1
|
Din ZU, Cui B, Wang C, Zhang X, Mehmood A, Peng F, Liu Q. Crosstalk between lipid metabolism and EMT: emerging mechanisms and cancer therapy. Mol Cell Biochem 2025; 480:103-118. [PMID: 38622439 DOI: 10.1007/s11010-024-04995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Lipids are the key component of all membranes composed of a variety of molecules that transduce intracellular signaling and provide energy to the cells in the absence of nutrients. Alteration in lipid metabolism is a major factor for cancer heterogeneity and a newly identified cancer hallmark. Reprogramming of lipid metabolism affects the diverse cancer phenotypes, especially epithelial-mesenchymal transition (EMT). EMT activation is considered to be an essential step for tumor metastasis, which exhibits a crucial role in the biological processes including development, wound healing, and stem cell maintenance, and has been widely reported to contribute pathologically to cancer progression. Altered lipid metabolism triggers EMT and activates multiple EMT-associated oncogenic pathways. Although the role of lipid metabolism-induced EMT in tumorigenesis is an attractive field of research, there are still significant gaps in understanding the underlying mechanisms and the precise contributions of this interplay. Further study is needed to clarify the specific molecular mechanisms driving the crosstalk between lipid metabolism and EMT, as well as to determine the potential therapeutic implications. The increased dependency of tumor cells on lipid metabolism represents a novel therapeutic target, and targeting altered lipid metabolism holds promise as a strategy to suppress EMT and ultimately inhibit metastasis.
Collapse
Affiliation(s)
- Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, China
| | - Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China.
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Jeong MH, Im H, Dahl JB. Non-contact microfluidic analysis of the stiffness of single large extracellular vesicles from IDH1-mutated glioblastoma cells. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201412. [PMID: 37649709 PMCID: PMC10465107 DOI: 10.1002/admt.202201412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 09/01/2023]
Abstract
In preparation for leveraging extracellular vesicles (EVs) for disease diagnostics and therapeutics, fundamental research is being done to understand EV biological, chemical, and physical properties. Most published studies have investigated nanoscale EVs and focused on EV biochemical content. There is much less understanding of large microscale EV characteristics and EV mechanical properties. We recently introduced a non-contact microfluidic technique that measures the stiffness of large EVs (>1 μm diameter). This pilot study probes the robustness of the microfluidic technique to distinguish between EV populations by comparing stiffness distributions of large EVs derived from glioblastoma cell lines. EVs derived from cells expressing the IDH1 mutation, a common glioblastoma mutation known to disrupt lipid metabolism, were stiffer than those expressed from wild-type cells in a statistical comparison of sample medians. A supporting lipidomics analysis showed that the IDH1 mutation increased the amount of saturated lipids in EVs. Taken together, these data encourage further investigation into the potential of high-throughput microfluidics to distinguish between large EV populations that differ in biomolecular composition. These findings contribute to the understanding of EV biomechanics, in particular for the less studied microscale EVs.
Collapse
Affiliation(s)
- Mi Ho Jeong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joanna B Dahl
- Engineering Department, University of Massachusetts Boston, Boston, MA 02025, USA
| |
Collapse
|
3
|
Wang HYJ, Huang CY, Wei KC, Hung KC. A mass spectrometry imaging and lipidomic investigation reveals aberrant lipid metabolism in the orthotopic mouse glioma. J Lipid Res 2022; 63:100304. [PMID: 36273646 PMCID: PMC9761856 DOI: 10.1016/j.jlr.2022.100304] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022] Open
Abstract
Lipids perform multiple biological functions and reflect the physiology and pathology of cells, tissues, and organs. Here, we sought to understand lipid content in relation to tumor pathology by characterizing phospholipids and sphingolipids in the orthotopic mouse glioma using MALDI MS imaging (MSI) and LC-MS/MS. Unsupervised clustering analysis of the MALDI-MSI data segmented the coronal tumoral brain section into 10 histopathologically salient regions. Heterogeneous decrease of the common saturated phosphatidylcholines (PCs) in the tumor was accompanied by the increase of analogous PCs with one or two additional fatty acyl double bonds and increased lyso-PCs. Polyunsaturated fatty acyl-PCs and ether PCs highlighted the striatal tumor margins, whereas the distributions of other PCs differentiated the cortical and striatal tumor parenchyma. We detected a reduction of SM d18:1/18:0 and the heterogeneous mild increase of SM d18:1/16:0 in the tumor, whereas ceramides accumulated only in a small patch deep in the tumoral parenchyma. LC-MS/MS analyses of phospholipids and sphingolipids complemented the MALDI-MSI observation, providing a snapshot of these lipids in the tumor. Finally, the proposed mechanisms responsible for the tumoral lipid changes were contrasted with our interrogation of gene expression in human glioma. Together, these lipidomic results unveil the aberrant and heterogeneous lipid metabolism in mouse glioma where multiple lipid-associated signaling pathways underline the tumor features, promote the survival, growth, proliferation, and invasion of different tumor cell populations, and implicate the management strategy of a multiple-target approach for glioma and related brain malignancies.
Collapse
Affiliation(s)
- Hay-Yan J. Wang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan,For correspondence: Hay-Yan J. Wang
| | - Chiung-Yin Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan,Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| | - Kuo-Chen Wei
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan,Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan,Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan,School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Chen Hung
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Chang Gung University College of Medicine, Taiwan
| |
Collapse
|
4
|
Zhou B, Yang F, Qin L, Kuai J, Yang L, Zhang L, Sun P, Li G, Wang X. Computational study on novel natural compound inhibitor targeting IDH1_R132H. Aging (Albany NY) 2022; 14:5478-5492. [PMID: 35802554 PMCID: PMC9320544 DOI: 10.18632/aging.204162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/27/2022] [Indexed: 12/14/2022]
Abstract
Isocitrate dehydrogenases (IDH) catalyze the oxidative decarboxylation of isocitrate to 2-oxoglutarate. IDH1 mutation has been reported in various tumors especially Cholangiocarcinoma, while the IDH1_R132H is reported to be the most common mutation of IDH1. IDH1_R132H inhibitors are effective anti-cancer drugs and have shown significant therapeutic effects in clinical. In this study, two novel natural compounds were identified to combine respectively with IDH1_R132H with a stronger binding force with conductive to interaction energy. They also showed low toxicity potential. Molecular dynamics simulation analysis demonstrated that the candidate ligands-IDH1_R132H complexes is stable in natural circumstances with favorable potential energy. Thus, Styraxlignolide F and Tremulacin were screened as promising IDH1_R132H inhibitors. We provide a solid foundation for the design and development of IDH1_R132H targeted drugs.
