1
|
Liu X, Chen Y, Li Y, Bai J, Zeng Z, Wang M, Dong Y, Zhou Y. STAU1-mediated CNBP mRNA degradation by LINC00665 alters stem cell characteristics in ovarian cancer. Biol Direct 2024; 19:59. [PMID: 39080743 PMCID: PMC11288052 DOI: 10.1186/s13062-024-00506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND To investigate the role of lncRNA LINC00665 in modulating ovarian cancer stemness and its influence on treatment resistance and cancer development. METHODS We isolated ovarian cancer stem cells (OCSCs) from the COC1 cell line using a combination of chemotherapeutic agents and growth factors, and verified their stemness through western blotting and immunofluorescence for stem cell markers. Employing bioinformatics, we identified lncRNAs associated with ovarian cancer, with a focus on LINC00665 and its interaction with the CNBP mRNA. In situ hybridization, immunohistochemistry, and qPCR were utilized to examine their expression and localization, alongside functional assays to determine the effects of LINC00665 on CNBP. RESULTS LINC00665 employs its Alu elements to interact with the 3'-UTR of CNBP mRNA, targeting it for degradation. This molecular crosstalk enhances stemness by promoting the STAU1-mediated decay of CNBP mRNA, thereby modulating the Wnt and Notch signaling cascades that are pivotal for maintaining CSC characteristics and driving tumor progression. These mechanistic insights were corroborated by a series of in vitro assays and validated in vivo using tumor xenograft models. Furthermore, we established a positive correlation between elevated CNBP levels and increased disease-free survival in patients with ovarian cancer, underscoring the prognostic value of CNBP in this context. CONCLUSIONS lncRNA LINC00665 enhances stemness in ovarian cancer by mediating the degradation of CNBP mRNA, thereby identifying LINC00665 as a potential therapeutic target to counteract drug resistance and tumor recurrence associated with CSCs.
Collapse
Affiliation(s)
- Xiaofang Liu
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yang Chen
- Department of General Surgery, The First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
| | - Ying Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Jinling Bai
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Zhi Zeng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yaodong Dong
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China.
| | - Yingying Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
2
|
Bose D, Banerjee N, Roy A, Sengupta P, Chatterjee S. Switchable tetraplex elements in the heterogeneous nuclear ribonucleoprotein K promoter: micro-environment dictated structural transitions of G/C rich elements. J Biomol Struct Dyn 2024:1-18. [PMID: 38235706 DOI: 10.1080/07391102.2024.2303378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
We have elucidated the hnRNP K promoter as a hotspot for tetraplex-based molecular switches receptive to micro-environmental stimuli. We have characterised the structural features of four tetraplex-forming loci and identified them as binding sites of transcription factors. These segments form either G-quadruplex or i-motif structures, the structural dynamicity of which has been studied in depth via several biophysical techniques. The tetraplexes display high dynamicity and are influenced by both pH and KCl concentrations in vitro. The loci complementary to these sequences form additional non-canonical secondary structures. In the cellular context, the most eminent observation of this study is the binding of hnRNP K to the i-motif forming sequences in its own promoter. We are the first to report a probable transcriptional autoregulatory function of hnRNP K in coordination with higher-order DNA structures. Herein, we also report the positive interaction of the endogenous tetraplexes with Sp1, a well-known transcriptional regulator. Treatment with tetraplex-specific small molecule ligands further uncovered G-quadruplexes' functioning as repressors and i-motifs as activators in this context. Together, our findings strongly indicate the critical regulatory role of the identified tetraplex elements in the hnRNP K promoter.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debopriya Bose
