicate that the combination therapy may serve as a potential approach for treating lung inflammatory conditions like COPD.
Collapse
Affiliation(s)
- Bhakti N Sadarani
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (East), Mumbai 400068, Maharashtra, India.
| | - Anuradha S Majumdar
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (East), Mumbai 400068, Maharashtra, India.
| |
Collapse
|
36
|
Endogenous Generation and Signaling Actions of Omega-3 Fatty Acid Electrophilic Derivatives. BIOMED RESEARCH INTERNATIONAL 2015; 2015:501792. [PMID: 26339618 PMCID: PMC4538325 DOI: 10.1155/2015/501792] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 12/28/2022]
Abstract
Dietary omega-3 polyunsaturated fatty acids (PUFAs) are beneficial for a number of conditions ranging from cardiovascular disease to chronic airways disorders, neurodegeneration, and cancer. Growing evidence has shown that bioactive oxygenated derivatives are responsible for transducing these salutary effects. Electrophilic oxo-derivatives of omega-3 PUFAs represent a class of oxidized derivatives that can be generated via enzymatic and nonenzymatic pathways. Inflammation and oxidative stress favor the formation of these signaling species to promote the resolution of inflammation within a fine autoregulatory loop. Endogenous generation of electrophilic oxo-derivatives of omega-3 PUFAs has been observed in in vitro and ex vivo human models and dietary supplementation of omega-3 PUFAs has been reported to increase their formation. Due to the presence of an α,β-unsaturated ketone moiety, these compounds covalently and reversibly react with nucleophilic residues on target proteins triggering the activation of cytoprotective pathways, including the Nrf2 antioxidant response, the heat shock response, and the peroxisome proliferator activated receptor γ (PPARγ) and suppressing the NF-κB proinflammatory pathway. The endogenous nature of electrophilic oxo-derivatives of omega-3 PUFAs combined with their ability to simultaneously activate multiple cytoprotective pathways has made these compounds attractive for the development of new therapies for the treatment of chronic disorders and acute events characterized by inflammation and oxidative stress.
Collapse
|
37
|
Prasad GL, Jones BA, Schmidt E, Chen P, Kennedy AD. Global metabolomic profiles reveal differences in oxidative stress and inflammation pathways in smokers and moist snuff consumers. ACTA ACUST UNITED AC 2015. [DOI: 10.7243/2059-0008-1-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Liu MH, Lin AH, Lu SH, Peng RY, Lee TS, Kou YR. Eicosapentaenoic acid attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling. Front Physiol 2014; 5:440. [PMID: 25452730 PMCID: PMC4231989 DOI: 10.3389/fphys.2014.00440] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/27/2014] [Indexed: 12/16/2022] Open
Abstract
Cigarette smoking causes chronic lung inflammation that is mainly regulated by redox-sensitive pathways. Our previous studies have demonstrated that cigarette smoke (CS) activates reactive oxygen species (ROS)-sensitive mitogen-activated protein kinases (MAPKs)/nuclear factor-κB (NF-κB) signaling resulting in induction of lung inflammation. Eicosapentaenoic acid (EPA), a major type of omega-3 polyunsaturated fatty acid, is present in significant amounts in marine-based fish and fish oil. EPA has been shown to possess antioxidant and anti-inflammatory properties in vitro and in vivo. However, whether EPA has similar beneficial effects against CS-induced lung inflammation remains unclear. Using a murine model, we show that subchronic CS exposure for 4 weeks caused pulmonary inflammatory infiltration (total cell count in bronchoalveolar lavage fluid (BALF), 11.0-fold increase), increased lung vascular permeability (protein level in BALF, 3.1-fold increase), elevated levels of chemokines (11.4–38.2-fold increase) and malondialdehyde (an oxidative stress biomarker; 2.0-fold increase) in the lungs, as well as lung inflammation; all of these CS-induced events were suppressed by daily supplementation with EPA. Using human bronchial epithelial cells, we further show that CS extract (CSE) sequentially activated NADPH oxidase (NADPH oxidase activity, 1.9-fold increase), increased intracellular levels of ROS (3.0-fold increase), activated both MAPKs and NF-κB, and induced interleukin-8 (IL-8; 8.2-fold increase); all these CSE-induced events were inhibited by pretreatment with EPA. Our findings suggest a novel role for EPA in alleviating the oxidative stress and lung inflammation induced by subchronic CS exposure in vivo and in suppressing the CSE-induced IL-8 in vitro via its antioxidant function and by inhibiting MAPKs/NF-κB signaling.
Collapse
Affiliation(s)
- Meng-Han Liu
- Department of Physiology, School of Medicine, National Yang-Ming University Taipei, Taiwan
| | - An-Hsuan Lin
- Department of Physiology, School of Medicine, National Yang-Ming University Taipei, Taiwan
| | - Shing-Hwa Lu
- Department of Urology, Taipei City Hospital, Zhong-Xiao Branch Taipei, Taiwan
| | - Ruo-Yun Peng
- Hsin Sheng Junior College of Medical Care and Management Longtan Township, Taiwan
| | - Tzong-Shyuan Lee
- Department of Physiology, School of Medicine, National Yang-Ming University Taipei, Taiwan
| | - Yu Ru Kou
- Department of Physiology, School of Medicine, National Yang-Ming University Taipei, Taiwan
| |
Collapse
|