Collapse
Affiliation(s)
- Baolin Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Fang Yang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Lei Qin
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Jun Kuai
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Lu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Lanfang Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Peisheng Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Guangpeng Li
- Department of Emergency, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Xinhui Wang
- Department of Oncology, First People's Hospital of Xinxiang, Xin Xiang 453100, China
| |
Collapse
|
5
|
Probing altered enzyme activity in the biochemical characterization of cancer. Biosci Rep 2022; 42:230680. [PMID: 35048115 PMCID: PMC8819661 DOI: 10.1042/bsr20212002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Enzymes have evolved to catalyze their precise reactions at the necessary rates, locations, and time to facilitate our development, to respond to a variety of insults and challenges, and to maintain a healthy, balanced state. Enzymes achieve this extraordinary feat through their unique kinetic parameters, myriad regulatory strategies, and their sensitivity to their surroundings, including substrate concentration and pH. The Cancer Genome Atlas (TCGA) highlights the extraordinary number of ways in which the finely tuned activities of enzymes can be disrupted, contributing to cancer development and progression often due to somatic and/or inherited genetic alterations. Rather than being limited to the domain of enzymologists, kinetic constants such as kcat, Km, and kcat/Km are highly informative parameters that can impact a cancer patient in tangible ways—these parameters can be used to sort tumor driver mutations from passenger mutations, to establish the pathways that cancer cells rely on to drive patients’ tumors, to evaluate the selectivity and efficacy of anti-cancer drugs, to identify mechanisms of resistance to treatment, and more. In this review, we will discuss how changes in enzyme activity, primarily through somatic mutation, can lead to altered kinetic parameters, new activities, or changes in conformation and oligomerization. We will also address how changes in the tumor microenvironment can affect enzymatic activity, and briefly describe how enzymology, when combined with additional powerful tools, and can provide us with tremendous insight into the chemical and molecular mechanisms of cancer.
Collapse
|
6
|
Landowski M, Bhute VJ, Takimoto T, Grindel S, Shahi PK, Pattnaik BR, Ikeda S, Ikeda A. A mutation in transmembrane protein 135 impairs lipid metabolism in mouse eyecups. Sci Rep 2022; 12:756. [PMID: 35031662 PMCID: PMC8760256 DOI: 10.1038/s41598-021-04644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is a significant factor in the development of age-related diseases but how aging disrupts cellular homeostasis to cause age-related retinal disease is unknown. Here, we further our studies on transmembrane protein 135 (Tmem135), a gene involved in retinal aging, by examining the transcriptomic profiles of wild-type, heterozygous and homozygous Tmem135 mutant posterior eyecup samples through RNA sequencing (RNA-Seq). We found significant gene expression changes in both heterozygous and homozygous Tmem135 mutant mouse eyecups that correlate with visual function deficits. Further analysis revealed that expression of many genes involved in lipid metabolism are changed due to the Tmem135 mutation. Consistent with these changes, we found increased lipid accumulation in mutant Tmem135 eyecup samples. Since mutant Tmem135 mice have similar ocular pathologies as human age-related macular degeneration (AMD) eyes, we compared our homozygous Tmem135 mutant eyecup RNA-Seq dataset with transcriptomic datasets of human AMD donor eyes. We found similar changes in genes involved in lipid metabolism between the homozygous Tmem135 mutant eyecups and AMD donor eyes. Our study suggests that the Tmem135 mutation affects lipid metabolism as similarly observed in human AMD eyes, thus Tmem135 mutant mice can serve as a good model for the role of dysregulated lipid metabolism in AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Vijesh J Bhute
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Tetsuya Takimoto
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel Grindel
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Pawan K Shahi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Bikash R Pattnaik
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
7
|
Sesanto R, Kuehn JF, Barber DL, White KA. Low pH Facilitates Heterodimerization of Mutant Isocitrate Dehydrogenase IDH1-R132H and Promotes Production of 2-Hydroxyglutarate. Biochemistry 2021; 60:1983-1994. [PMID: 34143606 PMCID: PMC8246651 DOI: 10.1021/acs.biochem.1c00059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Isocitrate dehydrogenase
1 (IDH1) is a key metabolic enzyme for
maintaining cytosolic levels of α-ketoglutarate (AKG) and preserving
the redox environment of the cytosol. Wild-type (WT) IDH1 converts
isocitrate to AKG; however, mutant IDH1-R132H that is recurrent in
human cancers catalyzes the neomorphic production of the oncometabolite d-2-hydroxyglutrate (D-2HG) from AKG. Recent work suggests that
production of l-2-hydroxyglutarte in cancer cells can be
regulated by environmental changes, including hypoxia and intracellular
pH (pHi). However, it is unknown whether and how pHi affects the activity
of IDH1-R132H. Here, we show that in cells IDH1-R132H can produce
D-2HG in a pH-dependent manner with increased production at lower
pHi. We also identify a molecular mechanism by which this pH sensitivity
is achieved. We show that pH-dependent production of D-2HG is mediated
by pH-dependent heterodimer formation between IDH1-WT and IDH1-R132H.
In contrast, neither IDH1-WT nor IDH1-R132H homodimer formation is
affected by pH. Our results demonstrate that robust production of
D-2HG by IDH1-R132H relies on the coincidence of (1) the ability to
form heterodimers with IDH1-WT and (2) low pHi or highly abundant
AKG substrate. These data suggest cancer-associated IDH1-R132H may
be sensitive to physiological or microenvironmental cues that lower
pH, such as hypoxia or metabolic reprogramming. This work reveals
new molecular considerations for targeted therapeutics and suggests
potential synergistic effects of using catalytic IDH1 inhibitors targeting
D-2HG production in combination with drugs targeting the tumor microenvironment.