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| | - Ananya Roy
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| | - Pallabi Sengupta
- Department of Medical Biochemistry and Biophysics, Kemihuset (K), Campus, Umeå, Umeå universitet, Umeå, Sweden
| | | |
Collapse
|
3
|
Canesin G, Di Ruscio A, Li M, Ummarino S, Hedblom A, Choudhury R, Krzyzanowska A, Csizmadia E, Palominos M, Stiehm A, Ebralidze A, Chen SY, Bassal MA, Zhao P, Tolosano E, Hurley L, Bjartell A, Tenen DG, Wegiel B. Scavenging of Labile Heme by Hemopexin Is a Key Checkpoint in Cancer Growth and Metastases. Cell Rep 2021; 32:108181. [PMID: 32966797 PMCID: PMC7551404 DOI: 10.1016/j.celrep.2020.108181] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/03/2020] [Accepted: 09/01/2020] [Indexed: 12/25/2022] Open
Abstract
Hemopexin (Hx) is a scavenger of labile heme. Herein, we present data defining the role of tumor stroma-expressed Hx in suppressing cancer progression. Labile heme and Hx levels are inversely correlated in the plasma of patients with prostate cancer (PCa). Further, low expression of Hx in PCa biopsies characterizes poorly differentiated tumors and correlates with earlier time to relapse. Significantly, heme promotes tumor growth and metastases in an orthotopic murine model of PCa, with the most aggressive phenotype detected in mice lacking Hx. Mechanistically, labile heme accumulates in the nucleus and modulates specific gene expression via interacting with guanine quadruplex (G4) DNA structures to promote PCa growth. We identify c-MYC as a heme:G4-regulated gene and a major player in heme-driven cancer progression. Collectively, these results reveal that sequestration of labile heme by Hx may block heme-driven tumor growth and metastases, suggesting a potential strategy to prevent and/or arrest cancer dissemination. Canesin et al. describe a role and mechanism for labile heme as a key player in regulating gene expression to promote carcinogenesis via binding to G-quadruplex in the c-MYC promoter. Hemopexin, a heme scavenger, may be used as a strategy to block progression of cancer.
Collapse
Affiliation(s)
- Giacomo Canesin
- Department of Surgery, Division of Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Annalisa Di Ruscio
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA; University of Eastern Piedmont, Department of Translational Medicine, Novara, Italy; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA; HMS Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA.
| | - Mailin Li
- Department of Surgery, Division of Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA; University of Eastern Piedmont, Department of Translational Medicine, Novara, Italy
| | - Simone Ummarino
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA; University of Eastern Piedmont, Department of Translational Medicine, Novara, Italy
| | - Andreas Hedblom
- Department of Surgery, Division of Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Reeham Choudhury
- Department of Surgery, Division of Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Agnieszka Krzyzanowska
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmo, Sweden
| | - Eva Csizmadia
- Department of Surgery, Division of Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Macarena Palominos
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmo, Sweden
| | - Anna Stiehm
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmo, Sweden
| | - Alexander Ebralidze
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Shao-Yong Chen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Mahmoud A Bassal
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Ping Zhao
- College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Laurence Hurley
- College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Anders Bjartell
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmo, Sweden
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, Singapore; Harvard Stem Cell Institute, Harvard Medical School, Cambridge, MA 02138, USA
| | - Barbara Wegiel
- Department of Surgery, Division of Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA.