Collapse
Affiliation(s)
- Rae Sesanto
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California 94122, United States
| | - Jessamine F Kuehn
- Department of Chemistry and Biochemistry, The University of Notre Dame, Notre Dame, Indiana 46556, United States.,Harper Cancer Research Institute, South Bend, Indiana 46617, United States
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California 94122, United States
| | - Katharine A White
- Department of Chemistry and Biochemistry, The University of Notre Dame, Notre Dame, Indiana 46556, United States.,Harper Cancer Research Institute, South Bend, Indiana 46617, United States
| |
Collapse
|
8
|
Di Ianni N, Musio S, Pellegatta S. Altered Metabolism in Glioblastoma: Myeloid-Derived Suppressor Cell (MDSC) Fitness and Tumor-Infiltrating Lymphocyte (TIL) Dysfunction. Int J Mol Sci 2021; 22:ijms22094460. [PMID: 33923299 PMCID: PMC8123145 DOI: 10.3390/ijms22094460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
The metabolism of glioblastoma (GBM), the most aggressive and lethal primary brain tumor, is flexible and adaptable to different adverse conditions, such as nutrient deprivation. Beyond glycolysis, altered lipid metabolism is implicated in GBM progression. Indeed, metabolic subtypes were recently identified based on divergent glucose and lipid metabolism. GBM is also characterized by an immunosuppressive microenvironment in which myeloid-derived suppressor cells (MDSCs) are a powerful ally of tumor cells. Increasing evidence supports the interconnection between GBM and MDSC metabolic pathways. GBM cells exert a crucial contribution to MDSC recruitment and maturation within the tumor microenvironment, where the needs of tumor-infiltrating lymphocytes (TILs) with antitumor function are completely neglected. In this review, we will discuss the unique or alternative source of energy exploited by GBM and MDSCs, exploring how deprivation of specific nutrients and accumulation of toxic byproducts can induce T-cell dysfunction. Understanding the metabolic programs of these cell components and how they impact fitness or dysfunction will be useful to improve treatment modalities, including immunotherapeutic strategies.
Collapse
|
9
|
Wang L, He S, Xiong Z, Lu J, Lin Y, Jin H, Yang L. Chronic nickel (II) exposure induces the stemness properties of cancer cells through repressing isocitrate dehydrogenase (IDH1). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112031. [PMID: 33578097 DOI: 10.1016/j.ecoenv.2021.112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Nickel is a component of biomedical alloys that is released during corrosion or friction and causes cytotoxicity, mutation, differentiation or even carcinogenesis in tissues. However, the mechanisms underlying the potential hazards of Nickel-containing alloys implanted in the human body by surgery remain uncertain. OBJECTIVE To study the effect of Ni(II) (NiCl2•6H2O) on cancer cells. METHODS A549 and RKO cells were treated with various concentrations of Ni(II) to determine the effect of Ni(II) on cellular viability using a CCK8 assay. Flow cytometry was performed to analyze the effect of Ni(II) on apoptosis and the cell cycle. Sphere-forming assays were conducted to examine the stemness properties of A549 and RKO cells. Western blotting was to evaluate the expression levels of SOX2, IDH1, HIF-1ɑ and β-catenin. The expression of isocitrate dehydrogenase (IDH1) in rectum adenocarcinoma (READ) was analyzed by Gene Expression Profiling Interactive Analysis (GEPIA). Kaplan-Meier analysis was used to calculate the correlation between survival and IDH1 expression. RESULTS Long-term exposure (120 days) to 100 µM Ni(II) significantly repressed cell proliferation, decreased colony formation and arrested the cell cycle at the G0/G1 phase. In addition, the stem-like traits of A549 and RKO cells were significantly augmented. Ni(II) also significantly decreased the protein expression of IDH1 and the synthesis rate of NAPDH, which competitively inhibited α-ketoglutarate (α-KG) generation. The downregulation of IDH1 not only promoted β-catenin accumulation in the cell nucleus in a HIF-1ɑ signaling-dependent manner but also induced the expression of the transcription factor SOX2 to maintain the stemness properties of cancer cells. Moreover, IDH1 expression negatively correlated with the clinicopathologic characteristics of READ. CONCLUSION These findings demonstrate that chronic and continuous release of Ni(II) to the microenvironment suppresses IDH1 expression and augments the stemness properties of cancer cells via the activation HIF-1ɑ/β-catenin/SOX2 pathway to enhance local tumor recurrence in patients with implanted Nickel-containing alloys at surgical sites.
Collapse
Affiliation(s)
- Lingqiao Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Shengnan He
- Biobank of Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen 518035, PR China
| | - Zhen Xiong
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430015, PR China
| | - Jingxiao Lu
- Biobank of Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen 518035, PR China
| | - Yuntao Lin
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, PR China
| | - Huidong Jin
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Lan Yang
- Biobank of Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen 518035, PR China; Department of Gastroenterology of Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen 518035, PR China.
| |
Collapse
|
10
|
An acidic residue buried in the dimer interface of isocitrate dehydrogenase 1 (IDH1) helps regulate catalysis and pH sensitivity. Biochem J 2021; 477:2999-3018. [PMID: 32729927 DOI: 10.1042/bcj20200311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
Isocitrate dehydrogenase 1 (IDH1) catalyzes the reversible NADP+-dependent conversion of isocitrate to α-ketoglutarate (αKG) to provide critical cytosolic substrates and drive NADPH-dependent reactions like lipid biosynthesis and glutathione regeneration. In biochemical studies, the forward reaction is studied at neutral pH, while the reverse reaction is typically characterized in more acidic buffers. This led us to question whether IDH1 catalysis is pH-regulated, which would have functional implications under conditions that alter cellular pH, like apoptosis, hypoxia, cancer, and neurodegenerative diseases. Here, we show evidence of catalytic regulation of IDH1 by pH, identifying a trend of increasing kcat values for αKG production upon increasing pH in the buffers we tested. To understand the molecular determinants of IDH1 pH sensitivity, we used the pHinder algorithm to identify buried ionizable residues predicted to have shifted pKa values. Such residues can serve as pH sensors, with changes in protonation states leading to conformational changes that regulate catalysis. We identified an acidic residue buried at the IDH1 dimer interface, D273, with a predicted pKa value upshifted into the physiological range. D273 point mutations had decreased catalytic efficiency and, importantly, loss of pH-regulated catalysis. Based on these findings, we conclude that IDH1 activity is regulated, at least in part, by pH. We show this regulation is mediated by at least one buried acidic residue ∼12 Å from the IDH1 active site. By establishing mechanisms of regulation of this well-conserved enzyme, we highlight catalytic features that may be susceptible to pH changes caused by cell stress and disease.