| |
Collapse
|
4
|
Han Z, Yang B, Wang Q, Hu Y, Wu Y, Tian Z. Comprehensive analysis of the transcriptome-wide m 6A methylome in invasive malignant pleomorphic adenoma. Cancer Cell Int 2021; 21:142. [PMID: 33653351 PMCID: PMC7923655 DOI: 10.1186/s12935-021-01839-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background Invasive malignant pleomorphic adenoma (IMPA) is a highly invasive parotid gland tumor and lacks effective therapy. N6-Methyladenosine (m6A) is the most prevalent post-transcriptional modification of mRNAs in eukaryotes and plays an important role in the pathogenesis of multiple tumors. However, the significance of m6A-modified mRNAs in IMPA has not been elucidated to date. Hence, in this study, we attempted to profile the effect of IMPA in terms of m6A methylation in mRNA. Methods Methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were utilized to acquire the first transcriptome-wide profiling of the m6A methylome map in IMPA followed by bioinformatics analysis. Results In this study, we obtained m6A methylation maps of IMPA samples and normal adjacent tissues through MeRIP-seq. In total, 25,490 m6A peaks associated with 13,735 genes were detected in the IMPA group, whereas 33,930 m6A peaks associated with 18,063 genes were detected in the control group. Peaks were primarily enriched within coding regions and near stop codons with AAACC and GGAC motifs. Moreover, functional enrichment analysis demonstrated that m6A-containing genes were significantly enriched in cancer and metabolism relevant pathways. Furthermore, we identified a relationship between the m6A methylome and the RNA transcriptome, indicating a mechanism by which m6A modulates gene expression. Conclusions Our study is the first to provide comprehensive and transcriptome-wide profiles to determine the potential roles played by m6A methylation in IMPA. These results may open new avenues for in-depth research elucidating the m6A topology of IMPA and the molecular mechanisms governing the formation and progression of IMPA.
Collapse
Affiliation(s)
- Zhenyuan Han
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Biao Yang
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Qin Wang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yuhua Hu
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuqiong Wu
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China. .,Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Zhen Tian
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
5
|
Souza WC, Dias LD, de Queiroz JE, Vidal HD, da Silva VB, Leopoldino AM, de Paula da Silva CH, Verde GM, Aquino GL. Synthesis and In silico Studies of N-acylhydrazone Derivatives as hnRNP K Ligands with Potential Anti-cancer Activity. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/1573407215666190131121059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background:
A green and efficient synthetic methodology for a wide family of Nacylhydrazones
(yields: 42-76%) using microwave irradiation is described, as well as their full characterization.
Their potential antineoplastic activity was evaluated in vitro via EMSA by testing protein-
DNA interactions. Among the 11 compounds tested, N-acylhydrazone derivative 5 bearing a hydroxyl
group, showed the highest affinity to bind and inhibit the hnRNP K KH3 domain. Docking simulations
of compound 5 showed three possible modes of interaction between the KH3 domain of hnRNP K protein
and compound predict.
:
The N-acylhydrazones are knows as powerful chemical entities for Medicinal Chemistry, since it has
been identified in a huge number of hit and lead compounds that act on various types of molecular targets,
including in tumorigenesis processes.
Objective:
We evaluated their potential ability to inhibit the KH3 domain of the hnRNP K protein binding
to single stranded DNA (ssDNA). Furthermore, a docking simulation was performed for the newly
synthetized compounds to evaluate their interactions between proteins and N-acylhydrazine derivative.
Methods:
The N-acylhydrazone derivatives were synthetized through three reaction steps, from a simple
and commercial substrate, using microwave irradiation as a green energy source. The N-acylhydrazone
derivatives ability to bind with the hnRNP K protein was evaluated via EMSA by testing protein-DNA
interactions. The docking simulations were performed in a Gold 5.2.2 software using 100 conformers,
10.000 operations, 95 mutations and 95 crossovers.
Results:
Eleven new N-acylhydrazone derivatives were synthetized using microwave showing yields
between 42% and 76%. Among the eleven compounds tested, compound 5 was shown to be most
capable to prevent the natural binding of hnRNP K protein to the oligonucleotide. Regarding the docking
simulation, compound 5 can bind to the main binding residues of KH3 domain and compete with the
natural ligand ssDNA of this protein.
Conclusion:
A green and efficient synthetic methodology for a wide family of N-acylhydrazones
(yields: 42-76%) using microwave irradiation is described, as well as their full characterization. Their
potential antineoplastic activity was evaluated in vitro via EMSA by testing protein-DNA interactions.
Among the 11 compounds tested, N-acylhydrazone derivative 5 bearing a hydroxyl group, showed the
highest affinity to bind and inhibit the hnRNP K KH3 domain. Docking simulations of compound 5
showed three possible modes of interaction between the KH3 domain of hnRNP K protein and compound
predict.