Collapse
|
11
|
Isocitrate dehydrogenase 1 mutation enhances 24(S)-hydroxycholesterol production and alters cholesterol homeostasis in glioma. Oncogene 2020; 39:6340-6353. [PMID: 32855525 DOI: 10.1038/s41388-020-01439-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 01/08/2023]
Abstract
Isocitrate dehydrogenase (IDH) mutation is the most important initiating event in gliomagenesis, and the increasing evidence shows that IDH mutation is associated with the metabolic reprogramming in the tumor. Dysregulated cholesterol metabolism is a hallmark of tumor cells, but the cholesterol homeostasis in IDH-mutated glioma is still unknown. In this study, we found that astrocyte-specific mutant IDH1(R132H) knockin reduced the cholesterol contents and damaged the structure of myelin in mouse brains. In U87 and U251 cells, the expression of mutant IDH1 consistently reduced the cholesterol levels. Furthermore, we found that IDH1 mutation enhanced the production of 24(S)-hydroxycholesterol (24-OHC), which is not only the metabolite of cholesterol elimination, but also functions as an endogenous ligand for the liver X receptors (LXRs). In IDH1-mutant glioma cells, the elevated 24-OHC activated LXRs, which consequently accelerated the low-density lipoprotein receptor (LDLR) degradation by upregulating the inducible degrader of the LDLR (IDOL). The reduced LDLR expressions in IDH1-mutant glioma cells abated the uptakes of low-density lipoprotein (LDL) to decrease the cholesterol influx. In addition, the activated LXRs also promoted the cholesterol efflux by elevating the ATP-binding cassette transporter A1 (ABCA1), ABCG1, and apolipoprotein E (ApoE) in both IDH1-mutant astrocytes and glioma cells. As a feedback, the reduced cholesterol levels stimulated the cholesterol biosynthesis, which made IDH1-mutated glioma cells more sensitive to atorvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase. The altered cholesterol homeostasis regulated by mutant IDH provides a pivotal therapeutical strategy for the IDH-mutated gliomas.
Collapse
|
12
|
Liu L, Lu JY, Li F, Xing X, Li T, Yang X, Shen X. IDH1 fine-tunes cap-dependent translation initiation. J Mol Cell Biol 2020; 11:816-828. [PMID: 31408165 PMCID: PMC6884706 DOI: 10.1093/jmcb/mjz082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/02/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022] Open
Abstract
The metabolic enzyme isocitrate dehydrogenase 1 (IDH1) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG). Its mutation often leads to aberrant gene expression in cancer. IDH1 was reported to bind thousands of RNA transcripts in a sequence-dependent manner; yet, the functional significance of this RNA-binding activity remains elusive. Here, we report that IDH1 promotes mRNA translation via direct associations with polysome mRNA and translation machinery. Comprehensive proteomic analysis in embryonic stem cells (ESCs) revealed striking enrichment of ribosomal proteins and translation regulators in IDH1-bound protein interactomes. We performed ribosomal profiling and analyzed mRNA transcripts that are associated with actively translating polysomes. Interestingly, knockout of IDH1 in ESCs led to significant downregulation of polysome-bound mRNA in IDH1 targets and subtle upregulation of ribosome densities at the start codon, indicating inefficient translation initiation upon loss of IDH1. Tethering IDH1 to a luciferase mRNA via the MS2-MBP system promotes luciferase translation, independently of the catalytic activity of IDH1. Intriguingly, IDH1 fails to enhance luciferase translation driven by an internal ribosome entry site. Together, these results reveal an unforeseen role of IDH1 in fine-tuning cap-dependent translation via the initiation step.
Collapse
Affiliation(s)
- Lichao Liu
- Tsinghua-Peking Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - J Yuyang Lu
- Tsinghua-Peking Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fajin Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xudong Xing
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tong Li
- Tsinghua-Peking Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohua Shen
- Tsinghua-Peking Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Abstract
Peroxisomes are metabolic organelles involved in lipid metabolism and cellular redox balance. Peroxisomal function is central to fatty acid oxidation, ether phospholipid synthesis, bile acid synthesis, and reactive oxygen species homeostasis. Human disorders caused by genetic mutations in peroxisome genes have led to extensive studies on peroxisome biology. Peroxisomal defects are linked to metabolic dysregulation in diverse human diseases, such as neurodegeneration and age-related disorders, revealing the significance of peroxisome metabolism in human health. Cancer is a disease with metabolic aberrations. Despite the critical role of peroxisomes in cell metabolism, the functional effects of peroxisomes in cancer are not as well recognized as those of other metabolic organelles, such as mitochondria. In addition, the significance of peroxisomes in cancer is less appreciated than it is in degenerative diseases. In this review, I summarize the metabolic pathways in peroxisomes and the dysregulation of peroxisome metabolism in cancer. In addition, I discuss the potential of inactivating peroxisomes to target cancer metabolism, which may pave the way for more effective cancer treatment.