Collapse
Affiliation(s)
- Wanderson C. Souza
- Faculty of Pharmacy, Unit of Exact and Technological Sciences, State University of Goias, Br 153, 75132400, Anapolis, Goias, Brazil
| | - Lucas D. Dias
- Coimbra Chemistry Center (CQC), Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Jaqueline E. de Queiroz
- Laboratory on Bioproducts and Synthesis Research (LPbioS), Universidade State of Goias, Br 153, 75132400, Anápolis, Goias, Brazil
| | - Hérika D.A. Vidal
- Laboratory on Bioproducts and Synthesis Research (LPbioS), Universidade State of Goias, Br 153, 75132400, Anápolis, Goias, Brazil
| | - Vinícius B. da Silva
- School of Medical, Pharmaceutical Sciences and Biomedical at PUC, Rua 232, Setor Leste Universitario, 74605140, Goiania, Goias, Brazil
| | - Andréia M. Leopoldino
- Science Department Pharmacists of the Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Black, Sao Paulo, Brazil
| | - Carlos H.T. de Paula da Silva
- Science Department Pharmacists of the Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Black, Sao Paulo, Brazil
| | - Giuliana M.V. Verde
- Laboratory on Bioproducts and Synthesis Research (LPbioS), Universidade State of Goias, Br 153, 75132400, Anápolis, Goias, Brazil
| | - Gilberto L.B. Aquino
- Laboratory on Bioproducts and Synthesis Research (LPbioS), Universidade State of Goias, Br 153, 75132400, Anápolis, Goias, Brazil
| |
Collapse
|
6
|
David AP, Pipier A, Pascutti F, Binolfi A, Weiner AMJ, Challier E, Heckel S, Calsou P, Gomez D, Calcaterra NB, Armas P. CNBP controls transcription by unfolding DNA G-quadruplex structures. Nucleic Acids Res 2019; 47:7901-7913. [PMID: 31219592 PMCID: PMC6735679 DOI: 10.1093/nar/gkz527] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/19/2019] [Accepted: 06/17/2019] [Indexed: 01/17/2023] Open
Abstract
Guanine-rich DNA strands can fold into non-canonical four-stranded secondary structures named G-quadruplexes (G4). Experimental evidences suggest that G4-DNA surrounding transcription start sites act as cis-regulatory elements by either stimulating or inhibiting gene transcription. Therefore, proteins able to target and regulate specific G4 formation/unfolding are crucial for G4-mediated transcriptional control. Here we present data revealing that CNBP acts in vitro as a G4-unfolding protein over a tetramolecular G4 formed by the TG4T oligonucleotide, as well as over the G4 folded in the promoters of several oncogenes. CNBP depletion in cellulo led to a reduction in the transcription of endogenous KRAS, suggesting a regulatory role of CNBP in relieving the transcriptional abrogation due to G4 formation. CNBP activity was also assayed over the evolutionary conserved G4 enhancing the transcription of NOGGIN (NOG) developmental gene. CNBP unfolded in vitro NOG G4 and experiments performed in cellulo and in vivo in developing zebrafish showed a repressive role of CNBP on the transcription of this gene by G4 unwinding. Our results shed light on the mechanisms underlying CNBP way of action, as well as reinforce the notion about the existence and function of G4s in whole living organisms.
Collapse
Affiliation(s)
- Aldana P David
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Angélique Pipier
- Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS-Université de Toulouse, Equipe Labellisée Ligue Nationale contre le Cancer 2018, 31077, Toulouse, France
| | - Federico Pascutti
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Andrés Binolfi
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Andrea M J Weiner
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Emilse Challier
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Sofía Heckel
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS-Université de Toulouse, Equipe Labellisée Ligue Nationale contre le Cancer 2018, 31077, Toulouse, France
| | - Dennis Gomez
- Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS-Université de Toulouse, Equipe Labellisée Ligue Nationale contre le Cancer 2018, 31077, Toulouse, France
| | - Nora B Calcaterra
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Pablo Armas
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| |
Collapse
|
7
|
Niu K, Zhang X, Deng H, Wu F, Ren Y, Xiang H, Zheng S, Liu L, Huang L, Zeng B, Li S, Xia Q, Song Q, Palli SR, Feng Q. BmILF and i-motif structure are involved in transcriptional regulation of BmPOUM2 in Bombyx mori. Nucleic Acids Res 2019; 46:1710-1723. [PMID: 29194483 PMCID: PMC5829645 DOI: 10.1093/nar/gkx1207] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/23/2017] [Indexed: 12/12/2022] Open
Abstract
Guanine-rich and cytosine-rich DNA can form four-stranded DNA secondary structures called G-quadruplex (G4) and i-motif, respectively. These structures widely exist in genomes and play important roles in transcription, replication, translation and protection of telomeres. In this study, G4 and i-motif structures were identified in the promoter of the transcription factor gene BmPOUM2, which regulates the expression of the wing disc cuticle protein gene (BmWCP4) during metamorphosis. Disruption of the i-motif structure by base mutation, anti-sense oligonucleotides (ASOs) or inhibitory ligands resulted in significant decrease in the activity of the BmPOUM2 promoter. A novel i-motif binding protein (BmILF) was identified by pull-down experiment. BmILF specifically bound to the i-motif and activated the transcription of BmPOUM2. The promoter activity of BmPOUM2 was enhanced when BmILF was over-expressed and decreased when BmILF was knocked-down by RNA interference. This study for the first time demonstrated that BmILF and the i-motif structure participated in the regulation of gene transcription in insect metamorphosis and provides new insights into the molecular mechanism of the secondary structures in epigenetic regulation of gene transcription.
Collapse
Affiliation(s)
- Kangkang Niu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaojuan Zhang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Huimin Deng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Feng Wu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yandong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hui Xiang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sichun Zheng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lin Liu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lihua Huang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Baojuan Zeng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Qili Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
8
|