Collapse
|
14
|
Cardoso AMS, Sousa M, Morais CM, Oancea-Castillo LR, Régnier-Vigouroux A, Rebelo O, Tão H, Barbosa M, Pedroso MCDL, Jurado AS. MiR-144 overexpression as a promising therapeutic strategy to overcome glioblastoma cell invasiveness and resistance to chemotherapy. Hum Mol Genet 2020; 28:2738-2751. [PMID: 31087038 DOI: 10.1093/hmg/ddz099] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive and common form of primary brain tumor, characterized by fast proliferation, high invasion, and resistance to current standard treatment. The average survival rate post-diagnosis is only of 14.6 months, despite the aggressive standard post-surgery treatment approaches of radiotherapy concomitant with chemotherapy with temozolomide. Altered cell metabolism has been identified as an emerging cancer hallmark, including in GB, thus offering a new target for cancer therapies. On the other hand, abnormal expression levels of miRNAs, key regulators of multiple molecular pathways, have been correlated with pathological manifestations of cancer, such as chemoresistance, proliferation, and resistance to apoptosis. In this work, we hypothesized that gene therapy based on modulation of a miRNA with aberrant expression in GB and predicted to target crucial metabolic enzymes might impair tumor cell metabolism. We found that the increase of miR-144 levels, shown to be downregulated in U87 and DBTRG human GB cell lines, as well as in GB tumor samples, promoted the downregulation of mRNA of enzymes involved in bioenergetic pathways, with consequent alterations in cell metabolism, impairment of migratory capacity, and sensitization of DBTRG cells to a chemotherapeutic drug, the dichloroacetate (DCA). Taken together, our findings provide evidence that the miR-144 plus DCA combined therapy holds promise to overcome GB-acquired chemoresistance, therefore deserving to be explored toward its potential application as a complementary therapeutic approach to the current treatment options for this type of brain tumor.
Collapse
Affiliation(s)
- Ana M S Cardoso
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Institute for Interdisciplinary Research of the University of Coimbra, 3030-789 Coimbra, Portugal
| | - Madalena Sousa
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Catarina M Morais
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Liliana R Oancea-Castillo
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Anne Régnier-Vigouroux
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Olinda Rebelo
- Neuropathology Laboratory, Neurology Service, University Hospital of Coimbra, 3004-561 Coimbra, Portugal
| | - Hermínio Tão
- Neurosurgery Service, University Hospital of Coimbra, 3004-561 Coimbra, Portugal
| | - Marcos Barbosa
- Neurosurgery Service, University Hospital of Coimbra, 3004-561 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | | | - Amália S Jurado
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
15
|
Malarz K, Mularski J, Pacholczyk M, Musiol R. The Landscape of the Anti-Kinase Activity of the IDH1 Inhibitors. Cancers (Basel) 2020; 12:cancers12030536. [PMID: 32110969 PMCID: PMC7139656 DOI: 10.3390/cancers12030536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/18/2022] Open
Abstract
Isocitrate dehydrogenases constitute a class of enzymes that are crucial for cellular metabolism. The overexpression or mutation of isocitrate dehydrogenases are often found in leukemias, glioblastomas, lung cancers, and ductal pancreatic cancer among others. Mutation R132H, which changes the functionality of an enzyme to produce mutagenic 2-hydroxyglutarate instead of a normal product, is particularly important in this field. A series of inhibitors were described for these enzymes of which ivosidenib was the first to be approved for treating leukemia and bile duct cancers in 2018. Here, we investigated the polypharmacological landscape of the activity for known sulfamoyl derivatives that are inhibitors, which are selective towards IDH1 R132H. These compounds appeared to be effective inhibitors of several non-receptor kinases at a similar level as imatinib and axitinib. The antiproliferative activity of these compounds against a panel of cancer cells was tested and is explained based on the relative expression levels of the investigated proteins. The multitargeted activity of these compounds makes them valuable agents against a wide range of cancers, regardless of the status of IDH1.
Collapse
Affiliation(s)
- Katarzyna Malarz
- August Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
- Correspondence: (K.M.); (R.M.)
| | - Jacek Mularski
- Institute of Chemistry, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland;
| | - Marcin Pacholczyk
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
| | - Robert Musiol
- Institute of Chemistry, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland;
- Correspondence: (K.M.); (R.M.)
| |
Collapse
|
16
|
Dekker LJM, Wu S, Jurriëns C, Mustafa DAN, Grevers F, Burgers PC, Sillevis Smitt PAE, Kros JM, Luider TM. Metabolic changes related to the IDH1 mutation in gliomas preserve TCA-cycle activity: An investigation at the protein level. FASEB J 2020; 34:3646-3657. [PMID: 31960518 DOI: 10.1096/fj.201902352r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022]
Abstract
The discovery of the IDH1 R132H (IDH1 mut) mutation in low-grade glioma and the associated change in function of the IDH1 enzyme has increased the interest in glioma metabolism. In an earlier study, we found that changes in expression of genes involved in the aerobic glycolysis and the TCA cycle are associated with IDH1 mut. Here, we apply proteomics to FFPE samples of diffuse gliomas with or without IDH1 mutations, to map changes in protein levels associated with this mutation. We observed significant changes in the enzyme abundance associated with aerobic glycolysis, glutamate metabolism, and the TCA cycle in IDH1 mut gliomas. Specifically, the enzymes involved in the metabolism of glutamate, lactate, and enzymes involved in the conversion of α-ketoglutarate were increased in IDH1 mut gliomas. In addition, the bicarbonate transporter (SLC4A4) was increased in IDH1 mut gliomas, supporting the idea that a mechanism preventing intracellular acidification is active. We also found that enzymes that convert proline, valine, leucine, and isoleucine into glutamate were increased in IDH1 mut glioma. We conclude that in IDH1 mut glioma metabolism is rewired (increased input of lactate and glutamate) to preserve TCA-cycle activity in IDH1 mut gliomas.
Collapse
Affiliation(s)
- Lennard J M Dekker
- Department of Neurology, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Suying Wu
- Department of Neurology, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Cherise Jurriëns
- Department of Neurology, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Dana A N Mustafa
- Department of Pathology, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Frederieke Grevers
- Department of Pathology, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Peter C Burgers
- Department of Neurology, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Peter A E Sillevis Smitt
- Department of Neurology, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Theo M Luider
- Department of Neurology, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
17
|
Reagan M. CAUSES OF CANCER. Cancer 2019. [DOI: 10.1002/9781119645214.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Wang X, Wang J, Shi X, Pan C, Liu H, Dong Y, Dong R, Mang J, Xu Z. Proteomic analyses identify a potential mechanism by which extracellular vesicles aggravate ischemic stroke. Life Sci 2019; 231:116527. [DOI: 10.1016/j.lfs.2019.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/20/2019] [Accepted: 06/01/2019] [Indexed: 12/18/2022]
|
19
|
Mo Y, Wang Y, Zhang L, Yang L, Zhou M, Li X, Li Y, Li G, Zeng Z, Xiong W, Xiong F, Guo C. The role of Wnt signaling pathway in tumor metabolic reprogramming. J Cancer 2019; 10:3789-3797. [PMID: 31333796 PMCID: PMC6636296 DOI: 10.7150/jca.31166] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
The occurrence and development of tumors is a complex process involving long-term multi-factor participation. In this process, tumor cells from a set of abnormal metabolic patterns that are different from normal cells. This abnormal metabolic change is called metabolic reprogramming of tumors. Wnt signaling pathway is one of the critical signaling pathways regulating cell proliferation and differentiation. In recent years, it has been found that Wnt signaling participates in the occurrence and development of malignant tumors by affecting metabolic reprogramming. This paper reviews the role of Wnt signaling in tumor metabolic reprogramming to provide crucial theoretical guidance for targeted therapy and drug response of tumors.
Collapse
Affiliation(s)
- Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Lishen Zhang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Liting Yang
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Li S, Sun C, Gu Y, Gao X, Zhao Y, Yuan Y, Zhang F, Hu P, Liang W, Cao K, Zhang J, Wang Z, Ye J. Mutation of IDH1 aggravates the fatty acid‑induced oxidative stress in HCT116 cells by affecting the mitochondrial respiratory chain. Mol Med Rep 2019; 19:2509-2518. [PMID: 30720071 PMCID: PMC6423594 DOI: 10.3892/mmr.2019.9903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/12/2018] [Indexed: 01/12/2023] Open
Abstract
Increasing evidence has indicated that mutations of isocitrate dehydrogenase 1/2 (IDH1/2) contribute to the metabolic reprogramming of cancer cells; however their functions in lipid metabolism remain unknown. In the present study, the parental and IDH1 (R132H/+) mutant HCT116 cells were treated with various concentrations of oleic acid (OA) or palmitic acid (PA) in the presence or absence of glucose. The results demonstrated that mutation of IDH1 exacerbated the effects of OA and PA on cell viability and apoptosis, and consistently elevated the production of reactive oxygen species in HCT116 cells, particularly in the absence of glucose. Furthermore, mutation of IDH1 inhibited the rate of fatty acid oxidation (FAO), but elevated the glucose consumption in HCT116 cells. The results of immunoblotting and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) indicated that the expression of glucose transporter 1 was upregulated, whereas that of carnitine palmitoyl transferase 1 was downregulated in IDH1 mutant HCT116 cells. Although mitochondrial DNA quantification demonstrated that mutation of IDH1 had no effect on the quantity of mitochondria, immunoblotting and RT‑qPCR revealed that mutation of IDH1 in HCT116 cells significantly downregulated the expression of cytochrome c (CYCS) and CYCS oxidase IV, two important components in mitochondrial respiratory chain. These results indicated that mutation of IDH1 aggravated the fatty acid‑induced oxidative stress in HCT116 cells, by suppressing FAO and disrupting the mitochondrial respiratory chain. The results of the present study may provide novel insight into therapeutic strategies for the treatment of cancer types with IDH mutation.
Collapse
Affiliation(s)
- Sheng Li
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Chao Sun
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yu Gu
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xing Gao
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuanlin Zhao
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuan Yuan
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Feng Zhang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Peizhen Hu
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Weihua Liang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Kaiyu Cao
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jin Zhang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhe Wang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jing Ye
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
21
|
Laba P, Wang J, Zhang J. Low level of isocitrate dehydrogenase 1 predicts unfavorable postoperative outcomes in patients with clear cell renal cell carcinoma. BMC Cancer 2018; 18:852. [PMID: 30153799 PMCID: PMC6114787 DOI: 10.1186/s12885-018-4747-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
Background The purpose of this study was to investigate the role of isocitrate dehydrogenase 1 (IDH1) expression on prognosis of patients with clear cell renal cell carcinoma (ccRCC) following nephrectomy. Methods We retrospectively enrolled 358 ccRCC patients undergoing nephrectomy in Renji Hospital. Clinicopathologic features, overall survival (OS) and recurrence-free survival (RFS) of ccRCC patents were all collected. IDH1 expression level was assessed by immunohistochemistry and its association with clinicopathologic features and outcomes were also evaluated. Kaplan-Meier method with the log-rank test was applied to compare survival curves. Multivariate cox regression models were applied to analyze the prognostic value of each factor on OS and RFS of ccRCC patients. Moreover, two nomograms with factors selected by multivariate analysis were constructed to evaluate the prognosis of ccRCC patients, and the calibration plots were built to assess the predictive accuracy of nomograms. Results Our data indicated that IDH1 expression level was down-regulated in ccRCC tissues, and it negatively correlated with tumor Fuhrman grade (p = 0.025). Low IDH1 expression was associated with worse OS and RFS for cccRCC patients (OS, p = 0.004; RFS, p = 0.03). In addition, IDH1 could significantly stratify patients’ OS and RFS in intermediate/high risk patients (UISS score ≥ 4) (p = 0.049 and p = 0.004, respectively). Furthermore, incorporating IDH1 with other prognostic factors could predict ccRCC patients’ OS and RFS (OS, c-index = 0.779; RFS, c-index = 0.798) and perform better than TNM and SSIGN system. Conclusions Low IDH1 expression level might be an adverse prognostic biomarker for clinical outcomes of ccRCC patients, and two nomograms with IDH1 are potential effective prognostic models for ccRCC.