Sengupta P, Bhattacharya A, Sa G, Das T, Chatterjee S. Truncated G-Quadruplex Isomers Cross-Talk with the Transcription Factors To Maintain Homeostatic Equilibria in c-MYC Transcription. Biochemistry 2019; 58:1975-1991. [PMID: 30920805 DOI: 10.1021/acs.biochem.9b00030] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nuclease hypersensitive element III1 (NHE III1) upstream c-MYC promoter harbors a transcription-silencing G-quadruplex (Pu27) element. Dynamic turnover of various transcription factors (TFs) across Pu27 to control c-MYC transcription homeostasis is enigmatic. Here, we reveal that native Pu27 evolves truncated G-quadruplex isomers (Pu19, Pu22, Pu24, and Pu25) in cells that are optimal intracellular targets of specific TFs in a sequence- and structure-dependent manner. Nuclear magnetic resonance and isothermal titration calorimetry envisaged that NM23-H2 (nucleoside diphosphate kinase) and nucleolin induce conformational fluctuations in Pu27 to sample specific conformationally restricted conformer(s). Structural investigations revealed that the flanking guanines at 5'-Pu27 control solvent exposure at G-quartets upon NM23-H2 and nucleolin binding driving Pu27 unfolding and folding, respectively. Transient chromatin immunoprecipitations confirmed that NM23-H2 drives the conformation switch to Pu24 that outcompetes nucleolin recruitment. Similarly, nucleolin arrests Pu27 in the Pu22 conformer minimizing NM23-H2 binding at Pu27. hnRNPK (heterogeneous nuclear ribonucleoprotein K) positively regulates NM23-H2 and nucleolin association at Pu27 despite their antagonism. On the basis of these results, we simulated the transcription kinetics in a feed-forward loop in which the transcription output responds to hnRNPK-induced early activation via NM23-H2 association, which favors Pu24 formation at NHE III1 reducing nucleolin occupancy and driving quadruplex unfolding to initiate transcription. NM23-H2 further promotes hnRNPK deposition across NHE III1 altering Pu27 plasticity that finally enriches the nucleolin abundance to drive Pu22 formation and weaken NM23-H2 binding to extinguish transcription. This mechanism involves three positive feedback loops (NM23-H2-hnRNPK, NM23-H2-CNBP, and hnRNPK-nucleolin) and one negative feedback loop (NM23-H2-nucleolin) controlling optimal turnover and residence time of TFs at Pu27 to homeostatically regulate c-MYC transcription.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biophysics , Bose Institute , P 1/12, C. I. T. Road, Scheme-VIIM , Kolkata 700054 , West Bengal , India
| | - Apoorva Bhattacharya
- Division of Molecular Medicine , Bose Institute , P 1/12, C. I. T. Road, Scheme-VIIM , Kolkata 700054 , West Bengal , India
| | - Gaurisankar Sa
- Division of Molecular Medicine , Bose Institute , P 1/12, C. I. T. Road, Scheme-VIIM , Kolkata 700054 , West Bengal , India
| | - Tanya Das
- Division of Molecular Medicine , Bose Institute , P 1/12, C. I. T. Road, Scheme-VIIM , Kolkata 700054 , West Bengal , India
| | - Subhrangsu Chatterjee
- Department of Biophysics , Bose Institute , P 1/12, C. I. T. Road, Scheme-VIIM , Kolkata 700054 , West Bengal , India
| |
Collapse
|
9
|
Developing Novel G-Quadruplex Ligands: from Interaction with Nucleic Acids to Interfering with Nucleic Acid⁻Protein Interaction. Molecules 2019; 24:molecules24030396. [PMID: 30678288 PMCID: PMC6384609 DOI: 10.3390/molecules24030396] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
G-quadruplex is a special secondary structure of nucleic acids in guanine-rich sequences of genome. G-quadruplexes have been proved to be involved in the regulation of replication, DNA damage repair, and transcription and translation of oncogenes or other cancer-related genes. Therefore, targeting G-quadruplexes has become a novel promising anti-tumor strategy. Different kinds of small molecules targeting the G-quadruplexes have been designed, synthesized, and identified as potential anti-tumor agents, including molecules directly bind to the G-quadruplex and molecules interfering with the binding between the G-quadruplex structures and related binding proteins. This review will explore the feasibility of G-quadruplex ligands acting as anti-tumor drugs, from basis to application. Meanwhile, since helicase is the most well-defined G-quadruplex-related protein, the most extensive research on the relationship between helicase and G-quadruplexes, and its meaning in drug design, is emphasized.
Collapse
|
10
|
Jin GZ, Zhang Y, Cong WM, Wu X, Wang X, Wu S, Wang S, Zhou W, Yuan S, Gao H, Yu G, Yang W. Phosphoglucomutase 1 inhibits hepatocellular carcinoma progression by regulating glucose trafficking. PLoS Biol 2018; 16:e2006483. [PMID: 30335765 PMCID: PMC6193743 DOI: 10.1371/journal.pbio.2006483] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022] Open
Abstract
Glycogen metabolism commonly altered in cancer is just beginning to be understood. Phosphoglucomutase 1 (PGM1), the first enzyme in glycogenesis that catalyzes the reversible conversion between glucose 1-phosphate (G-1-P) and glucose 6-phosphate (G-6-P), participates in both the breakdown and synthesis of glycogen. Here, we show that PGM1 is down-regulated in hepatocellular carcinoma (HCC), which is associated with the malignancy and poor prognosis of HCC. Decreased PGM1 expression obstructed glycogenesis pathway, which leads to the increased flow of glucose into glycolysis, thereby promoting tumor cell proliferation and HCC development. The loss of forkhead box protein J2 (FOXJ2), at least partly due to low genomic copy number in HCC, releases cellular nucleic acid-binding protein (CNBP), a nucleic acid chaperon, to bind to and promote G-quadruplex formation in PGM1 promoter and therefore decreases PGM1 expression. In addition, integrated analyses of PGM1 and FOXJ2 expression provide a better prediction for the malignance and prognosis of HCC. This study establishes a tumor-suppressive role of PGM1 by regulating glucose trafficking and uncovers a novel regulatory mechanism of PGM1 expression. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer in adults. Sorafenib is the only clinically approved systemic drug for patients with advanced HCC. Identification of novel targets and biomarkers will provide new therapeutic strategies for advanced HCC and better prognostic prediction. Phosphoglucomutase (PGM) is an evolutionarily conserved enzyme that regulates one of the most important pathways in glucose metabolis—catalyzing the bidirectional interconversion of glucose 1-phosphate (G-1-P) and glucose 6-phosphate (G-6-P). In this study, we identify PGM1 as a metabolic tumor suppressor. Its expression allocates more glucose to glycogenesis, which reduces the glycolytic intermediates for biosynthesis, thereby impairing HCC progression. We delineate the mechanism of PGM1 down-regulation in HCC, finding that forkhead box protein J2 (FOXJ2) loss releases cellular nucleic acid-binding protein (CNBP) to bind to and modify the DNA structure of PGM1 promoter, thereby inhibiting PGM1 expression. Immunohistochemical analyses of human HCC tumors indicate that low FOXJ2 and PGM1 expression correlates with the malignancy and poor progression of human HCC. These results also suggest that the activation of residual PGM1 may impair HCC development through switching glycolysis to glycogenesis.
Collapse
Affiliation(s)
- Guang-Zhi Jin
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yajuan Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wen-Ming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xueyuan Wu
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Xiongjun Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Siyang Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Siyao Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Shengxian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hong Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Guanzhen Yu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (GY); (WY)
| | - Weiwei Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- * E-mail: (GY); (WY)
| |
Collapse
|
11
|
Sutherland C, Cui Y, Mao H, Hurley LH. A Mechanosensor Mechanism Controls the G-Quadruplex/i-Motif Molecular Switch in the MYC Promoter NHE III1. J Am Chem Soc 2016; 138:14138-14151. [DOI: 10.1021/jacs.6b09196] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Caleb Sutherland
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona 85724, United States
| | - Yunxi Cui
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Laurence H. Hurley
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona 85724, United States
- University of Arizona, College of Pharmacy, 1703 East Mabel Street, Tucson, Arizona 85721, United States
- BIO5 Institute, 1657 East
Helen Street, Tucson, Arizona 85721, United States
| |
Collapse
|
12
|
Zaccarin M, Bosello-Travain V, Di Paolo ML, Falda M, Maiorino M, Miotto G, Piccolo S, Roveri A, Ursini F, Venerando R, Toppo S. Redox status in a model of cancer stem cells. Arch Biochem Biophys 2016; 617:120-128. [PMID: 27638050 DOI: 10.1016/j.abb.2016.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/31/2022]
Abstract
Reversible oxidation of Cys residues is a crucial element of redox homeostasis and signaling. According to a popular concept in oxidative stress signaling, the oxidation of targets of signals can only take place following an overwhelming of the cellular antioxidant capacity. This concept, however, ignores the activation of feedback mechanisms possibly leading to a paradoxical effect. In a model of cancer stem cells (CSC), stably overexpressing the TAZ oncogene, we observed that the increased formation of oxidants is associated with a globally more reduced state of proteins. Redox proteomics revealed that several proteins, capable of undergoing reversible redox transitions, are indeed more reduced while just few are more oxidized. Among the proteins more oxidized, G6PDH emerges as both more expressed and activated by oxidation. This accounts for the observed more reduced state of the NADPH/NADP+ couple. The dynamic redox flux generating this apparently paradoxical effect is rationalized in a computational system biology model highlighting the crucial role of G6PDH activity on the rate of redox transitions eventually leading to the reduction of reversible redox switches.