Collapse
Affiliation(s)
- Pingcuo Laba
- Department of Urology, Shigatse People's Hospital, Shigatse, 85700, China
| | - Jianfeng Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No.160, Pujian Road, Shanghai, 200127, China
| | - Jin Zhang
- Department of Urology, Shigatse People's Hospital, Shigatse, 85700, China. .,Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No.160, Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
22
|
Zhang Q, Lou Y, Bai XL, Liang TB. Immunometabolism: A novel perspective of liver cancer microenvironment and its influence on tumor progression. World J Gastroenterol 2018; 24:3500-3512. [PMID: 30131656 PMCID: PMC6102497 DOI: 10.3748/wjg.v24.i31.3500] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/29/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
The initiation and progression of liver cancer, including hepatocellular carcinoma and intrahepatic cholangiocarcinoma, are dependent on its tumor microenvironment. Immune cells are key players in the liver cancer microenvironment and show complicated crosstalk with cancer cells. Emerging evidence has shown that the functions of immune cells are closely related to cell metabolism. However, the effects of metabolic changes of immune cells on liver cancer progression are largely undefined. In this review, we summarize the recent findings of immunometabolism and relate these findings to liver cancer progression. We also explore the translation of the understanding of immunometabolism for clinical use.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou 310009, Zhejiang Province, China
| | - Yu Lou
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou 310009, Zhejiang Province, China
| | - Xue-Li Bai
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou 310009, Zhejiang Province, China
| | - Ting-Bo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou 310009, Zhejiang Province, China
| |
Collapse
|
23
|
Immunohistochemically detected IDH1R132H mutation is rare and mostly heterogeneous in prostate cancer. World J Urol 2018; 36:877-882. [DOI: 10.1007/s00345-018-2225-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/02/2018] [Indexed: 12/31/2022] Open
|
24
|
A Practical Method for the Preparation of 18F-Labeled Aromatic Amino Acids from Nucleophilic [ 18F]Fluoride and Stannyl Precursors for Electrophilic Radiohalogenation. Molecules 2017; 22:molecules22122231. [PMID: 29244780 PMCID: PMC6149761 DOI: 10.3390/molecules22122231] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 11/17/2022] Open
Abstract
In a recent contribution of Scott et al., the substrate scope of Cu-mediated nucleophilic radiofluorination with [18F]KF for the preparation of 18F-labeled arenes was extended to aryl- and vinylstannanes. Based on these findings, the potential of this reaction for the production of clinically relevant positron emission tomography (PET) tracers was investigated. To this end, Cu-mediated radiofluorodestannylation using trimethyl(phenyl)tin as a model substrate was re-evaluated with respect to different reaction parameters. The resulting labeling protocol was applied for 18F-fluorination of different electron-rich, -neutral and -poor arylstannyl substrates in RCCs of 16-88%. Furthermore, this method was utilized for the synthesis of 18F-labeled aromatic amino acids from additionally N-Boc protected commercially available stannyl precursors routinely applied for electrophilic radiohalogenation. Finally, an automated synthesis of 6-[18F]fluoro-l-m-tyrosine (6-[18F]FMT), 2-[18F]fluoro-l-tyrosine (2-[18F]F-Tyr), 6-[18F]fluoro-l-3,4-dihydroxyphenylalanine (6-[18F]FDOPA) and 3-O-methyl-6-[18F]FDOPA ([18F]OMFD) was established furnishing these PET probes in isolated radiochemical yields (RCYs) of 32-54% on a preparative scale. Remarkably, the automated radiosynthesis of 6-[18F]FDOPA afforded an exceptionally high RCY of 54 ± 5% (n = 5).
Collapse
|
25
|
Moore S, Järvelin AI, Davis I, Bond GL, Castello A. Expanding horizons: new roles for non-canonical RNA-binding proteins in cancer. Curr Opin Genet Dev 2017; 48:112-120. [PMID: 29216518 PMCID: PMC5894799 DOI: 10.1016/j.gde.2017.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 01/12/2023]
Abstract
Cancer development involves the stepwise accumulation of genetic lesions that overcome the normal regulatory pathways that prevent unconstrained cell division and tissue growth. Identification of the genetic changes that cause cancer has long been the subject of intensive study, leading to the identification of several RNA-binding proteins (RBPs) linked to cancer. Cross-reference of the complement of RBPs recently identified by RNA interactome capture with cancer-associated genes and biological processes led to the identification of a set of 411 proteins with potential implications in cancer biology. These involve a broad spectrum of cellular processes including response to stress, metabolism and cell adhesion. Future studies should aim to understand these proteins and their connection to cancer from an RNA-centred perspective, holding the promise of new mechanistic understanding of cancer formation and novel approaches to diagnosis and treatment.
Collapse
Affiliation(s)
- Samantha Moore
- Department of Biochemistry, University of Oxford, United Kingdom; Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, United Kingdom
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, United Kingdom
| | - Gareth L Bond
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, United Kingdom.
| |
Collapse
|
26
|
Wang S, Wang Z, Zhou L, Shi X, Xu G. Comprehensive Analysis of Short-, Medium-, and Long-Chain Acyl-Coenzyme A by Online Two-Dimensional Liquid Chromatography/Mass Spectrometry. Anal Chem 2017; 89:12902-12908. [PMID: 29098853 DOI: 10.1021/acs.analchem.7b03659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acyl-coenzyme A (CoA) is a pivotal metabolic intermediate in numerous biological processes. However, comprehensive analysis of acyl-CoAs is still challenging as the properties of acyl-CoAs greatly vary with different carbon chains. Here, we designed a two-dimensional liquid chromatography method coupled with high-resolution mass spectrometry (2D LC/HRMS) to cover all short-, medium-, and long-chain acyl-CoAs within one analytical run. Complex acyl-CoAs were separated into two fractions according to their acyl chains by the first dimensional prefractionation. Then, two fractions containing short-chain acyl-CoAs or medium- and long-chain acyl-CoAs were further separated by the two parallel columns in the second dimension. Nineteen representative standards were chosen to optimize the analytical conditions of the 2D LC/HRMS method. Resolution and sensitivity were demonstrated to be improved greatly, and lowly abundant acyl-CoAs and acyl-CoA isomers could be detected and distinguished. By using the 2D LC/HRMS method, 90 acyl-CoAs (including 21 acyl-dephospho-CoAs) were identified from liver extracts, which indicated that our method was one of the most powerful approaches for obtaining comprehensive profiling of acyl-CoAs so far. The method was further employed in the metabolomics study of malignant glioma cells with an isocitrate dehydrogenase 1 (IDH1) mutation to explore their metabolic differences. A total of 46 acyl-CoAs (including 2 acyl-dephospho-CoAs) were detected, and 12 of them were dysregulated in glioma cells with the IDH1 mutation. These results demonstrated the practicability and the superiority of the established method. Therefore, the 2D LC/HRMS method provides a robust and reproducible approach to the comprehensive analysis of acyl-CoAs in tissues, cells, and other biological samples.