Collapse
Affiliation(s)
- Mattia Zaccarin
- Department of Molecular Medicine, University of Padova, Viale G.Colombo 3, 35121 Padova, Italy
| | | | - Maria Luisa Di Paolo
- Department of Molecular Medicine, University of Padova, Viale G.Colombo 3, 35121 Padova, Italy
| | - Marco Falda
- Department of Molecular Medicine, University of Padova, Viale G.Colombo 3, 35121 Padova, Italy
| | - Matilde Maiorino
- Department of Molecular Medicine, University of Padova, Viale G.Colombo 3, 35121 Padova, Italy
| | - Giovanni Miotto
- Department of Molecular Medicine, University of Padova, Viale G.Colombo 3, 35121 Padova, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padova, Viale G.Colombo 3, 35121 Padova, Italy
| | - Antonella Roveri
- Department of Molecular Medicine, University of Padova, Viale G.Colombo 3, 35121 Padova, Italy
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Viale G.Colombo 3, 35121 Padova, Italy
| | - Rina Venerando
- Department of Molecular Medicine, University of Padova, Viale G.Colombo 3, 35121 Padova, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padova, Viale G.Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
13
|
A G-Rich Motif in the lncRNA Braveheart Interacts with a Zinc-Finger Transcription Factor to Specify the Cardiovascular Lineage. Mol Cell 2016; 64:37-50. [PMID: 27618485 DOI: 10.1016/j.molcel.2016.08.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/21/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) are an emerging class of transcripts that can modulate gene expression; however, their mechanisms of action remain poorly understood. Here, we experimentally determine the secondary structure of Braveheart (Bvht) using chemical probing methods and show that this ∼590 nt transcript has a modular fold. Using CRISPR/Cas9-mediated editing of mouse embryonic stem cells, we find that deletion of 11 nt in a 5' asymmetric G-rich internal loop (AGIL) of Bvht (bvhtdAGIL) dramatically impairs cardiomyocyte differentiation. We demonstrate a specific interaction between AGIL and cellular nucleic acid binding protein (CNBP/ZNF9), a zinc-finger protein known to bind single-stranded G-rich sequences. We further show that CNBP deletion partially rescues the bvhtdAGIL mutant phenotype by restoring differentiation capacity. Together, our work shows that Bvht functions with CNBP through a well-defined RNA motif to regulate cardiovascular lineage commitment, opening the door for exploring broader roles of RNA structure in development and disease.
Collapse
|
14
|
Qiu J, Liu J, Chen S, Ou TM, Tan JH, Gu LQ, Huang ZS, Li D. Role of Hairpin-Quadruplex DNA Secondary Structural Conversion in the Promoter of hnRNP K in Gene Transcriptional Regulation. Org Lett 2015; 17:4584-7. [DOI: 10.1021/acs.orglett.5b02310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jun Qiu
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan
East Road, Guangzhou, Guangdong 510006, P. R. China
| | - Jinggong Liu
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan
East Road, Guangzhou, Guangdong 510006, P. R. China
| | - Shuobin Chen
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan
East Road, Guangzhou, Guangdong 510006, P. R. China
| | - Tian-Miao Ou
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan
East Road, Guangzhou, Guangdong 510006, P. R. China
| | - Jia-Heng Tan
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan
East Road, Guangzhou, Guangdong 510006, P. R. China
| | - Lian-Quan Gu
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan
East Road, Guangzhou, Guangdong 510006, P. R. China
| | - Zhi-Shu Huang
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan
East Road, Guangzhou, Guangdong 510006, P. R. China
| | - Ding Li
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan
East Road, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|