Collapse
Affiliation(s)
- Shuangyuan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Zhichao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
27
|
PLD1 overexpression promotes invasion and migration and function as a risk factor for Chinese glioma patients. Oncotarget 2017; 8:57039-57046. [PMID: 28915652 PMCID: PMC5593623 DOI: 10.18632/oncotarget.18961] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/18/2017] [Indexed: 12/13/2022] Open
Abstract
Glioma is a lethal disease with few effective therapeutic options. Recently, insights into cancer biology had suggested that abnormal lipid metabolism was a risk factor for various human malignancies, including glioma. As a key enzyme implicated in lipid metabolism, PLD1 was overexpression in multiple human cancers, and it was stated to be responsible for aggressive phenotypes, such as angiogenesis and chemoresistance. However, there was still much to know about its expression and function in glioma. In the present study, we showed that PLD1 was overexpression in clinical samples of glioma. In addition, the correlation assay revealed that PLD1 overexpression was correlated with poor differentiation (p = 0.04), and it was responsible for a poor prognosis for the patients (p = 0.009). Furthermore, we showed in COX regression assay that PLD1 was a risk factor for glioma (p = 0.018, HR = 0.461, 95% CI = 0.243–0.887). Consistently, we found that PLD1 was overexpression in glioma cell lines, and it could facilitate the proliferation and migration. Taken together, our study suggested that PLD1 was pro-tumoral in glioma, and that further studies were urgently needed so as to define whether it was a novel therapeutic target for the disease.
Collapse
|
28
|
Dang L, Su SSM. Isocitrate Dehydrogenase Mutation and (R)-2-Hydroxyglutarate: From Basic Discovery to Therapeutics Development. Annu Rev Biochem 2017; 86:305-331. [DOI: 10.1146/annurev-biochem-061516-044732] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lenny Dang
- Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139;,
| | | |
Collapse
|
29
|
Maus A, Peters GJ. Glutamate and α-ketoglutarate: key players in glioma metabolism. Amino Acids 2017; 49:21-32. [PMID: 27752843 PMCID: PMC5241329 DOI: 10.1007/s00726-016-2342-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM), or grade IV astrocytoma, is the most common type of primary brain tumor. It has a devastating prognosis with a 2-year-overall survival rate of only 26 % after standard treatment, which includes surgery, radiation, and adjuvant chemotherapy with temozolomide. Also lower grade gliomas are difficult to treat, because they diffusely spread into the brain, where extensive removal of tissue is critical. Better understanding of the cancer's biology is a key for the development of more effective therapy approaches. The discovery of isocitrate dehydrogenase (IDH) mutations in leukemia and glioma drew attention to specific metabolic aberrations in IDH-mutant gliomas. In the center of the metabolic alterations is α-ketoglutarate (αKG), an intermediate metabolite in the tricarboxylic acid (TCA) cycle, and the associated amino acid glutamate (Glu). This article highlights the role of these metabolites in glioma energy and lipid production and indicates possible weak spots of IDH-mutant and IDH-wt gliomas.
Collapse
Affiliation(s)
- Andreas Maus
- Department of Medical Oncology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
- University of Gottingen, Gottingen, Germany
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Quantitative proteomic analysis reveals that proteins required for fatty acid metabolism may serve as diagnostic markers for gastric cancer. Clin Chim Acta 2016; 464:148-154. [PMID: 27884752 DOI: 10.1016/j.cca.2016.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Gastric cancer is one of the leading causes of cancer-related deaths worldwide. The sensitivities and specificities of current biomarkers for gastric cancer are insufficient for clinical detection, and new diagnostic tests are therefore urgently required. METHODS A discovery set of gastric cancer and adjacent normal tissues were analyzed for differentially expressed proteins by labeling of peptide digests with isobaric tag for relative and absolute quantitation (iTRAQ) reagents followed by liquid chromatography-electrospray ionization-tandem mass spectrometry. A validation set of 70 pairs of gastric cancer and adjacent normal tissues were examined to confirm the expression levels of the potential biomarkers identified by iTRAQ labeling. RESULTS We detected 431 proteins associated with 16 KEGG pathways that were differentially expressed in gastric cancer tissues, of which 224 were upregulated and 207 were downregulated in gastric cancer tissues. Coexpression of fatty acid binding protein (FABP1) and fatty acid synthase (FASN) in gastric cancer tissues (61.4% sensitivity and 77.1% specificity) was strongly associated with lymph node metastasis and Tumor, Node, Metastasis stage I/II. CONCLUSION Quantitative proteomic analysis of gastric cancer tissues revealed that coexpression of FABP1 and FASN may serve as a biomarker for detection of early gastric cancer.
Collapse
|
31
|
Farr RL, Lismont C, Terlecky SR, Fransen M. Peroxisome biogenesis in mammalian cells: The impact of genes and environment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1049-60. [PMID: 26305119 DOI: 10.1016/j.bbamcr.2015.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 01/16/2023]
Abstract
The initiation and progression of many human diseases are mediated by a complex interplay of genetic, epigenetic, and environmental factors. As all diseases begin with an imbalance at the cellular level, it is essential to understand how various types of molecular aberrations, metabolic changes, and environmental stressors function as switching points in essential communication networks. In recent years, peroxisomes have emerged as important intracellular hubs for redox-, lipid-, inflammatory-, and nucleic acid-mediated signaling pathways. In this review, we focus on how nature and nurture modulate peroxisome biogenesis and function in mammalian cells. First, we review emerging evidence that changes in peroxisome activity can be linked to the epigenetic regulation of cell function. Next, we outline how defects in peroxisome biogenesis may directly impact cellular pathways involved in the development of disease. In addition, we discuss how changes in the cellular microenvironment can modulate peroxisome biogenesis and function. Finally, given the importance of peroxisome function in multiple aspects of health, disease, and aging, we highlight the need for more research in this still understudied field.
Collapse
Affiliation(s)
- Rebecca L Farr
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven, Herestraat 49 box 601, B-3000 Leuven, Belgium; Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield Ave., Detroit, MI 48201, USA
| | - Celien Lismont
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven, Herestraat 49 box 601, B-3000 Leuven, Belgium
| | - Stanley R Terlecky
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield Ave., Detroit, MI 48201, USA
| | - Marc Fransen
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven, Herestraat 49 box 601, B-3000 Leuven, Belgium.
| |
Collapse
|